

ISSN-p: 0123-7799

ISSN-e: 2256-5337

Vol. 27, no. 59, e2923, 2024

Recibido: 14 noviembre 2023

Aceptado: 12 marzo 2024

Disponible: 17 abril 2024

©Instituto Tecnológico Metropolitano

Este trabajo está licenciado bajo

una Licencia Internacional

Creative Commons Atribución

(CC BY-NC-SA)

Semiotics: An Approach to Model Security

Scenarios for IoT-Based Agriculture

Software

Semiótica: un enfoque para modelar escenarios

de seguridad para software de agricultura

basado en IoT

 Julio Ariel Hurtado1;

 Leandro Antonelli2;

 Santiago López3;

 Adriana Gómez4;

 Juliana Delle Ville5;

Giuliana Maltempo6;

Frey Giovanny Zambrano7;

Andrés Solis8;

Marta Cecilia Camacho9;

Miguel Solinas10;

Gladys Kaplan11;

Freddy Muñoz12

1, 3,7, 8 Universidad del Cauca, Popayán-Colombia,

{ahurtado, santiagolopez94; freyzambrano; afsolis} @unicauca.edu.co
2,5,6 Universidad Nacional de La Plata, Buenos Aires-Argentina,

{lanto; jdelleville; gmaltempo} @lifia.info.unlp.edu.ar
4 Universidad Tecnológica de Pereira, Pereira-Colombia,

adrianagomezr@utp.edu.co
8 Corporación Universitaria Comfacauca, Popayán-Colombia,

asolis@unicomfacauca.edu.co,
9 Institución Universitaria Colegio Mayor del Cauca, Popayán-Colombia,

cecamacho@unimayor.edu.co
10 Universidad Nacional de Córdoba, Córdoba-Argentina,

miguel.solinas@unc.edu.ar
11 Universidad Nacional de La Matanza, San Justo-Argentina,

gladyskaplan@gmail.com
3, 12 Fundación Universitaria de Popayán, Popayán-Colombia,

lfreddyms@gmail.com

How to cite / Cómo citar

J.A Hurtado et al., “Semiotics: An Approach to Model Security

Scenarios for IoT-Based Agriculture Software,” TecnoLógicas,

vol. 27, no. 59, e2923, Apr. 2024.

https://doi.org/10.22430/22565337.2923

https://orcid.org/0009-0007-7888-7544
https://orcid.org/0009-0007-7888-7544
mailto:%7bahurtado,
mailto:santiagolopez94;
mailto:freyzambrano
mailto:afsolis@unicauca.edu.co
mailto:%7blanto;
mailto:jdelleville;
mailto:gmaltempo@lifia.info.unlp.edu.ar
mailto:adrianagomezr@utp.edu.co
mailto:asolis@unicomfacauca.edu.co
mailto:cecamacho@unimayor.edu.co
mailto:miguel.solinas@unc.edu.ar
mailto:gladyskaplan@gmail.com
mailto:lfreddyms@gmail.com
https://doi.org/10.22430/22565337.2923
https://orcid.org/0000-0002-2508-0962
https://orcid.org/0000-0003-1388-0337
https://orcid.org/0000-0002-8588-8365
https://orcid.org/0009-0008-5686-6408
mailto:adrianagomraz@gmail.com
https://orcid.org/0009-0005-7441-5828
https://orcid.org/0009-0007-9629-4072
https://orcid.org/0000-0003-3342-0776
https://orcid.org/0000-0003-1973-3063
https://orcid.org/0000-0002-7550-1067
https://orcid.org/0000-0003-1800-7342
https://orcid.org/0000-0002-8172-0530

J. A. Hurtado, et al. TecnoLógicas, Vol. 27, no. 59, e2923, 2024

Página 2 | 20

Abstract

Agriculture is a vital human activity that contributes to sustainable development. A few decades

ago, the agricultural sector adopted the Internet of Things (IoT), which has played a relevant role in

precision and smart farming. The IoT developments in agriculture require that numerous connected

devices work cooperatively. This increases the vulnerability of IoT devices, mainly because they lack

the necessary built-in security because of their context and computational capacity. Other security

threats to these devices are related to data storage and processing connected to edge or cloud servers.

To ensure that IoT-based solutions meet functional and non-functional requirements, particularly

those concerning security, software companies should adopt a security-focused approach to their

software requirements specification. This paper proposes a method for specifying security scenarios,

integrating requirements and architecture viewpoints into the context of IoT for agricultural solutions.

The method comprises four steps: (i) describe scenarios for the intended software, (ii) describe

scenarios with incorrect uses of the system, (iii) translate these scenarios into security scenarios using

a set of rules, and (iv) improve the security scenarios. This paper also describes a prototype application

that employs the proposed algorithm to strengthen the incorrect use scenario based on the correct use

scenario. Then, the expert can complete the information for the analysis and subsequent derivation of

the security scenario. In addition, this paper describes a preliminary validation of our approach. The

results show that the proposed approach enables software engineers to define and analyze security

scenarios in the IoT and agricultural contexts with good results. A survey administered to five security

experts found that the proposed security scenario method is generally useful for specifying agricultural

IoT solutions but needs improvement in different areas.

Keywords
IoT, Quality Scenario, IoT Requirements, Smart Farming, Industry 4.0, Intelligent Systems.

Resumen

La agricultura es una actividad humana vital que contribuye al desarrollo sostenible. Hace unas

décadas, el sector agrícola introdujo el Internet de las Cosas (IoT), desempeñando un papel relevante

en la agricultura de precisión e inteligente. Los desarrollos IoT en agricultura requieren colaboración

entre múltiples dispositivos, lo que incrementa su vulnerabilidad, debido principalmente a la falta de

seguridad integrada por restricciones del contexto. Otras amenazas a estos dispositivos conciernen el

almacenamiento y procesamiento de datos conectados a servidores periféricos o en nube. Para

garantizar que las soluciones IoT cumplen los requisitos funcionales y no funcionales, especialmente

los de seguridad, las empresas de software deberían adoptar un enfoque centrado en la seguridad para

su especificación de requerimientos de software. El objetivo del artículo consistió en proponer un

método ligero para especificar escenarios de seguridad integrando los puntos de vista de requisitos y

arquitectura en el contexto del IoT en soluciones agrícolas. El método comprende cuatro actividades:

(i) crear escenarios de buen uso, (ii) crear escenarios de uso incorrecto, (iii) traducir el escenario

anterior en escenario de seguridad aplicando reglas y (iv) refinar el escenario de seguridad resultante.

También se describe un prototipo de herramienta que utiliza el algoritmo propuesto para ayudar a

reforzar el escenario de uso incorrecto basado en el escenario de uso correcto, dando al experto la

posibilidad de completar la información para el análisis y posterior derivación del escenario de

seguridad. Por último, se proporciona una evaluación preliminar del método propuesto. Los resultados

de mostraron que el enfoque propuesto permite a los ingenieros de software definir y analizar

escenarios de seguridad en los contextos de IoT y agricultura con buenos resultados. La encuesta,

aplicada a cinco expertos en seguridad, encontró que el método de escenario de seguridad propuesto es

generalmente útil, pero necesita mejoras en diferentes áreas.

Palabras clave

IoT, Escenario de Calidad, Requerimientos de IoT, Agricultura Inteligente, Industria 4.0, Sistemas

Inteligentes.

J. A. Hurtado, et al. TecnoLógicas, Vol. 27, no. 59, e2923, 2024

Página 3 | 20

1. INTRODUCTION

The International Telecommunication Union (ITU) defines IoT (Internet of Things) as a

“global infrastructure for the information society, enabling advanced services by

interconnecting (physical and virtual) things based on existing and evolving interoperable

information and communication technologies” [1]. According to [2], as an interconnected

network, the IoT contributes to making decisions based on the information collected, and its

interaction does not require human intervention. This definition includes the concept of a

cyber-physical system, which is a complex abstraction that requires a conceptual map [3]

rather than a simple definition to explain the concept.

In software development, requirements analysis is a critical activity to define software

functionalities, attributes, and quality properties. This process has distinctive characteristics

when the software is constructed using emergent technologies like the IoT. Therefore,

traditional software development practices must be adapted to these new technologies and

business contexts [2]. Requirements engineering involves collaboration between clients and

development teams in order to incorporate the right features into the finished product [4].

Inconsistencies between initial requirements and the final product could lead to

reengineering processes, increasing the project’s scope and cost of the project [5].

Requirements engineering works with two types of knowledge: explicit and tacit [6]. Tacit

knowledge is difficult to communicate because experts and development teams often have

different backgrounds and use different terminologies [7]–[9], making it challenging to obtain

information from stakeholders.

Software products are defined by a set of functional and non-functional requirements. The

latter determine the product’s quality and are most frequently considered when an IoT

system is developed according to its specific application domain [2]. One way of specifying

software requirements is to describe use scenarios employing storytelling techniques. The

effectiveness of this approach lies in the possibility of incorporating details that are essential

to achieve a rich consolidation of knowledge. Scenarios use natural language, allowing

experts to use them without complex formalisms. This makes them highly effective in

promoting communication and collaboration among diverse groups of experts [10], [11].

In the development of IoT products, the main challenges for non-functional requirements

are limited processing and storage capacity, performance reliability, availability,

accessibility, interoperability, security, privacy, scalability flexibility, and context awareness

[2], [12]. It follows that security is a highly relevant aspect in IoT-based software because it

concerns the protection of resources such as modules, code, and others from unauthorized

access [12]. Using scenarios, experts from different domains can describe various situations

and work together to improve them, learning from one another in the process. This can be

especially valuable when dealing with complex problems that require input from multiple

perspectives. Overall, scenario-based design can be a powerful tool for fostering cooperation

and achieving better outcomes in a wide range of domains.

A software architect should consider incorporating security into a whole system as soon

as stakeholders identify security concerns rather than adding security technologies in an ad-

hoc manner [13]. As Bruce Schneier points out [14], security is a process and a chain that is

only as strong as its weakest link. Therefore, software providers should adopt a security-

centric approach to designing and developing IoT-based solutions that meet functional and

non-functional requirements like security [15].

The agricultural sector now requires data collection and advanced technologies to improve

production while using limited resources. Sustainable agriculture can help to preserve nature

without compromising the needs of future generations [16], [17]. The Food and Agriculture

J. A. Hurtado, et al. TecnoLógicas, Vol. 27, no. 59, e2923, 2024

Página 4 | 20

Organization (FAO) of the United Nations has identified population growth, resource

scarcity, and degradation as key future challenges. There is a need to increase the efficiency,

productivity, and quality of agrifood systems while protecting the environment [18]. To

achieve this, new developments and technologies must be introduced to automate traditional

farming methods and make farm labor more efficient. The Internet of Things (IoT) seems to

be able to transform these conventional processes [16], [17].

Compared with traditional IT systems, their IoT counterparts face distinct security

challenges that are primarily due to the presence of resource-constrained devices. Currently,

the of IoT platforms are not adequately structured to handle different threats and attacks in

an organized manner. These limitations make IoT systems more susceptible to a wide range

of attack vectors, posing potential threats to their security [19]. Furthermore, traditional

protection schemes used in the conventional internet and IoT are not as useful for

agricultural systems, which creates opportunities and research gaps [20]–[22]. Therefore, an

accurate identification and understanding of their specific security requirements is crucial to

develop such IoT-based agricultural systems.

This paper proposes a scenario-based method for specifying security aspects. The method

is composed of four essential steps: (i) describe scenarios for the intended software

application, (ii) describe scenarios related to the previous ones but in which the application

is used incorrectly, (iii) apply a set of rules to map attributes from the previous scenarios into

architectural scenarios, and (iv) describe the architectural scenarios in more detail.

Additionally, this paper describes a preliminary evaluation of the proposed approach.

Considering the security challenges that agricultural IoT faces today, this paper addresses

the following research question: How can we adequately elicit security requirements for smart

IoT-based agricultural solutions?

The proposed method includes an application prototype called Requirement Healer, which

uses natural language processing techniques. Its aim is to make the information contained

in a scenario more robust by applying natural language processing techniques to extend the

scenarios with precise information extracted from catalogs designed for this prototype. Our

prototype provides support for the four steps in the proposed method. The prototype provides

the user with a form to write about scenarios for a software application, including incorrect

use scenarios. It allows the user to sort all the scenarios by name and, after selecting one

incorrect use scenario, it derivates security scenarios by applying the mapping rules proposed

here. Then, the user only needs to edit the security scenarios generated by the prototype in

order to fine-tune their description.

The paper is organized in the following way. Section 2 describes some background to the

scenarios. Then, Section 3 reviews related works. Section 4 details our contribution, namely

the proposed approach. Section 5 presents a preliminary evaluation. Section 6 introduces the

supporting prototype that complements the information about the scenarios. Finally, Section

7 discusses our conclusions.

2. BACKGROUND

This section describes two types of scenarios: scenarios that focus on the functionality of

a software application and those that focus on architectural security concerns.

J. A. Hurtado, et al. TecnoLógicas, Vol. 27, no. 59, e2923, 2024

Página 5 | 20

2.1 Scenarios describing functionality

A scenario [10], [11] is an artifact that describes situations (within the application or the

software domain) using natural language. It describes a specific situation that may arise in

a certain context to achieve some goal. The scenario includes a set of steps (episodes) to reach

that goal. In the episodes, active agents (actors) use materials, tools, and data (resources) to

perform some specific action. Although there are many templates to describe scenarios, this

paper will use the one proposed by [23]. Table 1 summarizes the template.

Table 1. Template for describing scenarios that focus on functionality. Source: Own work.

Attribute Description

Scenario title ID

Goal Objective

Context Starting point (time, place, activities previously achieved)

Actors Active agents

Resources Passive elements (tools, materials, data)

Episodes List of actions, simple breakdown with no conditions, no iterations

Let’s consider the following example scenario describing how an irrigation system is

activated. This task could be done in different ways depending on the technological

infrastructure of the farm. For example, an operator could manually start the irrigation by

physically entering the machine room where the pumps are. In this situation, no IoT software

application is involved. Instead, this paper will focus on another kind of scenario where it is

a software application that activates the pumps. Now, the example goes as follows: An expert

in agriculture evaluates the field conditions to determine whether irrigation is necessary and

provides the information to the farm supervisor. Then, the supervisor activates the irrigation

pipe using an IoT-based web application. Table 2 summarizes the situation.

The previous scenario describes an authorized person’s legitimate use of the software

application to activate the irrigation system. This scenario could be similar to a use case or

user story [7]–[9]. However, the software system could be vulnerable to hacking attacks,

where a malicious user intends to break into the web software application to start the

irrigation system either just for fun or to destroy the crop. This incorrect and harmful

utilization of the software application is regarded as a misuse case [24].

Table 2. Authorized attempt to start the irrigation system. Source: Own work.

Attribute Description

Scenario title Attempt to access the water irrigation infrastructure by an authorized person.

Goal Protect access to the water irrigation system to ensure that water is used responsibly.

Context
The farm has irrigation infrastructure (pipes, tanks, pumps, and valves) to water

(irrigate) the field.

Actors Expert, Supervisor.

Resources
Checklist to determine if it is necessary to irrigate the field. Security protocol to have

access to and operate the pump and valves.

Episodes

• An expert evaluates the conditions of the field to determine if it is necessary to

irrigate.

• The expert writes a report to the supervisor with the recommendation to irrigate.

• The supervisor logs in to the IoT web application.

• The supervisor starts the pump and opens the valves.

J. A. Hurtado, et al. TecnoLógicas, Vol. 27, no. 59, e2923, 2024

Página 6 | 20

2.2 Scenarios describing architectural security concerns

Software architecture is the process of designing a system’s fundamental structure and

organization to achieve specific quality attributes. Quality Attributes (QA) are critical non-

functional characteristics that determine the system’s overall effectiveness. QAs are specified

using quality scenarios, which define how the system should behave under various

conditions. A Quality Attribute scenario is a specific, testable scenario that demonstrates

how a QA requirement is satisfied. A QA scenario is typically structured with an ID, a

stimulus that triggers the interaction with the software application, the environment where

the interaction occurs, the affected artifact, the response, and some quantitative description

of the response. Table 3 summarizes a template for this kind of scenarios.

Table 3. Security scenario template. Source: Own work.

Attribute Description

Scenario ID Unique Some identification of the scenario.

Source of the Stimulus Some human, system or any other actor generates a stimulus to the system.

Stimulus It is an input condition that generates a response from the system.

Environment

The stimulus occurs under a certain context. The system may have an overload

context, normal operation, or some other relevant state. For many systems,

"normal" operation can refer to one of a number of modes. For these kinds of

systems, the environment should specify in which mode the system is executing

Artifact
The stimulated artifact. This may be an ecosystem, a whole system, a component,

or some set of components.

Response It is the response as the result of the arrival of the stimulus.

Response Measure The response should be measurable so that the requirement can be tested.

Security refers to a system’s capability to defend itself against danger, ensure its safe-ty,

and protect system data from unauthorized disclosure, modification, or destruction. Security

involves protecting computer systems using technical and administrative safeguards.

Additionally, security refers to the degree to which a particular security policy is enforced

with some level of assurance. The three fundamental types of security concerns are

confidentiality, integrity, and availability. Confidentiality refers to the protection of data and

processes from unauthorized disclosure or access by individuals or entities that are not

authorized to access them. Integrity refers to protecting data and processes from

unauthorized modification, whether intentional or accidental. It includes ensuring that data

are not tampered with or corrupted during storage, processing, or transmission. And

availability refers to the protection of data and processes from denial-of-service attacks or

other forms of disruption that could prevent authorized users from accessing or using them.

This includes ensuring that systems are available and responsive when needed and that they

can handle high levels of traffic or activity without becoming over-loaded or crashing. Table

4 is an example of a security scenario that refers to the same situation as the requirement

scenario described in Table 2.

J. A. Hurtado, et al. TecnoLógicas, Vol. 27, no. 59, e2923, 2024

Página 7 | 20

Table 4. Security scenario example. Source: Own work.

Attribute Description

ID S01

Source of stimulus
An unauthorized individual attempts to access the water irrigation system

through an IoT-connected device.

Stimulus

The individual attempts to gain access to sensitive data (sensor

measurements) or to manipulate the system’s functionality (change the

valve behavior).

Environment

Normal execution. The system has IoT-connected devices that are used to

access the functionality of the solution, such as sensors, actuators, and

processors.

Artifact Security protocol and access control subsystem.

Response
The security protocols detect the unauthorized access attempt and ban the

individual from the access control subsystem.

Response measure

Ensure the security of the system. Attacks should be detected quickly,

ideally within 0.5 seconds. Additionally, the system must have a high rate of

success in resisting attack attempts, with a target success rate above 95 %.

3. RELATED WORK

The complexity of IoT software applications is a concern that has been identified by

several researchers. Thus, some proposals to deal with this complexity are available [25]

proposed FRASAD, a model-driven software development framework to manage the

complexity of IoT applications. [26] proposed another approach to deal with this complexity.

Their approach includes activities such as requirements development, domain-specific

design, verification, simulation, analysis, calibration, deployment, code generation, and

execution. However, none of these proposals considers security, which is our main concern.

Some other approaches have indeed considered the security issue, but in terms of

implementation, whereas our proposal considers security in terms of requirements

specification. [27] proposed a process and a tool to apply formal methods in IoT applications

using the Unified Modeling Language (UML). They developed a plug-in tool that validates

UML software models to design secure software applications. [28] presented a taxonomy of

security requirements that should be considered when a software application is designed and

implemented. [19] proposed a security architecture to provide security enabled IoT services

and a baseline for security deployment. Their architectural solution plays a crucial role in

their study because it addresses the security requirements of IoT systems. These security

requirements are useful components of our security scenarios proposal. By focusing on these

requirements, we can effectively establish a robust security framework at the requirements

level. [29] established security requirements for IoT systems and focused on enhancing the

security of smart home applications. The requirements they identified complement our

proposal because they introduce significant vocabulary for describing security scenarios in

the context of the IoT and smart farming. By incorporating these elicited requirements, we

can effectively address the specific security challenges and other considerations associated

with IoT and smart farming environments.

Multiple approaches in the literature have considered security among software

requirements, but they have not addressed how to specify security requirements precisely.

In [30] was presented a comprehensive literature review of IoT security requirements, but

they did not include any references on how to specify them. The proposal by [31] deals with

different non-functional requirements: security, scalability, and performance. They tried to

J. A. Hurtado, et al. TecnoLógicas, Vol. 27, no. 59, e2923, 2024

Página 8 | 20

balance different requirements or decide which one to satisfy when there is a conflict. [32]

also dealt with conflicts, but her approach involves non-functional requirements.

Finally, [33] presented an approach to specify security requirements for IoT applications.

They combined a framework for requirement elicitation with automated reasoning to provide

secure IoT for vulnerable users in healthcare scenarios. They mapped technical system

requirements using high-level logical modelling. Then, they performed an attack tree

analysis and a security protocol analysis. Their work concentrated on the attack tree analysis

to identify the situation, while our approach focuses on how to describe security requirements

precisely.

4. OUR APPROACH

This section describes our general approach, followed by a detailed explanation of each

step.

4.1 Our approach in a nutshell

Our proposed approach consists of several steps. First, we describe scenarios that outline

the intended use of the software. Next, we create scenarios that describe incorrect use of the

application in an attempt to exploit any vulnerabilities. We then convert these scenarios into

security scenarios by applying a set of preestablished rules. Lastly, we refine and improve

the security scenarios. Figure 1 summarizes our approach.

Describe scenarios

with correct use of

the intended

application

Describe scenarios

with incorrect use

of the intended

application

Derive

security

scenarios

Refine the

descriptions of

security

scenarios

Figure 1. Our approach in a nutshell. Source: Own work.

4.2 Description of scenarios with correct use of the indented software application

The first step is the description of scenarios that focus on the correct use of the software

application regarding security concerns. This step should be completed by a requirement

engineer or analyst (or a group of them), who should interact with domain experts (clients,

users, and stakeholders in general) to capture the requirements for the software application

and specify scenarios. They should describe the functionality of the intended software and

also consider security concerns. Therefore, the analyst eliciting and defining scenarios should

have some background knowledge of non-functional security requirements in order to include

this concern in the specifications. The result of this step is a set of scenarios that describe the

functionality, as illustrated in Table 2.

4.3 Description of scenarios with incorrect use of the indented software application

The second step is analyzing the scenarios that were described in the previous step to find

security issues. Issues that exploit the problems and compromise the security of the software

application are described. Ideally, this step should be completed by the same requirements

engineer (or group of them) that participated in the previous tasks. They should analyze

every scenario in detail and consider guidelines such as those proposed by [34], [21]. Then,

they describe scenarios of incorrect use of the software application. Basically, they should

J. A. Hurtado, et al. TecnoLógicas, Vol. 27, no. 59, e2923, 2024

Página 9 | 20

describe scenarios that exploit possible vulnerabilities. For example, considering the scenario

of correct use of the software application to activate the irrigation system (Table 2), the

requirements engineer may determine that the access to the system (and therefore the access

to the activation of the pumps) constitutes a security breach. Hence, they describe a scenario

where an unauthorized person gains access to the software application and, consequently, to

the irrigation infrastructure. Table 5 describes this scenario of unauthorized access.

Table 5. Unauthorized attempt to start the irrigation system. Source: Own work.

Scenario title Attempt to access the water irrigation infrastructure by an unauthorized person.

Goal Protect access to the water irrigation system to ensure that water is used responsibly.

Context
The farm has irrigation infrastructure (pipes, tanks, pumps, and valves) to water

(irrigate) the field.

Actors Unauthorized person.

Resources
Checklist to determine if it is necessary to irrigate the field. Security protocol to

access and operate the pump and valves.

Episodes
•An unauthorized person gains access to the IoT web application.

•An unauthorized person starts the pump and opens the valves.

4.4 Derivation of security scenarios

In this step, a set of rules is described to map the information contained in an incorrect

use scenario. The goal is to obtain a first draft of a scenario describing security concerns. It

is worth mentioning that the incorrect use scenario will not provide enough information for

a complete security scenario. The rules proposed here use only four attributes from the

incorrect use scenario (title, context, actors, and resources) to fill out four attributes of the

security scenario (stimulus, environment, source of the stimulus, and artifact).

With this information, the following step is to refine the security scenario. Table 6

summarizes the mapping between attributes of the two types of scenarios. Following the

example of the incorrect use scenario described in Table 5, the scenario obtained by applying

the proposed rules is shown in Table 7. This preliminary scenario is still far from being a full-

fledged security scenario such as that described in Table 4. It needs to be refined in the

following step.

Table 6. Mapping rules between attributes of the incorrect use and security scenarios. Source: Own work

Attribute of the incorrect use scenario Attribute of the security scenario

Title Stimulus

Context Environment + Source of the stimulus

Actors Sources of stimulus

Resources Artifact

Table 7. Result of applying the mapping rules between attributes of the incorrect use and security scenarios.

Source: Own work.

Attribute Description

Stimulus Attempt to access the water irrigation infrastructure by an unauthorized

person.

Environment + Source of stimulus The farm has an irrigation infrastructure (pipes, tanks, pumps) to water

(irrigate) the field. An unauthorized person attempts to operate the pump

and the valve to irrigate the field.

Source of stimulus Unauthorized person.

Artifact Checklist to determine if it is necessary to irrigate the field. Security

protocol to access and operate the pump and valves.

J. A. Hurtado, et al. TecnoLógicas, Vol. 27, no. 59, e2923, 2024

Página 10 | 20

4.5 Refinement of security scenarios

Some adjustments and improvements should be made to the scenarios derived from the

mapping in the previous step. Some new information should be added, and some should be

rephrased. The requirements engineer should use their experience and knowledge to provide

further information and paraphrase other based on the elicitation meeting and their

expertise in the field. First, the security scenario should be assigned an ID to identify it in

the software development process; this is a minor task related to documentation

definitions. Afterwards, the stimulus, environment, source of stimulus, and artifact attributes

should be rephrased to adapt the information obtained in the previous step. Both the

environment and source of stimulus attributes capture data from a single attribute in the

incorrect use scenario (i.e., context). Therefore, in the security scenario, the information in

context should be split into two attributes. Finally, the response and response measure

attributes should be defined from scratch. Although the mapping rules do not provide

information about these two attributes, the descriptions found in the rest of the scenario

provide the context that requirements engineers need to define them. Requirements

engineers should bear in mind that the response measure attribute, in particular, should be

described with quantitative measures. The tool described in the following section can support

this task.

Table 8 summarizes the necessary refinements in this step. The scenario described at the

beginning of this paper in Table 4 is an example of the kind of scenario that this approach

aims to obtain.

Table 8. Refinement to the security scenarios. Source: Own work.

1. An ID must be assigned.
2. Stimulus must be

rephrased.

3. Context must be split in

two attributes (i.e., environment

and source of stimulus).

4. Source of stimulus must

be rephrased.

5. Artifact must be

rephrased.

6. Response and response

measure must be added

Security scenarios in smart farms and IoT require a specific vocabulary so that they are

accurately described [29] argue, there are several concerns to take into account as part of these

scenarios. One such concern is technology-dependent security for IoT devices (artifact), which

refers to the security measures required in the IoT context (environment). Another important

aspect is the authentication of IoT objects and individuals (sources of stimulus) using various

mechanisms to prevent or detect attacks (responses). These responses to potential security

threats have several limits (response measure). Requirements engineers could use this

vocabulary as specialized terminology and a semiotic tool.

5. ASSESSMENT OF THE APPROACH

5.1 Assessment Design

Next, we assessed the acceptance of our approach by security experts in the field of IoT-

based smart agriculture, using the Technology Acceptance Model (TAM) [35], [36] to guide

our evaluation. Specifically, we were interested in understanding to what extent our

approach was accepted by its target audience. To evaluate the usefulness and ease of use of

our approach, we adopted two well-known and widely used metrics-Perceived Usefulness and

J. A. Hurtado, et al. TecnoLógicas, Vol. 27, no. 59, e2923, 2024

Página 11 | 20

Perceived Ease of Use-as defined in Fred D. Davis’s work [35]. To this end, we designed and

administered a survey to a group of security professionals who are representative of our

target audience and have experience in eliciting security requirements. Conducting the

survey with this group provided us with valuable feedback and insights that helped us to

identify strengths and weaknesses in our approach and ultimately improve its overall

acceptance.

5.2 Survey Application and Data Collection

We conducted a survey with a group of five experts in the field of software and network

security. Prior to the survey, we presented our methodology to the group and spent

approximately 40 minutes discussing and addressing any questions they had. Once we

presented our approach, we administered a survey that included 17 close-ended and three

open-ended questions. The survey aimed to gather insights from the experts on the perceived

ease-of-use and usefulness of our method. Most of the experts found the proposed security

scenario method to be a useful tool for specifying the requirements of agricultural IoT

solutions. Half of them think that the proposed method simplifies the process of specifying

security requirements, resulting in better quality and control of the specification.

The experts noted that the proposed method is well-defined, easy to understand, and

flexible, making it ideal for defining scenarios. Additionally, the evaluation revealed that

most (over 60 %) found it to be clear, well-structured, and interactive in its.

5.3 Results and Analysis

While the method was generally perceived as useful and easy to use for developing

security scenarios, it was suggested that it needs to be more specific to determine its

usefulness in practice. The experts suggested that the method could be enhanced to include

specific aspects of cybersecurity, as well as development and implementation elements that

are essential to ensuring the security of agricultural IoT systems. This would allow for a

complete specification of the security requirements of such systems. Furthermore, it was

noted that users need to interact with the method to remember its steps. During the

evaluation, the experts identified some areas for improvement, such as incorporating

vulnerabilities and risks commonly found in IoT systems, considering different types of users

and adversaries, and taking into account various attack vectors.

By applying these suggestions, the proposed method could be further refined to better

meet the needs of users and enhance the security of agricultural IoT systems, particularly

adding this information to the terminology of the field.

6. PROTOTYPE OF THE SUPPORT TOOL

A computer tool (software application) was prototyped to support the approach proposed

in this article. This prototype aims to make the incorrect use scenarios more robust to aid the

subsequent derivation of security scenarios. Therefore, the prototype described in this section

plays a fundamental role between steps (ii) and (iii) in our method, that is, after the creation

of scenarios describing incorrect uses of an application but before the derivation of security

scenarios.

The tool was prototyped as an extension of Requirements Healer. It was implemented in

Python [37] using libraries such as spaCy [38], an NLP library, and textblob [39].

J. A. Hurtado, et al. TecnoLógicas, Vol. 27, no. 59, e2923, 2024

Página 12 | 20

Requirements Healer is a web application that can be run on desktop computers as well

as mobile phones. It currently manages different projects and supports different kinds of

artifacts written in natural language. Scenarios are one kind of artifact, but the application

can be easily extended to support other artifacts such as user stories, use cases, etc.

Our prototype supports the different steps in our approach. It provides users with an

edition form where they can write about scenarios for a software application, including

incorrect use scenarios. Figure 2 and Figure 3 show the forms for a correct use scenario and

an incorrect use scenario, respectively. The prototype allows the user to sort the scenarios by

name and, after selecting one incorrect use scenario, it performs the derivation of security

scenarios by applying the mapping rules proposed here. Then, the user can edit the security

scenarios to improve their description.

The prototype uses natural language processing tools to assist the requirements engineer

in the description of security scenarios. For example, using lemmatization and stemming

techniques, the prototype can verify whether certain terms or expressions listed in a glossary

have been used in the scenario. Assessing the presence of certain types of expressions within

the fields of an incorrect use scenario will allow us to find the most appropriate technique for

coping with the issue described in the scenario. This procedure (explained in more detail

below) is vital to make the incorrect use scenarios more robust.

Figure 2. Correct use scenario. Source: Own work.

J. A. Hurtado, et al. TecnoLógicas, Vol. 27, no. 59, e2923, 2024

Página 13 | 20

Figure 3. Incorrect use scenario to process the keywords. Source: Own work.

6.1 Catalogs

The aim of the prototype is to make the information contained in a scenario more robust,

using natural language processing techniques to extend the scenarios with precise

information contained in catalogs that have been specifically designed for this prototype [40].

The literature was reviewed to obtain relevant information about the most common attacks

that threaten IoT-based agricultural solutions [12], [20]–[22], [41]–[45]. Special attention was

paid to identify vulnerabilities and specific attacks, the Quality Attribute (QA), and the

architectural layer affected by each type of attack, as well as the corresponding mechanisms

to mitigate them. The information thus obtained was transferred to the two following

catalogs:

a. General Security Aspects. This catalog includes general information classified under

the following headings:

• QA (Security): the quality attribute affected by an attack, e.g., privacy.

• Example attacks: some concrete examples of the type of attack.

• Consequences for the agricultural industry: a description of the impact and

consequences the attack may have on the agricultural industry.

• Architectural layer involved: a list of the architectural layers that may be affected

by the attack.

• Layer definition: a description of the affected architectural layer.

• Common problems: an explanation of some common problems caused by the attack.

• Resources: a list of all the resources that may be involved in the attack.

b. Specific Attacks to QAs. This catalog includes more in-depth descriptions of specific

attacks classified under the following headings:

• QA (Security): the quality attribute(s) that may be affected by the attack.

• Threats and attacks (1): a list of concrete examples of attacks whose targets are

the same as for the main attacks.

J. A. Hurtado, et al. TecnoLógicas, Vol. 27, no. 59, e2923, 2024

Página 14 | 20

• Threats and attacks (2): a list of exploits related to the type of attack.

• Description: a detailed description of the attack.

• Mitigation mechanism: a description of the recommended mitigation protocols or

algorithms to mitigate or counter-attack the former attack.

• Keywords: a list of words that best describe the attack.

• Comments: comments about the specific attack, such as alternative classifications

and extra information related to the attack.

These catalogs are organized as tables, each heading corresponding to a column. Each row

of the General Security Aspects catalog contains information about one quality attribute (e.g.,

privacy, confidentiality, etc.). Each row of the Specific Attacks catalog contains information

about one specific type of related attack. Figure 4 and Figure 5 show screenshots of the

General Security Aspects catalog and the Specific Attacks catalog, respectively.

Figure 4. General Security Aspects catalog (screenshot). Source: Own work.

Figure 5. Specific Attacks catalog (screenshot). Source: Own work.

6.2 Scenario processing

The operation of our prototype can be summarized as follows. First, keywords related to

specific attacks are identified in existing scenarios (both correct and incorrect use scenarios).

The catalogs are then searched for the keywords in order to locate the row containing an

J. A. Hurtado, et al. TecnoLógicas, Vol. 27, no. 59, e2923, 2024

Página 15 | 20

occurrence of the specific attack. Once the relevant row is identified in both catalogs, the

following information is extracted: affected security QA, attack involved, mitigation

mechanism, and consequences for the agricultural industry. The algorithm concatenates the

information extracted from the catalogs and attaches it to a security scenario in a new field

labelled threats. The user can use this information to derive more robust and precise security

scenarios.

We expect that our prototype will help requirements engineers to complement correct and

incorrect use scenarios for software applications. The following is a detailed description of the

algorithm:

• Step 0: Preprocessing (Tokenization and POS tagging). This step is carried out using

spaCy’s open-source libraries. spaCy’s pre-trained language models are used to

tokenize the document and assign POS (part-of-speech) tags to each token.

• Step 1: Process scenarios looking for nouns and verbs. First, the document is processed

to extract all nouns and verbs (the words concentrating the most important

information). The nouns and verbs are lemmatized to obtain their root form. Also, the

main subject is captured.

• Step 2: Process catalogs looking for ADJ + NOUN sequences. First, keywords from the

catalogs are captured using an external source. Then, the catalogs in CSV format are

processed using spaCy’s libraries. spaCy’s matcher is used to extract ADJ + NOUN

sequences from the catalogs. Matched sequences are filtered. Thus, only the most

important matches are kept.
• Step 3: Compare the outputs of Steps 1 and 2. Using the output of Step 2, we look for

specific words in the output of Step 1 that have the same syntactic structure. That is,

the words extracted from a scenario are checked against the words obtained from the

CSV catalogs. The number of rows in the catalog where a match is found is counted.

This count is stored in tuples (row, no. of matches).

• Step 4: Find the row with most matches. The tuples are processed with a max function.

• Step 5: Get the relevant information from the catalogs and fill in the scenario. The

relevant information is extracted from the row with most matches and tagged as

follows: affected QA, threats and attacks, affected layer, layer details, mitigation

mechanisms, and impact. This information is then added to a draft of the security

scenario, in a field labelled threats. The results of this process are shown in Figure 6.

Figure 6. App output. Source: Own work.

J. A. Hurtado, et al. TecnoLógicas, Vol. 27, no. 59, e2923, 2024

Página 16 | 20

The algorithm strengthens the incorrect use scenario (which is based on the correct use

scenario), enabling the expert to complete the information for the analysis and subsequent

derivation of the security scenario.

7. DISCUSSION

[25] proposed FRASAD, a model-driven software development framework to manage the

complexity of IoT applications. [26] proposed another approach to deal with said complexity.

Their approach includes activities such as requirements development, domain-specific design,

verification, simulation, analysis, calibration, deployment, code generation, and execution [28]

presented a taxonomy of security requirements to be considered when a software application

is designed and implemented.[19] proposed a security architecture to provide security-enabled

IoT services and a baseline for security deployment. [29] established security requirements

for IoT systems and focused on enhancing the security of smart home applications.[30]

presented a comprehensive literature review of IoT security requirements [33] presented an

approach to specify security requirements for IoT applications. They combined a framework

for requirement elicitation with automated reasoning to provide secure IoT for vulnerable

users in healthcare scenarios. They mapped technical system requirements using high-level

logical modelling.

The proposals mentioned in the Related Work section enrich our proposal and complement

it in different areas such as the following. (i) The architectural solution outlined in [19] plays

a crucial role in this study because it addresses the security requirements of IoT systems.

These security requirements are useful components of our security scenarios proposal. By

focusing on these requirements, we can effectively establish a robust security framework at

the requirements level. (ii) The requirements identified in [29] complement our proposal as

they introduce significant terminology for describing security scenarios in the context of IoT

and smart farming. by incorporating these elicited requirements, we can effectively address

the specific security challenges and other considerations associated with IoT and smart

farming environments.

Although the related works contributed to our research, there are general and specific

differences between our study and the proposals mentioned above. (i) None of these proposals

has considered security, which is our main concern [25], [26]. (ii) Some other approaches have

indeed considered the security issue, but in terms of implementation, whereas our proposal

considers security in terms of requirements specification. (iii) A number of approaches have

considered security among software requirements, but they have not addressed how to specify

security requirements precisely. (iv) [30] presented a comprehensive literature review of IoT

security requirements, but they did not include any references on how to specify them. (v) [33]

presented an approach to specify security requirements for IoT applications, but their work

concentrated on attack tree analysis to identify the situation. In contrast, our approach

focuses on how to describe security requirements precisely.

Considering the previous findings that support our proposal and the differences found in

related works, we present a lightweight approach to requirement specifications that begins

with a description of functional requirements. The misuse of the application is specified in

order to design countermeasures to deal with it. This study also describes a prototype tool

that helps to apply the proposed approach. Finally, a preliminary assessment is provided. In

the survey administered to five security experts, it was found that the proposed security

scenario method is generally useful for specifying agricultural IoT solutions but needs

improvement in different areas.

J. A. Hurtado, et al. TecnoLógicas, Vol. 27, no. 59, e2923, 2024

Página 17 | 20

 The experts commented that the approach still needs to be more specific and interactive

for users to remember its steps. They also suggested incorporating more specific and accurate

cybersecurity aspects, vulnerabilities, and risks commonly found in IoT systems, as well as

different types of common and malicious users. These results provided valuable feedback for

refining and improving the method in order to fulfil user needs and enhance security aspects.

Currently, the most widely used software development methodology is agile development.

However, we propose a different, complementary, and lightweight technique made

specifically for IoT applications in smart farming. The prototype tool and the algorithm

described in this paper can strengthen and refine incorrect use scenarios based on correct use

scenarios, enabling experts to add more information for the analysis and subsequent

derivation of the security scenario.

8. CONCLUSIONS

This paper proposed a novel approach to describing security scenarios that can be used to

design robust software architectures for IoT technologies in the agricultural field. Developers

of IoT applications should be concerned about security (and some other non-functional

requirements) since the risk of exposing physical artifacts to intruders is considerable in this

area. Moreover, it is difficult to identify the threat and design a countermeasure. Generally,

these issues are identified when it is too late, when some intruder exploits the vulnerability.

 Therefore, this paper presented a lightweight approach that begins with a description of

the functional requirements. The misuse of the application is then identified in order to

design countermeasures to deal with it. This paper also described a prototype tool to help

apply the proposed approach. The method is composed of four essential steps: (i) describe

scenarios for the intended software application, (ii) describe scenarios related to the previous

ones but referring to an incorrect use of the application, (iii) apply a set of rules to map

attributes from the previous scenarios to the architectural scenarios, and (iv) describe the

architectural scenarios in more detail. Additionally, a preliminary assessment of this method

was also conducted.

The survey applied to five security experts found that the proposed security scenario

method is generally useful for specifying agricultural IoT solutions but needs improvement

in certain areas. Experts suggested incorporating specific cybersecurity aspects,

vulnerabilities, and risks commonly found in IoT systems, as well as different types of users

and adversaries. They also noted that the method needs to be more specific and interactive

for users to remember its steps. The results provided valuable insights for refining and

improving the method in order to meet user needs and enhance security.

Currently, the most widely used software development methodology is agile development.

However, we propose a complementary and lightweight technique specifically for IoT

applications in smart farming. In future studies, we aim to enrich our proposal with

additional guidelines for writing scenarios at each stage. Additionally, further

experimentation is necessary before we make the approach more complex. Nevertheless, we

firmly believe that our approach can be improved and made more robust.

The tool and this algorithm can strengthen incorrect use scenarios (which are based on

correct use scenarios), enabling experts to complete the information for the analysis and

subsequent derivation of security scenarios.

J. A. Hurtado, et al. TecnoLógicas, Vol. 27, no. 59, e2923, 2024

Página 18 | 20

9. ACKNOWLEDGEMENT AND FUNDING

This study was partially funded by the STIC AmSud program (project code 22STIC-01).

All authors declare that they have no conflicts of interest.

CONFLICTS OF INTEREST

The authors declare that there is no conflict of interest.

AUTHOR CONTRIBUTIONS

Julio Ariel Hurtado: Conceptualization, Supervision. Leandro Antonelli:

Conceptualization, Supervision.

Santiago López: Methodology, Investigation, Resources, Writing - Review and Editing,

Validation.

Adriana Gómez: Methodology, Investigation, Resources; Writing - Review and Editing,

Validation.

Juliana Delle Ville: Methodology, Investigation, Resources, Writing - Review and Editing,

Validation.

Giuliana Maltempo: Methodology, Investigation, Resources, Writing - Review and

Editing, Validation.

Frey Giovanny Zambrano: Validation, Writing - Review and Editing. Andrés Solis:

Investigation, Writing - Review and Editing.

Marta Cecilia Camacho: Validation, Writing - Review and Editing. Miguel Solinas:

Writing - Review and Editing. Gladys Kaplan: Writing - Review and Editing. Freddy Muñoz:

Investigation, Writing - Review and Editing

The article entitled SEMIoTICA - Security Scenarios Modeling for IoT-based Agriculture

Solutions was presented at Decisioning 2023 [46].

10. REFERENCES

[1] ITU-T. “Overview of internet of things.” 2012. [Online]. Available: https://www.itu.int/rec/T-REC-Y.2060/en
[2] K. Ojo-Gonzalez, and B. Bonilla-Morales, “Requerimientos no funcionales para sistemas basados en el

internet de las cosas (IoT): Una revisión,” I+D Tecnológico, vol. 17, no. 2, Jul. 2021.

https://doi.org/10.33412/idt.v17.2.3303

[3] Berkeley CPS Publications. “Cyber-Physical Systems (CPS).” Berkeley.edu. Accessed: Sep. 20, 2023.

[Online]. Available: https://ptolemy.berkeley.edu/projects/cps/

[4] P. Shankar, B. Morkos, D. Yadav, and J. D. Summers, “Towards the formalization of non-functional

requirements in conceptual design,” Res. Eng. Des., vol. 31, no. 4, pp. 449–469, Oct. 2020.

https://doi.org/10.1007/s00163-020-00345-6

[5] E. Serna M., and A. Serna A., “Process and progress of requirement formalization in software engineering,”

Ingeniare, Rev. Chil. Ing., vol. 28, no. 3, pp. 411–423, Sep. 2020. https://doi.org/10.4067/S0718-

33052020000300411

[6] U. Ahmed, “A review on khowledge management in requirements engineering,” in International Conference

on Engineering and Emerging Technologies (ICEET), Lahore, Pakistan, 2018, pp. 1-5.

https://doi.org/10.1109/ICEET1.2018.8338650

https://www.itu.int/rec/T-REC-Y.2060/en
https://doi.org/10.33412/idt.v17.2.3303
https://ptolemy.berkeley.edu/projects/cps/
https://doi.org/10.1007/s00163-020-00345-6
https://doi.org/10.4067/S0718-33052020000300411
https://doi.org/10.4067/S0718-33052020000300411
https://doi.org/10.1109/ICEET1.2018.8338650

J. A. Hurtado, et al. TecnoLógicas, Vol. 27, no. 59, e2923, 2024

Página 19 | 20

[7] C. Potts, “Using schematic scenarios to understand user needs,” in Proceedings of the conference on

Designing interactive systems processes, practices, methods, & techniques - DIS ’95, New York, Aug. 1995,

pp. 247–256. https://doi.org/10.1145/225434.225462

[8] J. Patton, and P. Economy, User Story Mapping: Discover the Whole Story, Build the Right Product, 1st Ed.

Sebastopol, CA, United States of America: O’Reilly Media, 2014.

[9] J. R. Price, Write a Use Case: Gathering Requirements that Users Understand, The Communication Circle,

2020.

[10] J. M. Carroll, “Five reasons for scenario-based design,” in Proceedings of the 32nd Annual Hawaii

International Conference on Systems Sciences. 1999. HICSS-32. Abstracts and CD-ROM of Full Papers,

Maui, HI, USA, Jan. 1999, pp. 11. https://doi.org/10.1109/hicss.1999.772890

[11] S. Hofer, and H. Schwentner, Domain Storytelling: A Collaborative, Visual, and Agile Way to Build

Domain-Driven Software (Addison-Wesley Signature Series (Vernon)), 1st Ed. Massachusetts, United

States Of America: Addison-Wesley Professional, 2021.

[12] S. Pal, M. Hitchens, T. Rabehaja, and S. Mukhopadhyay, “Security requirements for the internet of things:

A systematic approach,” Sensors, vol. 20, no. 20, p. 5897, Oct. 2020. https://doi.org/10.3390/s20205897

[13] S. Myagmar, A. J. Lee, and W. Yurcik, “Threat Modeling as a Basis for Security Requirements,”

ResearchGate, Aug. 2005. [Online]. Available:

 https://www.researchgate.net/publication/228634178_Threat_Modeling_as_a_Basis_for_Security_Require

ments

[14] B. Schneier, “Cryptography Is Harder than It Looks,” IEEE Secur. Priv., vol. 14, no. 1, pp. 87–88, Jan.-Feb.

2016. https://doi.org/10.1109/MSP.2016.7

[15] T. Martin, D. Geneiatakis, I. Kounelis, S. Kerckhof, and I. N. Fovino, “Towards a formal lot security model,”

Symmetry, vol. 12, no. 8, p. 1305, Aug. 2020.https://doi.org/10.3390/sym12081305

[16] M. Dhanaraju, P. Chenniappan, K. Ramalingam, S. Pazhanivelan, and R. Kaliaperumal, “Smart Farming:

Internet of Things (IoT)-Based Sustainable Agriculture,” Agriculture, vol. 12, no. 10, p. 1745, Oct. 2022.

https://doi.org/10.3390/agriculture12101745

[17] N. Khan, R. L. Ray, G. R. Sargani, M. Ihtisham, M. Khayyam, and S. Ismail, “Current progress and future

prospects of agriculture technology: Gateway to sustainable agriculture,” Sustainability, vol. 13, no. 9, p.

4883, Apr. 2021. https://doi.org/10.3390/su13094883

[18] D. C. Rose, R. Wheeler, M. Winter, M. Lobley, and C. Charlotte-Anne, “Agriculture 4.0: Making it work for

people, production, and the planet,” Land use policy, vol. 100, p. 104933, Jan. 2021.

https://doi.org/10.1016/j.landusepol.2020.104933

[19] S. El-Gendy, and M. A. Azer, “Security Framework for Internet of Things (IoT),” in 2020 15th International

Conference on Computer Engineering and Systems (ICCES), Cairo, Egypt, 2020, pp. 1-6.

https://doi.org/10.1109/ICCES51560.2020.9334589

[20] A. Rettore de Araujo Zanella, E. da Silva, and L. C. Pessoa Albini, “Security challenges to smart agriculture:

Current state, key issues, and future directions,” Array, vol. 8, p. 100048, Dec. 2020.

https://doi.org/10.1016/j.array.2020.100048

[21] A. Yazdinejad et al., “A review on security of smart farming and precision agriculture: Security aspects,

attacks, threats and countermeasures,” Applied Sciences, vol. 11, no. 16, Aug. 2021.

https://doi.org/10.3390/app11167518

[22] K. Demestichas, N. Peppes, and T. Alexakis, “Survey on Security Threats in Agricultural IoT and Smart

Farming,” sensors, vol. 20, no. 22, p. 6458, Nov. 2020. https://doi.org/10.3390/s20226458

[23] J. C. Sampaio Do Prado Leite, G. D. S. Hadad, J. H. Doorn, and G. N. Kaplan, “A scenario construction

process,” Requir. Eng., vol. 5, no. 1, pp. 38–61, Jul. 2000. https://doi.org/10.1007/pl00010342

[24] S. Khamaiseh, and D. Xu, “Software security testing via misuse case modeling,” in 2017 IEEE 15th Intl

Conf on Dependable, Autonomic and Secure Computing, 15th Intl Conf on Pervasive Intelligence and
Computing, 3rd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology

Congress, Orlando, FL, USA, 2017, pp. 534-541. https://doi.org/10.1109/DASC-PICom-DataCom-

CyberSciTec.2017.98

[25] X. T. Nguyen, H. T. Tran, H. Baraki, and K. Geihs, “Frasad: A Framework for Model-driven IoT Application

Development Xuan,” in 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), Milan, Italy, 2015,

pp. 387-392. https://doi.org/10.1109/WF-IoT.2015.7389085

[26] B. Karaduman, S. Mustafiz, and M. Challenger, “FTG+PM for the Model-Driven Development of Wireless

Sensor Network based IoT Systems,” in 2021 ACM/IEEE International Conference on Model Driven

Engineering Languages and Systems Companion (MODELS-C), Fukuoka, Japan, 2021, pp. 306-316.

https://doi.org/10.1109/MODELS-C53483.2021.00052

[27] H. Cardenas, R. Zimmerman, A. R. Viesca, M. Al Lail, and A. J. Perez, "Formal UML-based Modeling and

Analysis for Securing Location-based IoT Applications," in 2022 IEEE 19th International Conference on

https://doi.org/10.1145/225434.225462
https://doi.org/10.1109/hicss.1999.772890
https://doi.org/10.3390/s20205897
https://www.researchgate.net/publication/228634178_Threat_Modeling_as_a_Basis_for_Security_Requirements
https://www.researchgate.net/publication/228634178_Threat_Modeling_as_a_Basis_for_Security_Requirements
https://doi.org/10.1109/MSP.2016.7
https://doi.org/10.3390/sym12081305
https://doi.org/10.3390/agriculture12101745
https://doi.org/10.3390/su13094883
https://doi.org/10.1016/j.landusepol.2020.104933
https://doi.org/10.1109/ICCES51560.2020.9334589
https://doi.org/10.1016/j.array.2020.100048
https://doi.org/10.3390/app11167518
https://doi.org/10.3390/s20226458
https://doi.org/10.1007/pl00010342
https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2017.98
https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2017.98
https://doi.org/10.1109/WF-IoT.2015.7389085
https://doi.org/10.1109/MODELS-C53483.2021.00052

J. A. Hurtado, et al. TecnoLógicas, Vol. 27, no. 59, e2923, 2024

Página 20 | 20

Mobile Ad Hoc and Smart Systems (MASS), Denver, CO, USA, 2022, pp. 722-723.

https://doi.org/10.1109/MASS56207.2022.00109

[28] K. Slovenec, M. Vuković, D. Salopek, and M. Mikuc, "Securing IoT Services Based on Security Requirement

Categories," in 2022 International Conference on Software, Telecommunications and Computer Networks

(SoftCOM), Split, Croatia, 2022, pp. 1-6. https://doi.org/10.23919/SoftCOM55329.2022.9911319

[29] S. Sotoudeh, S. Hashemi, and H. G. Garakani, Security Framework of IoT-Based Smart Home," in 2020

10th International Symposium on Telecommunications (IST), Tehran, Iran, 2020, pp. 251-256.

https://doi.org/10.1109/IST50524.2020.9345886

[30] W. Iqbal, H. Abbas, M. Daneshmand, B. Rauf, and Y. A. Bangash, “An In-Depth Analysis of IoT Security

Requirements, Challenges, and Their Countermeasures via Software-Defined Security,” IEEE Internet

Things J., vol. 7, no. 10, pp. 10250–10276, Oct. 2020. https://doi.org/10.1109/JIOT.2020.2997651

[31] Ö. Özkaya, and B. Örs, "Model based node design methodology for secure IoT applications," in 2018 26th

Signal Processing and Communications Applications Conference (SIU), Izmir, Turkey, 2018, pp. 1-4.

https://doi.org/10.1109/SIU.2018.8404490

[32] R. M. Carvalho, "Dealing with Conflicts Between Non-functional Requirements of UbiComp and IoT

Applications," in 2017 IEEE 25th International Requirements Engineering Conference (RE), Lisbon,

Portugal, 2017, pp. 544-549. https://doi.org/10.1109/RE.2017.51

[33] F. Kammuller, J. C. Augusto, and S. Jones, “Security and privacy requirements engineering for human

centric IoT systems using eFRIEND and Isabelle,” in 2017 IEEE 15th International Conference on Software

Engineering Research, Management and Applications (SERA), London, UK, 2017, pp. 401-406.

https://doi.org/10.1109/SERA.2017.7965758

[34] M. Gupta, M. Abdelsalam, S. Khorsandroo, and S. Mittal, “Security and Privacy in Smart Farming:

Challenges and Opportunities,” IEEE Access, vol. 8, pp. 34564–34584, Feb. 2020.

 https://doi.org/10.1109/ACCESS.2020.2975142

[35] F. Davis, “User Acceptance of Information Systems: Technology acceptance model (TAM),” University of

Michigan, Ann Arbor, Michigan. [Online]. Available:

https://deepblue.lib.umich.edu/bitstream/handle/2027.42/35547/b1409190.0001.001.pdf?seque

[36] N. Marangunić, and A. Granić, “Technology acceptance model: a literature review from 1986 to 2013,”

Univers. Access Inf. Soc., vol. 14, pp. 81–95, Mar. 2015. https://doi.org/10.1007/s10209-014-0348-1

[37] Python. (1995). Netherlands. Accessed: Sep. 20, 2023. [Online]. Available: https://www.python.org/

[38] Spacy. Industrial-Strength Natural Language Processing. (2016). Accessed: Sep. 20, 2023. [Online].

Available: https://spacy.io/

[39] S. Loria. Textblob (Python). (2023). Accessed: Sep. 23, 2023. [Online]. Available:

https://pypi.org/project/textblob/

[40] S. Aurangzeb, M. Aleem, M. Azhar Iqbal, and M. Arshad Islam, “Ransomware: A Survey and Trends,”

Journal of Information Assurance and Security, vol. 12, Jun. 2017.

https://www.researchgate.net/publication/317380115_Ransomware_A_Survey_and_Trends

[41] S. G. Abbas et al., “Identifying and mitigating phishing attack threats in IoT use cases using a threat

modelling approach,” Sensors, vol. 21, no. 14, p. 4816, Jul. 2021. https://doi.org/10.3390/s21144816

[42] L. Chang, “A Proactive Approach to Detect IoT Based Flooding Attacks by Using Software Defined

Networks and Manufacturer Usage Descriptions,” M.S thesis, Arizona State University Tempe Campus,

EE. UU. 2018. [Online]. Available: https://core.ac.uk/download/pdf/161995314.pdf

[43] J. Liu, Y. Xiao, and C. L. P. Chen, "Authentication and Access Control in the Internet of Things," in 2012

32nd International Conference on Distributed Computing Systems Workshops, Macau, China, 2012, pp. 588-

592. https://doi.org/10.1109/ICDCSW.2012.23

[44] Q. M. Ashraf, and M. H. Habaebi, “Autonomic schemes for threat mitigation in Internet of Things,” J. Netw.

Comput. Appl., vol. 49, pp. 112–127, 2015. https://doi.org/10.1016/j.jnca.2014.11.011

[45] J. Deogirikar, and A. Vidhate, “Security attacks in IoT: A survey,” in 2017 International Conference on I-

SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, 2017, pp. 32-37.

https://doi.org/10.1109/I-SMAC.2017.8058363

[46] Decisioning, “The second workshop on Collaboration in knowledge discovery and decision making.”

unicauca.edu.co. Accessed: Sep. 23, 2023. [Online]. Available:

https://www.unicauca.edu.co/versionP/eventos/conversatorio/decisioning-2023-second-workshop-

collaboration-knowledge-discovery-and-decision-making

https://doi.org/10.1109/MASS56207.2022.00109
https://doi.org/10.23919/SoftCOM55329.2022.9911319
https://doi.org/10.1109/IST50524.2020.9345886
https://doi.org/10.1109/JIOT.2020.2997651
https://doi.org/10.1109/SIU.2018.8404490
https://doi.org/10.1109/RE.2017.51
https://doi.org/10.1109/SERA.2017.7965758
https://doi.org/10.1109/ACCESS.2020.2975142
https://deepblue.lib.umich.edu/bitstream/handle/2027.42/35547/b1409190.0001.001.pdf?seque
https://doi.org/10.1007/s10209-014-0348-1
https://www.python.org/
https://spacy.io/
https://pypi.org/project/textblob/
https://www.researchgate.net/publication/317380115_Ransomware_A_Survey_and_Trends
https://doi.org/10.3390/s21144816
https://core.ac.uk/download/pdf/161995314.pdf
https://doi.org/10.1109/ICDCSW.2012.23
https://doi.org/10.1016/j.jnca.2014.11.011
https://doi.org/10.1109/I-SMAC.2017.8058363
https://www.unicauca.edu.co/versionP/eventos/conversatorio/decisioning-2023-second-workshop-collaboration-knowledge-discovery-and-decision-making
https://www.unicauca.edu.co/versionP/eventos/conversatorio/decisioning-2023-second-workshop-collaboration-knowledge-discovery-and-decision-making

