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Abstract 
The circular shaft serves as the axis of rotation for the components. It is subjected to flexion and tearing, indicating that fatigue is the mode 
of failure. The range of stresses resulting from the mean and alternating loads determines the occurrence of fatigue failure. The deterministic 
fatigue analysis, calculated using the stress average obtained from SN curves, can only represent the mean life. This is because the stress 
range is not a single number, and therefore it cannot provide the reliability level for the stress. The study employs the Weibull distribution 
to estimate loads and parameters for a probabilistic shaft design under bending and torsion. The minimum strength is assessed using 
corresponding stress analysis to determine the reliability index for the designed shaft. 
 
Keywords: probabilistic design; Weibull distribution; reliability; stress-strength. 

 
 

Confiabilidad probabilística Weibull en el diseño de un eje sometido 
a esfuerzos de flexión y torsión 

 
Resumen 
El eje circular sirve de eje de rotación de los componentes. Está sometido a flexión y desgarro, lo que indica que el modo de fallo es la 
fatiga. El rango de tensiones resultante de las cargas medias y alternas determina la aparición del fallo por fatiga. El análisis determinista 
de la fatiga, calculado a partir de la tensión media obtenida de las curvas SN, sólo puede representar la vida media. Esto se debe a que el 
rango de tensiones no es un número único y, por lo tanto, no puede proporcionar el nivel de fiabilidad de la tensión. El estudio emplea la 
distribución de Weibull para estimar las cargas y los parámetros de un diseño probabilístico de un eje sometido a flexión y torsión. La 
resistencia mínima se evalúa mediante el correspondiente análisis de tensiones para determinar el índice de fiabilidad del eje diseñado. 
 
Palabras clave: diseño probabilístico; distribución de Weibull; fiabilidad; tensión-resistencia. 

 
 
 

1 Introduction  
 

A shaft is a spinning, often circular cross-section that is 
used in a variety of applications to convey power and 
rotational motion [1]. The main goal of a shaft design is to 
make them safe and to continuously enhance this goal, 
engineers focus on increasing their dependability and 
efficiency [2]. The shaft design is considered to be a typical 
mechanical engineering issue in which the effect of the 
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uncertainty, i.e., environment or usage circumstances and 
material strength qualities, is to try to reduce this uncertainty 
by applying safety factors [3].   

In general, a shaft failure results from bending stress 
perpendicular to the shaft axis, and the shaft fracture resulting 
from torsional stress most frequently disposed at a 45° angle 
to the shaft axis [4], i.e. the stresses acting on the shaft is the 
𝜎𝜎𝑋𝑋,𝜎𝜎𝑦𝑦 and 𝜏𝜏𝑥𝑥𝑦𝑦 [5]. Bending and torsion imply that the failure 
mode of shafts is by fatigue. Then, when shafts are exposed 
to alternating strains over extended periods, fatigue develops. 
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To estimate shaft fatigue time, statistical models are crucial 
since the fatigue behavior of shafts under cyclic stress is 
random [6]. The Weibull distribution, on the other hand, is 
the distribution that, using the weakest link concept, could be 
one of the best predictors of fatigue life [7]. The Weibull 
distribution is a natural distribution for forecasting lifespan 
as a result. Moreover, as the Weibull model for fatigue 
estimate effectively predicts life, it should be utilized to 
forecast the fatigue SN reliability R(t) [8]. The Weibull 
distribution has the property of lognormal distribution. This 
shows that the shape parameters have not changed even 
though the position and scale parameters have changed [9].  
i.e.  𝑋𝑋𝑖𝑖~𝑊𝑊(𝛽𝛽, 𝜂𝜂, 𝛾𝛾) → min (𝑋𝑋1,𝑋𝑋2, …𝑋𝑋𝑚𝑚)~𝑊𝑊(𝛽𝛽, 𝜂𝜂, 𝛾𝛾𝑚𝑚

−1/𝛽𝛽). 
In that case, at least one data set is also Weibull distributed. 
Based on these facts, we present a probabilistic Weibull 
model analysis of shaft designs under bending and torsional 
loading to predict the lifetime SN number [10]. The Weibull 
distribution withstand stress analysis is then used to calculate 
the reliability R(t) of the shaft under variable stress [11].  

 
2 Fatigue 

 
Fatigue occurs when a material is subjected to cyclic 

loads below the threshold at which failure can occur [12]. The 
cumulative and irreversible nature of damage caused by 
fatigue processes and the fact that failures often occur 
suddenly make it difficult to detect incremental changes in 
material behavior over time [13]. The material behavior 
under this type of load is different from that under static load 
materials that can withstand large static loads and can fail at 
lower loads when repeated many times. Fatigue failure is 
caused by repeated loading. It is reported that 90% of all 
devastation is caused by it. On the other hand, fatigue is 
affected by three basic factors [14]. 

The three most important factors that affect fatigue are: 
many cycles, a wide range of applied loads, and high 
maximum stresses (bending and torsion). There is no 
universal theory to explain how materials behave under 
fatigue and cyclic loading, making material fatigue and 
damaging formation a complex process [15]. By measuring 
the fatigue life of a component under a given load cycle 
sequence, fatigue analysis aims to predict fatigue life in 
actual operation. Fatigue prediction techniques often fall into 
two categories [16]. The first focuses on predicting crack 
initiation using a combination of damage as a function of 
component stress [17]. The second approach is based on the 
mechanism of continuous fatigue life by calculating damage 
cycles [18]. According to the deterministic point of view, 
there are three main ways used in design to identify a 
cyclically loaded component that would fail over time [19]. 
In general, the life forecast of sensitive to fatigue parts is 
based on the safe-life approach [20]. These three methods are 
linear elastic fracture mechanics, stress-life method, and 
strain-life method. The purpose of these techniques is to 
predict N, cycles to failure at a given stress level [21]. This 
error cycle is categorized as follows: 1 𝑁𝑁 ≤  103 the cycles 
as low-cycle fatigue, whereas high-cycle fatigue is 𝑁𝑁 >
 103  cycles [22]. 

This deterministic method of fatigue calculations is used 
by most contemporary fatigue standards (ASTM 
E606/E606M). Due to the use of deterministic algorithms, 
fatigue estimation always produces the same result given an 
input [23]. The random nature of fatigue and deterministic 
fatigue techniques that use characteristic values and high 
safety factors to explain are fraught with uncertainty [24]. As 
the issue of fatigue assessment is so complicated and has not 
yet been properly resolved, probabilistic approaches are 
required for accurate damage prediction, constructive design, 
and fatigue risk analysis [25]. Therefore, it is essential to 
evaluate and predict the fatigue life of elements using 
mathematical and probabilistic models [1]. Therefore, 
according to the weakest-link principle, the survival 
probability of a uniformly loaded volume 𝑉𝑉(0) is given by 
all probabilities 𝑚𝑚 = 𝑉𝑉0

𝑑𝑑𝑉𝑉
  volume elements survive [26].   

 

𝑄𝑄𝑠𝑠 = 1 − 𝑝𝑝 = �(1 − 𝑑𝑑𝑑𝑑) = (1 − 𝜆𝜆(𝑠𝑠)𝑑𝑑𝑉𝑉)𝑚𝑚
𝑚𝑚

𝑖𝑖=1

 (1) 

 
And introducing 𝑉𝑉0 = 𝑚𝑚𝑑𝑑𝑉𝑉 in eq. (2) 
 

𝑄𝑄𝑠𝑠 = �1 −
𝜆𝜆(𝑆𝑆)𝑉𝑉0
𝑚𝑚 �

𝑚𝑚
 𝜆𝜆(𝑠𝑠)𝑑𝑑𝑉𝑉𝜆𝜆(𝑠𝑠)𝑑𝑑𝑉𝑉

     (2) 

 
As both 𝑚𝑚 and 𝑑𝑑𝑉𝑉 rise indefinitely, Eq. (3) transforms 

into an exponential function, as shown by  
 

𝑄𝑄𝑠𝑠 = 𝑒𝑒−(𝜆𝜆(𝑠𝑠)𝑉𝑉0) (3) 
 

2.1 Fatigue Failure Mode for Shafts 
 
A rotating part that conveys power or motion is called a 

shaft. Typically, its cross-section is round. It provides an axis 
of rotation or oscillation for a variety of parts, such as cranks, 
pulleys, and gears. Shafts are designed to transmit motion, so 
they must be subjected to bending, axial rotation, and 
torsional loads to transmit motion [27]. Torque is transferred 
from input to output by torsional stress. The shaft component 
transmits torque 𝑥𝑥𝑥𝑥. At stable operating levels, the torque is 
often fairly constant and the outer surface experiences a 
maximum shear stress due to torsion [28]. A given load 
element alternates between compression and tension with 
each rotation of the shaft, so that a constant bending moment 
applied to the rotating shaft produces a reversible moment in 
rotation. For deterministic methods of fatigue analysis, the 
axial stress is lower than the bending stress [29]. Thus, a 
shaft's failure mechanism is due to fatigue when it is subject 
to alternating loads over time. The cumulative damage from 
each cycle approaches a tipping point, leading to failure [30]. 
As a result, unlike most failure types, fatigue causes failure 
at loads much below the maximum value. As a result, fatigue 
is probabilistic rather than deterministic. The ASTM 
acknowledges that the Weibull distribution is the function 
that may estimate the life of fatigue [31]. Hence, the mean 
stress and the alternating stress may be determined using 
Mohr circle based on the bending stress 𝑥𝑥, the axial stress 𝑥𝑥, 
and the torsion stress 𝑥𝑥𝑥𝑥 data. As a result, according to, the 
values of the Weibull distribution may be approximated 
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using the principal stresses 𝜎𝜎1 and 𝜎𝜎2 [32]. 
The foundation of the Mohr circle and the formulation of the 

maximum stress estimation are described in the next section. 
 

2.2 Generalities of Mohr Circle 
 
The Mohr circle, which was found by Culmann (1866) 

and explored in detail by Mohr (1882), is a graphical 
representation of the aforementioned stress connections [33].  

 
𝐶𝐶𝐶𝐶𝑠𝑠2𝜃𝜃 =

1 + cos 2𝜃𝜃
2  (4) 

𝑆𝑆𝑒𝑒𝑛𝑛2𝜃𝜃 =
1 − cos 2𝜃𝜃

2  (5) 

 
Think about the stressed-out plane condition, where only 

𝜎𝜎𝑥𝑥 ,𝜎𝜎𝑦𝑦 and 𝜏𝜏𝑥𝑥𝑦𝑦 act. Assume that we are aware of these 
coordinate stresses. Finding the stress state in rotating 
configurations is the goal in this situation. i.e., determine the 
major stressors 𝜎𝜎1,𝜎𝜎2 [34]. Let be  𝜃𝜃 the angle where the main 
stresses are operating between the original coordinate system 
and the rotated system e.g. 𝜎𝜎1,𝜎𝜎2 and 𝜏𝜏𝑚𝑚𝑚𝑚𝑥𝑥   [35]. Based on 
the normal stresses 𝜎𝜎𝑥𝑥,𝜎𝜎𝑦𝑦 and 𝜏𝜏𝑥𝑥𝑦𝑦, the major stressors are 
predicted [36].  

The trigonometric double angle is used to mathematically 
justify the Mohr circle method. i.e.  

 
𝜎𝜎𝑥𝑥´ = 𝜎𝜎𝑥𝑥 cos2 𝜃𝜃 + 𝜎𝜎𝑦𝑦𝑠𝑠𝑒𝑒𝑛𝑛2𝜃𝜃 + 2𝜏𝜏𝑥𝑥𝑦𝑦𝑠𝑠𝑠𝑠𝑛𝑛𝜃𝜃𝑠𝑠𝐶𝐶𝑠𝑠𝜃𝜃 0 
𝜎𝜎𝑦𝑦´ = 𝜎𝜎𝑥𝑥 sen2 𝜃𝜃 + 𝜎𝜎𝑦𝑦 cos2 𝜃𝜃 − 𝜏𝜏𝑥𝑥𝑦𝑦𝑠𝑠𝑠𝑠𝑛𝑛𝜃𝜃𝑠𝑠𝐶𝐶𝑠𝑠𝜃𝜃 

 
𝜏𝜏𝑥𝑥𝑦𝑦 = �𝜎𝜎𝑦𝑦 − 𝜎𝜎𝑥𝑥�𝑠𝑠𝑠𝑠𝑛𝑛𝜃𝜃 𝑠𝑠𝐶𝐶𝑠𝑠 𝜃𝜃 + 𝜏𝜏𝑥𝑥𝑦𝑦(𝑠𝑠𝐶𝐶𝑠𝑠2 𝜃𝜃 − 𝑠𝑠𝑒𝑒𝑛𝑛2𝜃𝜃) (6) 
 
The Mohr circle is a tool that makes it easier to see how 

rotating the axis affects the stresses and the second-rank 
tensor [37]. A rotation does not occur for a 𝑥𝑥𝑥𝑥 = 0, which 
implies that the stresses produced in the normal plane are 
acting equally in the normal plane [38]. Nevertheless, as the 
main stresses are occurring on the rotational plane if 𝑥𝑥𝑥𝑥 ≠ 0, 
then the Weibull distribution should be utilized rather than 
the normal distribution [39].  

The necessary equations for the estimation of the main 
stresses as well as the angle of action are presented below. 

Maximum stress  
 

𝜎𝜎1 =
𝜎𝜎𝑋𝑋 + 𝜎𝜎𝑦𝑦

2 + ��
𝜎𝜎𝑋𝑋 + 𝜎𝜎𝑦𝑦

2 �
2

+ 𝜏𝜏𝑥𝑥𝑦𝑦2  (7) 

 
Minimum stress  
 

𝜎𝜎2 =
𝜎𝜎𝑋𝑋 + 𝜎𝜎𝑦𝑦

2 −��
𝜎𝜎𝑋𝑋 + 𝜎𝜎𝑦𝑦

2 �
2

+ 𝜏𝜏𝑥𝑥𝑦𝑦2  (8) 

 
Mohr circle center 
 

𝜇𝜇 =
𝜎𝜎𝑥𝑥 + 𝜎𝜎𝑦𝑦

2 =
𝜎𝜎1 + 𝜎𝜎2

2  (9) 

 
Maximum shear stress (ratio)  
 

𝜏𝜏𝑚𝑚𝑚𝑚𝑥𝑥 = ��
𝜎𝜎𝑋𝑋 + 𝜎𝜎𝑦𝑦

2 �
2

+ 𝜏𝜏𝑥𝑥𝑦𝑦2 =
𝜎𝜎1 − 𝜎𝜎2

2  (10) 

 
Principal angle 
 

𝜃𝜃𝑝𝑝 =
tan−1 �

2𝜏𝜏𝑥𝑥𝑦𝑦
𝜎𝜎𝑥𝑥 − 𝜎𝜎𝑦𝑦

�

2  
(11) 

 
Shear angle 𝜃𝜃𝑠𝑠 
 

𝜃𝜃𝑠𝑠 =
tan−1 �

𝜎𝜎𝑥𝑥 − 𝜎𝜎𝑦𝑦
2𝜏𝜏𝑥𝑥𝑦𝑦

�

2  (12) 

 
Thus, depending on the strength of the material, the 

maximum shear stress theory and the deformation energy 
theory provide a safe state S y and the safety factor S f.  

 

𝐷𝐷𝐷𝐷 = �𝜎𝜎𝑥𝑥2 − 𝜎𝜎𝑥𝑥𝜎𝜎𝑌𝑌 + 𝜎𝜎𝑦𝑦2 < 𝑆𝑆𝑦𝑦/𝑆𝑆𝑓𝑓 (13) 

 
And the maximum stress is.  
 

𝜎𝜎𝑚𝑚𝑚𝑚𝑥𝑥 = 𝑆𝑆𝑦𝑦/𝑆𝑆𝑓𝑓 (14) 
 
The parameters of the Weibull distribution can be 

obtained entirely from the primary stresses using the Mohr 
circle-Weibull relation [40]. However, this fatigue failure 
prediction method does not consider stress as a random 
variable [41]. 

 
3 Weibull Distribution   

 
In this section, the Weibull model used in fatigue analysis 

is presented along with the theoretical basis and 
characterization definitions. Due to its versatility, the 
Weibull distribution is often used in reliability and service 
life studies [42]. Depending on the value of the Weibull 
parameter, the Weibull distribution can be used to describe 
different life behaviors. The values of the shape and scale 
parameters have a strong influence on the distribution 
characteristics [43]. The probability density function of the 
Weibull distribution is given by.  

 

𝑓𝑓(𝑡𝑡) =
𝛽𝛽
𝜂𝜂 �

𝑡𝑡
𝜂𝜂�

𝛽𝛽−1
 𝑒𝑒𝑥𝑥𝑝𝑝−�

𝑡𝑡
𝜂𝜂�
𝛽𝛽

 (15) 

 
The Weibull distribution cumulative and reliability 

functions are 
 

𝐹𝐹(𝑡𝑡) = 1 − 𝑒𝑒𝑥𝑥𝑝𝑝−�
𝑡𝑡
𝜂𝜂�

𝛽𝛽

 (16) 

 

𝑅𝑅(𝑡𝑡) = 𝑒𝑒𝑥𝑥𝑝𝑝−�
𝑡𝑡
𝜂𝜂�

𝛽𝛽

 (17) 

 
The linear form of Eq. (17) is given by. 
 

ln�− ln�1 − 𝐹𝐹(𝑡𝑡𝑖𝑖)�� =  −𝛽𝛽 ln 𝜂𝜂 + 𝛽𝛽 ln 𝑡𝑡𝑖𝑖  = 
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𝑌𝑌𝑖𝑖 = 𝛽𝛽[−ln (η) + ln (ti)]   (18) 
 
Or equivalently is given by  
 

𝑌𝑌𝑖𝑖 = 𝑏𝑏0 + 𝛽𝛽𝑋𝑋𝑖𝑖 (19) 
 
Where 𝑌𝑌𝑖𝑖 = ln (− ln(1 − 𝐹𝐹(𝑡𝑡𝑖𝑖))) = −𝛽𝛽 ln  (𝜂𝜂), and 𝑥𝑥𝑖𝑖 =

ln(𝑡𝑡𝑖𝑖), 𝐹𝐹(𝑡𝑡𝑖𝑖). The median rank is given by. 
 

𝐹𝐹(𝑡𝑡𝑖𝑖) =
1 − 0.3
𝑛𝑛 + 0.4 (20) 

 
The sample 𝑛𝑛 is determined by the reliability R(t). 
 

𝑛𝑛 =
−1

ln(𝑅𝑅(𝑡𝑡)) (21) 

 
The mean 𝜇𝜇𝑦𝑦 and the standard deviation 𝜎𝜎𝑦𝑦 of the vector 

𝑌𝑌 are 
 

𝜇𝜇𝑦𝑦 = �
𝑌𝑌𝑖𝑖
𝑛𝑛

𝑛𝑛

𝑖𝑖=1

 (22) 

 

𝜎𝜎𝑦𝑦 =  ��
𝑌𝑌𝑖𝑖
𝑛𝑛

𝑛𝑛

𝑖𝑖=1

�
𝑌𝑌𝑖𝑖 − 𝜇𝜇𝑦𝑦
𝑛𝑛 − 1 �

2

  (23) 

 
4 Weibull Distribution Properties    

 
Concerning to location and scale transformation the 

Weibull distribution is stable, which is the first of two crucial 
Weibull distribution characteristics for fatigue lifetime 
prediction. 

 
𝑋𝑋~𝑊𝑊(𝛽𝛽,𝜂𝜂, 𝛾𝛾) ↔

𝑋𝑋 − 𝑎𝑎
𝑏𝑏  ~𝑊𝑊

𝛾𝛾 − 𝑎𝑎
𝑏𝑏 ,

𝜂𝜂
𝑏𝑏 ,𝛽𝛽 (24) 

 
This implies that while the shape parameters are kept 

unchanged, the transformation constants 𝑎𝑎 and 𝑏𝑏 are given 
new scale and position parameters in relation to their former 
values. In other words, assuming the scale and position 
parameters stay the same, the converted variable is likewise 
a Weibull random variable. Their resilience to the most 
straightforward random variable manipulations, 𝑋𝑋𝑖𝑖 =
12, . . . ,𝑚𝑚, demonstrates their independence and uniform 
distribution. 

 

𝑋𝑋𝑖𝑖~𝑊𝑊(𝛽𝛽, 𝜂𝜂, 𝛾𝛾) → min(𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑚𝑚)~𝑊𝑊(𝛾𝛾, 𝜂𝜂𝑚𝑚
−1𝛽𝛽 ,𝛽𝛽) (25) 

 
This shows that a random variable's distribution is the 

same as a collection of independently distributed random 
variables if it is a Weibull variable. There is a minimum with 
a collection of identical random values 𝑋𝑋𝑖𝑖 through 𝑋𝑋𝑚𝑚 that 
are independently distributed and have a common 𝐶𝐶𝑑𝑑𝑓𝑓  𝐹𝐹(𝑥𝑥). 

 
𝐹𝐹𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥) = 1 − [1 − 𝐹𝐹(𝑥𝑥)]𝑚𝑚 (26) 

 

𝐹𝐹𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥) = 1 − �1− �1 − 𝑒𝑒𝑥𝑥𝑝𝑝
�−�𝑥𝑥−𝜆𝜆𝛾𝛾 �

𝛽𝛽
�
��

𝑚𝑚

 

(27) 

= 1 − 𝑒𝑒𝑥𝑥𝑝𝑝
�−� 𝑥𝑥−𝜆𝜆

𝛾𝛾𝑚𝑚
−1𝛽𝛽
�

𝛽𝛽

 � 

   
 

5 Fundaments of the Fatigue Weibull Model 
 
The Weibull model is used for fatigue life of constant 

cycle components based on the following principles: 
According to the weakest link theory, the fatigue of a 

longitudinal member is equal to the minimum fatigue of its 
components.  

 
𝐹𝐹𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥) = 𝐹𝐹𝑛𝑛𝑛𝑛(𝑥𝑥) = 1 − [1 − 𝐹𝐹𝑛𝑛(𝑥𝑥)]𝑛𝑛 (28) 

 
The second fundament is stability, which means that the 

selected distribution family must hold for different lengths, it 
is to say, a parametric family of 𝑠𝑠𝑑𝑑𝑓𝑓𝑠𝑠 is used to represent the 
𝑠𝑠𝑑𝑑𝑓𝑓 for fatigue of a longitudinal element of length 𝑙𝑙, 
according to Eq. (18) the element must be  

 
𝐹𝐹�𝑥𝑥;𝛽𝛽(𝑛𝑛𝑙𝑙), 𝜂𝜂(𝑛𝑛𝑙𝑙), 𝛾𝛾(𝑛𝑛𝑙𝑙)� = 

(29) 
1 − [1 −(29) 𝐹𝐹 ��𝑥𝑥;𝛽𝛽(𝑛𝑛𝑙𝑙), 𝜂𝜂(𝑛𝑛𝑙𝑙), 𝛾𝛾(𝑛𝑛𝑙𝑙)��

𝑛𝑛
 

 
The Weibull distribution was the only distribution that 

could satisfy this functional equation. 
A third concept, known as limit behavior, is that in 

extreme cases where the component size of an element tends 
to zero or the number of components tends to infinity, the 
distribution function is asymptotic and the distribution in the 
independent case are the Weibull and Gumbel distributions. 

 
Lim 𝑓𝑓(𝑥𝑥) = lim [𝛽𝛽, 𝜂𝜂, 𝛾𝛾(1

− 𝑒𝑒𝑥𝑥𝑝𝑝𝜂𝜂𝑥𝑥)𝛽𝛽−1𝑒𝑒𝑥𝑥𝑝𝑝�𝛽𝛽, 𝜂𝜂
− 𝛾𝛾(𝑒𝑒𝑥𝑥𝑝𝑝𝜂𝜂𝑥𝑥 − 1)𝛽𝛽� (30) 

=  𝛽𝛽, 𝜂𝜂,𝛾𝛾*1 

Lim 𝑓𝑓(𝑥𝑥) =  Lim
0→∞

[𝛽𝛽 , 𝜂𝜂, 𝛾𝛾(1 − 𝑒𝑒𝜂𝜂𝑥𝑥)𝛽𝛽−1𝑒𝑒�𝛽𝛽, 𝜂𝜂
− 𝛾𝛾(𝑒𝑒𝜂𝜂𝑥𝑥 − 1)𝛽𝛽� (31) 

=  𝛽𝛽, 𝜂𝜂,𝛾𝛾 ∗ 1𝛽𝛽−1 ∗ 0 

The approach to fully estimate the Weibull distribution 
parameters directly from the primary stresses [39]. 

6 Estimation of Weibull Parameters by Method 

Step 1:  
Choose reliability level. 

Step 2:  
Using the 𝑅𝑅(𝑡𝑡) indices from step 1, compute the 

corresponding 𝑛𝑛 values in equation (20).  As a result, use the 
𝐹𝐹𝑡𝑡𝑖𝑖 values from equation (20) and the mean and standard 
values. to calculate the appropriate element 𝑌𝑌𝑖𝑖. Deviation 
from equations (22) and (23).  

 
Step 3: 
Perform a stress analysis to determine the maximum and 
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minimum primary stress and calculate the ratio. 𝜎𝜎1;𝜎𝜎2. 
 
Step 4.  
By utilizing the Weibull distribution's initial shape 

parameter value, ln(𝑡𝑡𝑖𝑖𝑖𝑖) = 𝑌𝑌𝑖𝑖 
𝛽𝛽

 it is 
 

𝛽𝛽 =
−4𝜇𝜇𝑦𝑦

ln �𝜎𝜎1𝜎𝜎2
�
 (32) 

 
Estimate standardized logarithms (ln(𝑡𝑡𝑖𝑖𝑖𝑖)) elements, and 

calculate the initial 𝜇𝜇𝑖𝑖𝑜𝑜, 𝜇𝜇𝑖𝑖 and the 𝑔𝑔(𝑥𝑥) values are given by. 
 

𝜇𝜇𝑖𝑖𝑜𝑜 = �
ln (𝑡𝑡𝑖𝑖𝑖𝑖)
𝑛𝑛

𝑛𝑛

𝑖𝑖=1

=
𝜇𝜇𝑦𝑦
𝛽𝛽  (33) 

𝜇𝜇𝑖𝑖 = �
 𝑡𝑡𝑖𝑖𝑖𝑖
𝑛𝑛

𝑛𝑛

𝑖𝑖=1

 (34) 

𝑔𝑔(𝑥𝑥) = �
𝑌𝑌𝑖𝑖
𝑛𝑛 =

𝑛𝑛

𝑖𝑖=1

exp�𝜇𝜇𝑖𝑖𝑜𝑜� (35) 

 
Step 5. 
Determine the corresponding 𝛽𝛽 value given by 
 

𝛽𝛽 =
−4𝜇𝜇𝑦𝑦

ln �𝜎𝜎1𝜎𝜎2
� ∗ (0.9947)

 (36) 

 
Step 6.  
With the principal stresses 𝜎𝜎1 and 𝜎𝜎2, estimate the mean 

𝜇𝜇. Then, based on the Mohr circle estimation 𝜇𝜇 and the 
estimated 𝑡𝑡𝑖𝑖𝑖𝑖 mean value 𝜇𝜇𝑖𝑖 of step 5, determine the 
corresponding scale 𝜂𝜂 parameter of the Weibull distribution 
as 

 
𝜂𝜂 =

𝜇𝜇
𝜇𝜇𝑖𝑖

 (37) 

 
The 𝛽𝛽 value of step 5 and the 𝜂𝜂 value of step 6 

corresponds to the Weibull parameters that represents the 
observed stresses 𝜎𝜎1 and 𝜎𝜎2 values. 

Finally, given that stress behavior is typically viewed as 
falling below a log-normal distribution provided by 

 

𝑓𝑓(𝑡𝑡) =
1

𝑡𝑡𝜎𝜎𝑜𝑜√2𝜋𝜋
exp �−�

𝑙𝑙𝑛𝑛 (𝑡𝑡𝑖𝑖 − 𝜇𝜇𝑜𝑜
2𝜎𝜎𝑜𝑜

�
2

� (38) 

 
With log-mean 𝜇𝜇𝑜𝑜 and log-standard deviation 𝜎𝜎𝑜𝑜 

parameters, thereby because both 𝜇𝜇𝑜𝑜 and 𝜎𝜎𝑜𝑜 [44] the log-
normal distribution's parameter connection in terms of 𝛽𝛽 and 
𝜂𝜂 is given by  

 
𝛽𝛽 =

𝜎𝜎𝑦𝑦
𝜎𝜎𝑜𝑜

 (39) 

𝜂𝜂 = exp �𝜇𝜇𝑜𝑜 −
𝜇𝜇𝑦𝑦
𝛽𝛽 � (40) 

 
Where 𝜇𝜇𝑦𝑦 and 𝜎𝜎𝑦𝑦 from Equation (22) mean and standard 

deviation, respectively (23). Then the negative 𝜇𝜇𝑜𝑜 and the 
standard deviation is given by 

 
𝜎𝜎𝑜𝑜 =

𝜎𝜎𝑦𝑦
𝛽𝛽  (41) 

𝜇𝜇𝑜𝑜 = ln(𝜂𝜂) +
𝜇𝜇𝑦𝑦
𝛽𝛽  (42) 

 
In the next part, the approach is now applied, and the 

results are compared to those of the deterministic method. 
 

7 Weibull Shaft Lifetime Application  
 
The used data to run the numerical application are an 

alternator rotor is supported by the shaft in Fig. 1. It is constructed 
from AISI 4340 steel that has been heating treated, ground, and 
given a Brinell hardness range of 323–370. (R, 35 to 40). The 
shaft will experience an axial force from the rotor of up to 
130 𝑀𝑀𝑑𝑑𝑎𝑎 and a maximum bending stress of 607 𝑀𝑀𝑑𝑑𝑎𝑎. The 
predicted dependability is 𝑅𝑅(𝑡𝑡) = 95%, and the shaft will rotate 
at a speed of 12000 𝑟𝑟𝑝𝑝𝑚𝑚. Tensile yield, the properties of the 
material, correspond to a material with a 277 Brinell hardness, 
𝑆𝑆𝑥𝑥, and ultimate strength, Sut, with 𝑆𝑆𝑥𝑥 = 113𝑀𝑀𝑝𝑝𝑎𝑎 and 𝑆𝑆𝑆𝑆𝑡𝑡 =
128𝑀𝑀𝑝𝑝, respectively (see Figs. 1 and 2) [45]. 

This suggests that if the system is in equilibrium, the total 
sum of all forces and moments must equal zero. 

 
8 Parameters of the Design Shaft  

 
Step 1. The desired reliability index according to the data 

is 95%, however, to have an integer 𝑛𝑛 value the reliability 
level to use will be equal to 𝑅𝑅(𝑡𝑡) = 0.9535. 

Step 2. By using Eq. (31) the 𝑛𝑛 value is estimated as 
follows: 

 
𝑛𝑛 =

−1
ln(0.9535) = 21 

Then, using Eq. (31) according to the 𝑛𝑛 value estimated, 
the corresponding 𝐹𝐹(𝑡𝑡𝑠𝑠) elements, and 𝑌𝑌𝑠𝑠 elements, in the 
same way, the 𝜇𝜇𝑦𝑦 and 𝜎𝜎𝑦𝑦 values are given in Table 1. 

 

 
Figure 1. Shaft 
Source: The authors 

 
 

 
Figure 2. Free-Body diagram 
Source: The authors 
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Table 1.  
Weibull 𝛽𝛽 = 3.710802 and 𝜂𝜂 = 409.156 
Example of a table.  

n F(ti) Yi ln(toi) toi n F(ti) Yi  ln(toi)  toi 
1 0.03271 -3.403483 -1.7148667 0.1799877 12 0.546729 -0.234122  -0.117964  0.888728 
2 0.079439 -2.491662 -1.2554397 0.2849505 13 0.593458 -0.105285  -0.0530486  0.948334 
3 0.126168 -2.003463 -1.0094577 0.3644166 14 0.640187 0.021928  0.0110488  1.01111 
4 0.172897 -1.661646 -0.8372308 0.4329077 15 0.686916 0.149526  0.0753395  1.0782502 
5 0.219626 -1.394398 -0.7025764 0.4953075 16 0.733645 0.279845  0.1410017  1.1514266 
6 0.266355 -1.172054 -0.5905467 0.5540243 17 0.780374 0.415962  0.2095851  1.2331664 
7 0.313084 -0.979381 -0.4934674 0.6105058 18 0.827103 0.562502  0.2834202  1.3276629 
8 0.359813 -0.807447 -0.4068375 0.6657524 19 0.873832 0.727616  0.3666139  1.4428407 
9 0.406542 -0.650492 -0.3277546 0.7205398 20 0.920561 0.929311  0.4682391  1.5971792 

10 0.453271 -0.504509 -0.2542 0.7755367 21 0.96729 1.22966  0.6195719  1.8581324 
11 0.5 -0.366513 -0.1846699 0.8313787  µy= -0.545624 µoi= -0.274916 µo= 0.878673 
      σy= 1.1751169 σoi= 0.5920901 σo= 0.4454875 

Source: The authors 
 
 
Determinant of the stresses is given by. 
 

𝐷𝐷𝑒𝑒𝑡𝑡 = 78910− 12769 = 66141 
 
corresponding geometric mean is  
 

𝑔𝑔(𝑥𝑥) = √66141 = 257.178926 𝑀𝑀𝑝𝑝𝑎𝑎. 
 
the arithmetic mean is given by  
 

𝜇𝜇 =
607 + 130

2 = 368.5 𝑀𝑀𝑝𝑝𝑎𝑎. 
 
The eigenvalues are given by 𝜆𝜆 = 𝜇𝜇 ±  �𝜇𝜇2 − 𝑔𝑔(𝑥𝑥)2 
 
𝜎𝜎1 = 𝜇𝜇 + �368.5𝑀𝑀𝑝𝑝𝑎𝑎2 − 257.1789𝑀𝑀𝑝𝑝𝑎𝑎2  =345.6443Mpa 
 
𝜎𝜎2 = 𝜇𝜇 −  �368.5𝑀𝑀𝑝𝑝𝑎𝑎2 − 257.1789𝑀𝑀𝑝𝑝𝑎𝑎2 =191.3557Mpa. 
 
The angle acting on this system is given by Eq. (25), this 

is equivalent to 
 

𝜃𝜃 = tan−1 �
257.178926𝑀𝑀𝑝𝑝𝑎𝑎

345.6443𝑀𝑀𝑝𝑝𝑎𝑎 � = 36.6513352 

 
In such a way the principal stresses 𝜎𝜎1 and 𝜎𝜎2 are equal to 

345.6443Mpa, and 191.3557Mpa, respectively.  
Determine the value of 𝛽𝛽 of the Weibull distribution as 
 

𝛽𝛽 =
−4(−0.54562)

ln �345.6443𝑀𝑀𝑝𝑝𝑎𝑎
191.3557𝑀𝑀𝑝𝑝𝑎𝑎� ∗ (0.9947)

= 3.71080171 

 
The scale value 𝜂𝜂 of the Weibull distribution is 

determined as 
 

𝜂𝜂 =
368.5𝑀𝑀𝑝𝑝𝑎𝑎
0.900634 = 409.1562166 

 
The parameter that represents the Weibull distribution 

family is given by 𝑊𝑊~(𝛽𝛽 = 3.71080717,𝜂𝜂 = 409.1562166). 

Then, these Weibull parameters are the stress distribution 
parameters (see Table 1).  

 
9 Estimation of strength parameters and its 

corresponding reliability  
 
The basis of the investigation is the initial stress intensity 

ratio from the Weibull analysis. This gives the minimum 
material strength and maximum principal stress at which 
failure occurs. After that, the procedure will be explained. 

 
Step 1. 
Determine the principal stresses.  
In this case the principal stresses are 𝜎𝜎1 =

345.6443𝑀𝑀𝑝𝑝𝑎𝑎. and 𝜎𝜎2 = 191.3557𝑀𝑀𝑝𝑝𝑎𝑎. 
 
Step 2. 
Used the estimated Weibull parameters. 
 

𝜂𝜂 = 409.1562166   and   𝛽𝛽 = 3.71080171 
 
Step 3. 
Estimate the value of 𝑔𝑔𝑥𝑥 
 

𝑔𝑔𝑥𝑥 = √345.6443 ∗ 191.3557 = 257.17894 
 
Step 4. 
Select the reliability level and using the corresponding 𝛽𝛽 

value estimate the values of 𝑡𝑡𝑖𝑖𝑖𝑖. 
If the desired reliability is 95% and 𝛽𝛽 = 3.71080171 

then. 
 

𝑡𝑡𝑖𝑖𝑖𝑖 = (− ln�𝑅𝑅(𝑡𝑡)�
1
𝛽𝛽 (43) 

 
𝑡𝑡𝑖𝑖𝑖𝑖 = (− ln(0.95)

1
3.71 = 0.44906317 

 
Step 5. 
Estimate the minimum strength.  
 

𝑆𝑆𝑡𝑡𝑟𝑟𝑒𝑒𝑛𝑛𝑔𝑔𝑡𝑡ℎ𝑚𝑚𝑖𝑖𝑛𝑛 = 𝜂𝜂 ∗ 𝑡𝑡𝑖𝑖𝑖𝑖 (44) 
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𝑆𝑆𝑡𝑡𝑟𝑟𝑒𝑒𝑛𝑛𝑔𝑔𝑡𝑡ℎ𝑚𝑚𝑖𝑖𝑛𝑛 = 409 ∗ 0.4490 = 183.7368904 
 
Step 6. 
Estimate the minimum strength average. 
 

𝑆𝑆𝑡𝑡𝑟𝑟𝑒𝑒𝑛𝑛𝑔𝑔𝑡𝑡ℎ𝑚𝑚𝑖𝑖𝑛𝑛 = 𝜇𝜇𝑚𝑚𝑖𝑖𝑛𝑛 − 𝜎𝜎𝑚𝑚𝑖𝑖𝑛𝑛 (45) 
 

𝜇𝜇𝑚𝑚𝑖𝑖𝑛𝑛 = 𝑆𝑆𝑡𝑡𝑟𝑟𝑒𝑒𝑛𝑛𝑔𝑔𝑡𝑡ℎ𝑚𝑚𝑖𝑖𝑛𝑛/0.90 (46) 

𝜇𝜇𝑚𝑚𝑖𝑖𝑛𝑛 = 183.7368904
0.90

=204.1521004  

𝑆𝑆𝑡𝑡𝑟𝑟𝑒𝑒𝑛𝑛𝑔𝑔𝑡𝑡ℎ𝑚𝑚𝑖𝑖𝑛𝑛 = 409 ∗ 0.4490 = 183.7368904  
 
Step 7. 
Determine 𝑡𝑡𝑖𝑖  
 

𝑡𝑡𝑖𝑖 = �𝜎𝜎2/𝜎𝜎1 (47) 

𝑡𝑡𝑖𝑖 = �191.3557/345.644 =0.744056972  
 
Step 8. 
Estimate 𝑆𝑆𝑡𝑡𝑟𝑟𝑒𝑒𝑛𝑛𝑔𝑔𝑡𝑡ℎ𝑚𝑚𝑖𝑖𝑛𝑛 with 
 

𝑆𝑆𝑡𝑡𝑟𝑟𝑒𝑒𝑛𝑛𝑔𝑔𝑡𝑡ℎ𝑚𝑚𝑖𝑖𝑛𝑛 = 1/𝜂𝜂1/𝛽𝛽  (48) 
𝑆𝑆𝑡𝑡𝑟𝑟𝑒𝑒𝑛𝑛𝑔𝑔𝑡𝑡ℎ𝑚𝑚𝑖𝑖𝑛𝑛 = 1/409.1562161/3.71 = 0.19769094  

 
Step 9. 
Determine the scale parameter as  
 

𝜂𝜂 =
𝑆𝑆𝑡𝑡𝑟𝑟𝑒𝑒𝑛𝑛𝑔𝑔𝑡𝑡ℎ𝑚𝑚𝑖𝑖𝑛𝑛

((− ln�𝑅𝑅(𝑡𝑡)�
1
𝛽𝛽  )   

 
(49) 

𝜂𝜂 = 183.7368904

((− ln(0.95)
1

3.71 )   
= 409.1560003 

 
Step 10. 
Estimate the corresponding design reliability using 

equation 17. 
 
𝑆𝑆𝑡𝑡𝑟𝑟𝑒𝑒𝑛𝑛𝑔𝑔𝑡𝑡ℎ𝑚𝑚𝑖𝑖𝑛𝑛 = 𝜂𝜂 ∗ 𝑡𝑡𝑖𝑖𝑖𝑖  and 𝑠𝑠𝑡𝑡𝑟𝑟𝑒𝑒𝑛𝑛𝑔𝑔𝑡𝑡ℎ𝑚𝑚𝑚𝑚𝑥𝑥 = 𝜂𝜂/𝑡𝑡𝑖𝑖𝑖𝑖 (50) 

𝑆𝑆𝑡𝑡𝑟𝑟𝑒𝑒𝑛𝑛𝑔𝑔𝑡𝑡ℎ𝑚𝑚𝑖𝑖𝑛𝑛 = 409.1562166 ∗ 0.744056972 =304.4351375 

𝑅𝑅(𝑡𝑡) = 𝑒𝑒𝑥𝑥𝑝𝑝−�
409.156
304.435

�
3.71

= 0.949944802 

 
As can be seen, the reliability of the design for the 

diameter and the used material corresponds to 95% and the 
estimated Weibull family for both stress and resistance 
represents the fatigue behavior completely. 

 
10 Conclusion  

 
By predicting the primary stresses and the lowest and 

average loads, the probabilistic design for the analysis of the 
chosen element can be estimated, in this case, an axis, and 
first, evaluate the validity of the design for the stress and load. 
It is also feasible to identify the associated loads for the 
resistance and the accompanying Weibull parameters using 
the estimated Weibull distribution parameters. This allows 

for the calculation of the dependability of the resistance, 
which accurately depicts the resistance distribution. It is 
feasible to construct appropriate decision-making for the type 
of stress and resistance by determining the related 
distributions, as shown in this study. 
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