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Influence of Expanded Clay Aggregate on the Engineering 
Properties of Lightweight Concrete

Influencia del agregado de arcilla expandida en las propiedades de 
ingeniería del hormigón ligero

As’at Pujianto1, Hakas Prayuda 2, Farrel Asani3, Muji Basuki Santoso4 and Fahriza Wirawan5

ABSTRACT
In seismically active locations, civil infrastructures, such as buildings, bridges, and dams, are frequently subjected to earthquakes. 
Using lightweight construction materials is one method for enhancing the seismic resistance of infrastructure. This study examined 
the engineering properties of lightweight concrete manufactured using expanded clay aggregate, with the purpose of developing 
sustainable and environmentally friendly building materials. Laboratory tests focused on the effects of the aggregate shape and the 
supplementary superplasticizer, as well as on the influence of the concrete age. Experimental studies were conducted to measure 
fresh (slump) and hardened properties (compressive strength, splitting tensile strength, and density). The expanded clay aggregate 
was produced by burning at a temperature of 800 to 1 200 °C. Cubic, oval, and round aggregate shapes with a maximum size of 20 
mm were evaluated. This study also examined the effect of superplasticizers on the engineering properties of lightweight concrete. 
The composition of the superplasticizer varied from 0 to 2,5%. According to the experimental results, the engineering properties 
of lightweight concrete made with oval aggregates are advantageous in comparison with those using cubic and round shapes. It is 
also demonstrated that optimal amounts of superplasticizer are necessary to develop materials with adequate properties. It can be 
concluded that expanded clay aggregate can be used as an alternative material to produce lightweight concrete.
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RESUMEN
En lugares sísmicamente activos, las infraestructuras civiles, como edificios, puentes y represas, están frecuentemente sujetas a 
terremotos. El uso de materiales de construcción livianos es un método para mejorar la resistencia sísmica de la infraestructura. Este 
estudio examinó las propiedades de ingeniería del hormigón ligero fabricado con agregado de arcilla expandida, con el objetivo de 
desarrollar materiales de construcción sostenibles y respetuosos con el medio ambiente. Las pruebas de laboratorio se enfocaron 
en los efectos de la forma del agregado y el superplastificante suplementario, así como en la influencia de la edad del concreto. 
Se realizaron estudios experimentales para medir las propiedades en estado fresco (asentamiento) y endurecido (resistencia a la 
compresión, resistencia a la tracción por división y densidad). El agregado de arcilla expandida se produjo mediante incineración a una 
temperatura de 800 a 1 200 °C. Se evaluaron agregados de forma cúbica, ovalada y redonda, con un tamaño máximo de 20 mm. Este 
estudio también examinó el efecto de los superplastificantes en las propiedades de ingeniería del hormigón ligero. La composición 
del superplastificante varió de 0 a 2,5 %. De acuerdo con los resultados experimentales, las propiedades de ingeniería del hormigón 
ligero hecho con formas ovaladas son ventajosas en comparación con los que utilizan formas cúbicas y redondas. También se 
demuestra que se necesitan cantidades óptimas de superplastificante para desarrollar materiales con propiedades adecuadas. Se 
puede concluir que el agregado de arcilla expandida se puede utilizar como material alternativo para producir hormigón liviano.

Palabras clave: agregado de arcilla expandida, hormigón ligero, resistencia a la compresión, resistencia a la tracción por división, 
superplastificante
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Introduction

Concrete is one of the most used construction materials 
in the world. This is due to the fact that the components 
for producing concrete are accessible in a wide range of 
locations and relatively inexpensive compared to other 
materials. Concrete has several benefits as a construction 
material, including high resistance to compressive stress, 
fire resistance, low cost, and long-term serviceability. 
However, concrete also has several drawbacks, which have 
recently become the main concern of various countries, 
especially in terms of sustainability and its impact on the 
environment (Monika et al., 2022; Saleh et al., 2022). 
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Concrete construction always generates waste and gas 
emissions. It starts with collecting constituent materials, 
extending through the construction stage, service life, the 
monitoring stage, and the demolition stage. In addition, 
producing concrete requires using natural resources, such as 
sand and rock, which may cause damage to the ecosystem, 
most notably the functional deterioration of river systems. 
According to the findings of previous studies, the yearly 
manufacture of concrete exceeds 10 billion metric tons, with 
aggregate consumption responsible for almost 70% (7,5 
billion metric tons) and cement consumption accounting for 
roughly 1,2 billion metric tons (Bogas et al., 2015; Meyer, 
2009; Bogas et al., 2014). Therefore, extensive innovation 
and the study of more sustainable and environmentally 
friendly alternative materials must be conducted in order 
to contribute to the development of the global construction 
industry.

In addition, the mass density of normal concrete is between 
2 200 and 2 400 kg/m3. This mass of concrete has also 
been widely studied by researchers and is still an open 
issue. Especially in earthquake-prone areas, the collapse 
of concrete structures with a high density might result 
in a fatal disaster. Several types of construction require a 
lighter structure to reduce density. The development of 
lightweight concrete is closely linked to the option of using 
lightweight materials as a substitute for aggregate, especially 
considering that coarse aggregate has the most significant 
proportion in concrete composition. Various innovations to 
produce lighter concrete have been explored over the years, 
such as using coarse aggregate replacement material with 
waste from the agriculture industry (Shafigh et al., 2011; 
Shafigh et al., 2014; Aslam et al., 2016; Mannan et al., 2006), 
using aggregate from plastic waste (Alqahtani et al., 2017; 
Akcaozoglu et al., 2010; Castillo et al., 2020), using pumice 
aggregate (Pujianto and Prayuda, 2021; Rashad, 2019; 
Karthika et al., 2021), using recycled aggregate (Hassan et 
al., 2015; Posi et al., 2013; Saha et al., 2021), and using 
expanded clay aggregate (Ahmad et al., 2019; Ahmad and 
Chen, 2019; Rumsys et al., 2017).

Lightweight cement-based materials have recently 
been the focus of research on lightweight materials 
for concrete production. This project aims to develop 
cement substitutes that can provide lightweight concrete 
and reduce the consumption of Portland cement, whose 
production process emits excessive amounts of carbon 
dioxide (Liu et al., 2021; Pelisser et al., 2012). There are 
several studies on lightweight cement-based materials, 
some of which use cenosphere and fly ash (Arunachalam 
et al., 2023; Kavinkumar et al., 2023; Souza et al., 2019; 
Chen and Huang, 2019; Shi et al., 2022; Hanif et al., 2017; 
Brooks et al., 2021; Aungatichart et al., 2022), pumice 
powder (Hossain, 2004; Kurt et al., 2016), nano-silica 
materials (Sikora et al., 2020; Du et al., 2015; Adhikary 
et al., 2021; Elrahman et al., 2019; Adhikary et al., 2020; 
Gayathiri and Praveenkumar, 2022; Zhang et al., 2018). 
Using cement-based materials can produce lightweight 
concrete that is environmentally friendly, of high quality, 

and similar to normal concrete. However, when compared 
to conventional concrete or lightweight concrete using 
coarse aggregate replacement, the manufacturing process 
for lightweight concrete employing cement-based material 
replacement requires skills, a high level of accuracy, and 
higher production costs.

Each alternative material for lightweight concrete has different 
advantages and disadvantages. Producing lightweight 
concrete from plastic waste requires a long process to 
produce aggregates that can be used as lightweight raw 
material. Additionally, the utilization of agricultural waste 
is still debatable due to its durability and resistance to fire. 
This research aims to utilize expanded clay aggregate as a 
lightweight artificial aggregate to produce more sustainable 
and environmentally friendly lightweight concrete. There 
is research on expanded clay aggregate for light concrete, 
focusing on physical and mechanical properties (Campione 
et al., 2001; Kulkarni and Muthadhi, 2020; Dabbaghi et al., 
2021) and durability (Hubertova and Hela, 2013; Nahhab 
and Ketab, 2020; Nawel et al., 2017). Based on the results 
of said research, it can be concluded that this expanded clay 
aggregate material is suitable for use in the production of 
lightweight concrete. In addition, using this material can 
improve thermal performance, which may reduce energy 
consumption in civil infrastructures (Vijayalakshmi and 
Ramanagopal, 2018). However, the compressive strength 
obtained is always lower than that of normal concrete. Some 
research has been conducted on utilizing the combination of 
expanded clay aggregate and other light materials, such as 
expanded glass aggregate (Rumsys et al., 2018; Adhikary et 
al., 2020; Augonis et al., 2022), metakaolin, silica fume, and 
fly ash (Tawfik et al., 2021; Vivek et al., 2022; Mohammed 
et al., 2022). It has also been determined that expanded 
clay aggregate could be combined with other materials, 
but several studies have found that the clay source and 
processing method significantly affect the performance of 
lightweight concrete.

Although expanded clay aggregate has been widely 
accepted by the research community as one of the 
materials for producing lightweight concrete, its 
effectiveness is significantly affected by various factors, 
with the manufacturing method being the most important. 
In addition, it is suspected that the shape and size of 
expanded clay aggregate influence the engineering 
properties of lightweight concrete, and admixtures are 
frequently used to improve the properties of concrete 
by enhancing workability and accelerating performance. 
The effect of admixtures on the properties of lightweight 
concrete made with expanded clay aggregate has not been 
thoroughly investigated. Due to this lack of information, it 
is necessary to conduct additional research on the effect 
of the aggregate shape and the effect of admixtures on the 
engineering properties of lightweight concrete made from 
expanded clay aggregate.

This research consists of three series based on several 
mix proportions. The first series focuses on the effect 
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of the three different clay aggregate shapes: cubic, oval, 
and round. It should be noted that the manufacturing 
method is identical for all shapes, with grain distributions 
ranging from 5 to 20 mm. In addition, the source of the 
clay employed in this research is Yogyakarta, Indonesia. 
It should be emphasized that the location from which the 
clay is collected, as well as its type, significantly affects 
the aggregate production process and the properties of 
concrete. Thus, the novelty of this study is the use of three 
shape variations of expanded clay aggregate from the 
Yogyakarta area.

The second series evaluates the effects of superplasticizers 
on the properties of lightweight concrete. The studied 
variations were 0, 1, 1,5, 2, and 2,5%. Compressive and 
split tensile strength testing constituted the majority of the 
tests conducted in this research. In addition, a slump test 
was carried out to determine workability and mass density. 
This, in order to manage the index level of the lightweight 
concrete produced.

Series III focuses on the index corresponding to the 
development of split tensile and compressive strength 
in relation to the age of concrete. Here, a compressive 
strength conversion factor is generated for a specific age. 
The conversion factor of concrete properties to age has 
been commonly utilized for normal concrete, but it has not 
been studied for lightweight concrete made from expanded 
clay aggregate. Therefore, this study aims to establish a 
correlation between the age and the properties of lightweight 
concrete, such as compressive and split tensile strength, 
as there is no previous research in this regard. Given the 
relationship between the age of concrete and its properties, 
it is expected that it will no longer be necessary to conduct 
compressive strength tests with various ages in the future. 
Thus, it is possible to reduce the number of specimens in 
order to evaluate, based on age, the compressive and split 
tensile strength of lightweight concrete including expanded 
clay aggregate.

Experimental program

Materials
The materials used in this study were cement, water, fine 
aggregate, coarse aggregate, and superplasticizer. The 
cement used in this study was in line with the ASTM C150 
standard, i.e., type 1 cement (ordinary Portland cement) 
(ASTM International, 2015). The fine aggregate used in 
this study was river sand from Kali Progo, Yogyakarta, 
Indonesia. Its physical and mechanical properties were 
examined before use as a constituent material of concrete. 
The evaluated mechanical parameters were water content, 
absorption, specific gravity, and mud content. The results 
are summarized in Table 1. In addition, the fine aggregate’s 
grain particle size distribution was measured (Figure 1). 
These measurements were taken based on ASTM C136 
(ASTM International, 2019a).

Table 1. Properties of the fine aggregate

Source: Authors

Lightweight expanded clay aggregate (LECA) was the coarse 
aggregate employed in this study. The source of this clay 
is Sleman, Yogyakarta, Indonesia. As mentioned before, 
our research comprised three series. The first was focused 
on coarse aggregate shapes, i.e., cubic, oval, and round. 
Meanwhile, series II and III only employed round coarse 
aggregate. Figure 2 shows the shape of each aggregate. 
The production process of expanded clay aggregate began 
by mixing clay with sufficient water. The same amount of 
water was used for each aggregate shape. The dough was 
then molded into the desired size, with the aggregate size 
distribution ranging between 5 and 20 mm. The aggregate 
was then burned at temperatures between 800 and 1 200 
°C. Subsequently, the properties of the coarse aggregate 
were evaluated, i.e., specific gravity, water content, water 
absorption, density, mud content, and roughness level. The 
results regarding these properties are displayed in Table 2 
for all shapes.

In addition, the effect of admixtures was explored in this 
study. The superplasticizer used was either Viscocrete 
3115N from SIKA or type D superplasticizer for water 
reduction and retarding, in accordance with ASTM C494 
(ASTM International, 2019b).

 
Figure 1. Size distribution of the fine aggregate
Source: Authors

Properties Value

Specific gravity 2,45

Water absorption (%) 2,57

Water content (%) 2,22

Mud content (%) 2,00

Mass density (g/cm3) 1,52

Fineness modulus 2,38
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Figure 2. Shape of the coarse aggregates
Source: Authors

Table 2. Properties of the coarse aggregate

Source: Authors

Mix proportions
This research aimed to evaluate the effect of aggregate shape, 
admixtures, and age on concrete. Table 3 shows the mix 
proportions for series I. Table 4 presents the mix proportions for 
series II, which corresponds to the amount of superplasticizer used. 
The superplasticizer percentage was derived from the total binder 
used to cast the specimen.

Table 3. Mix proportions for series I

Source: Authors

Table 4. Mix proportions for series II

Source: Authors

Table 5 shows the mix proportions used in examining the 
development of concrete’s mechanical properties with 
age. In series II and III, expanded round clay aggregate was 
employed. It should be noted that all test objects were cured 
with water before testing.

Table 5. Mix proportion for Series III

Source: Authors

Test method
This study included four tests: a fresh properties 
(workability) test, a density test, a compressive strength 
test, and a splitting tensile strength test. The slump test 
was performed in series I and II, but not in series III, since 
it utilized the same proportion of materials as the ID SII.A 
specimens. The slump test followed ASTM C143 (ASTM 
International, 2020), the standard test procedure for slump 
testing in hydraulic cement concrete. Moreover, a density 
test was conducted on 28-day-old concrete that had already 
solidified and aimed to determine whether the concrete 
mass met the requirements for lightweight concrete. This 
test followed ASTM C642 (ASTM International, 2021) and 
was only performed on series I and II specimens.

In this study, compressive and splitting tensile strength tests 
were conducted for all series. They were carried out with 
28-day-old concrete in series I and II, whereas, in series III, 
age variations of 3, 7, 14, 21, and 28 days were examined. 
The dimensions of the cylindrical specimen for compressive 
strength testing were 10 x 20 cm, while that for split tensile 
strength had dimensions of 15 x 30 cm. The average of 
the three specimens is obtained from each variation in 
compressive and splitting tensile strength. There are 18 
specimens in series I, 30 in series II, and 30 in series III. 

Properties Value

Specific gravity 1,98

Water absorption (%) 18,91

Water content (%) 1,67

Mud content (%) 2,00

Mass density (g/cm3) 0,98

Roughness (%) 94,00

ID SI.A SI.B SI.C

Aggregate shape Cubic Oval Round

Cement (kg/m3) 342,41 342,41 342,41

Fine aggregate (kg/m3) 679,02 679,02 679,02

Coarse aggregate (kg/m3) 918,67 918,67 918,67

Water (l) 184,90 184,90 184,90

ID SII.A SII.B SII.C SII.D SII.E

Superplasticizer (%) 0 1 1,5 2 2,5

Cement (kg/m3) 342,41 342,41 342,41 342,41 342,41

Fine aggregate (kg/m3) 679,02 679,02 679,02 679,02 679,02

Coarse aggregate (kg/m3) 918,67 918,67 918,67 918,67 918,67

Water (l) 184,90 147,92 147,92 147,92 147,92

ID SIII.A

Superplasticizer (%) 0

Cement (kg/m3) 342,41

Fine aggregate (kg/m3) 679,02

Coarse aggregate (kg/m3) 918,67

Water (l) 184,90

Aggregate shape Round
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Figure 4. Density results for series I
Source: Authors

Density is a key aspect in determining the classification of 
concrete. Lightweight concrete corresponds to density values 
ranging from 320 to 1 920 kg/m3. This, according to ACI 213 
and ASTM C330 (ACI Committee, 2014; ASTM International, 
2017a). The results of the laboratory tests indicate that all 
specimens in series I correspond to lightweight concrete 
(Figure 4). The SI.B specimens (utilizing oval expanded 
clay aggregates) reported the highest density compared to 
other specimens. Nonetheless, the density of SI.B does not 
exceed 1 900 kg/m3. In contrast, SI.C specimens (with round 
expanded clay aggregate) showed the lowest density: only 
1 806 kg/m3. The difference in hardened density between 
these samples may be due to the influence of the expanded 
clay aggregate’s size and shape. However, these differences 
are not significant, and all specimens can be classified as 
lightweight concrete.

 
Figure 5. Compressive strength for series I
Source: Authors

Figure 5 shows the compressive strength of concrete after 
28 days, with a comparison regarding the coarse aggregate 

Thus, a total of 78 specimens were used in this study, out of 
which 39 were used to measure compressive strength and 
the other half to measure splitting tensile strength. This study 
followed the ASTM C39 standard for compressive strength 
testing (ASTM International, 2021), with a constant loading 
rate of 0,15 MPa/sec, as well as ASTM C496 for splitting 
tensile strength testing (ASTM International, 2017b), with 
a constant loading rate of 0,7 MPa/sec. To preserve the 
hydration process, all cast specimens underwent water 
curing for 28 days. Additionally, all specimens were placed 
in a controlled room with a fixed temperature and relative 
humidity during the curing process.

Results and discussion

Influence of the coarse aggregate shape
Various studies regarding the effect of expanded clay 
aggregate size have been carried out by several researchers 
(Ozguven and Gunduz, 2012; Rashad, 2018). However, 
there is limited information regarding the effect of LECA 
shapes on the engineering properties of concrete. As 
previously mentioned, this study examines this effect on 
the properties of lightweight concrete. These experiments 
were conducted since expanded clay aggregate is typically 
produced with a uniform shape but with different sizes. 

Four types of tests were carried out in this regard: a slump 
test, density test, a compressive strength test, and a splitting 
tensile strength test. Figure 3 shows the fresh concrete 
slump test results for series I, indicating that the aggregate 
shape does not affect the slump value. This is due to the fact 
that the three mix proportions used are identical, except for 
the aggregate shape. The specimens in series I (with a round 
coarse aggregate, SI.C) yield lower slump values compared 
to other shapes (cubic and oval), but the difference is 
insignificant. Therefore, it can be concluded that the shape 
of the expanded clay aggregate has no significant effect on 
the slump value of fresh concrete.

 
Figure 3. Slump results for series I
Source: Authors
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shape. These values range between 5 and 6 MPa. Series I used 
the same mix proportions for all specimens, but a different 
aggregate shape. No additional superplasticizer was used in 
this series. This demonstrates that the aggregate shape has 
no significant effect on the compressive strength of 28-day-
old concrete. Th oval expanded clay aggregate provided the 
specimens with the highest compressive strength, while 
the round coarse aggregate reported the specimens with 
the lowest values. This is because round coarse aggregates 
have a weaker compressive stress resistance compared to 
those with cubic and oval shapes, which are more stable in 
withstanding compressive forces.

Figure 6. Comparison between compressive strength and density for 
series I
Source: Authors

Figure 7. Splitting tensile strength for series I
Source: Authors

This study also evaluated the relationship between 
compressive strength and concrete density. Figure 6 
shows a comparison between compressive strength 

and density with different coarse aggregate shapes. 
At the age of 28 days, a high density provides a higher 
compressive strength, specifically in specimens with oval 
coarse aggregates. This is due to the influence of concrete 
density. Consequently, the greater the density, the smaller 
the pore volume, and vice versa. Thus, higher density 
concrete has higher compressive strength, even with 
the same mix proportions. Figure 7 provides information 
about another test regarding hardened qualities, which 
involved the splitting tensile strength after 28 days. The 
results show a linear trend comparable to that of the 
compressive strength, with the highest values obtained by 
concrete with oval particles. This indicates that the oval 
aggregate is more resistant to load deformation than the 
other shapes evaluated.

Influence of chemical admixture
This research also studied the effect of admixture addition 
on lightweight concrete’s fresh and hardened properties. 
The corresponding experiments used a homogeneous 
spherical aggregate with dimensions ranging from 5 to 20 
mm. After 28 days, concrete was subjected to testing with 
regard to its hardened properties. Figure 8 shows results of 
the slump test for series II concrete, which was conducted 
to examine the influence of chemical admixture. These 
results indicate a significantly increased slump value due to 
the additional superplasticizer. It should be noted that, in 
this variation, the water content was reduced by 20% when 
compared to normal concrete without a superplasticizer. 
However, this test demonstrates that superplasticizers can 
improve the performance of fresh concrete by increasing 
workability. Previous studies have shown similar results, 
even with different types of superplasticizers. According to 
them, increasing the amount of superplasticizer increases 
the fluidity of fresh concrete (Nahhab and Ketab, 2020; 
Nepomuceno et al., 2018; Tang et al., 2020).

 
Figure 8. Slump results for series II
Source: Authors
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The results of the density examination carried out for 
each specimen in series II are shown in Figure 9. Here, 
the density of hardened concrete with chemical admixture 
ranges from 1 750 to 1 850 kg/m3. This shows no significant 
differences in the density of each specimen when 
compared to normal concrete without admixture (SII.A). 
However, with respect to concrete made with oval and 
cubic coarse aggregate, the density of concrete made with 
this superplasticizer is significantly lower. In addition, all 
specimens containing this superplasticizer were classified 
under the lightweight concrete category. The relationship 
between the compressive strength of concrete and the 
amount of admixture after 28 days can be seen in Figure 10. 

 

Figure 9. Density results for series II
Source: Authors

 

Figure 10. Compressive strength after 28 days for series II
Source: Authors

Curve fitting with polynomial regression is an efficient 
and simple method to study the relationship between 
the engineering properties of concrete, its age, and the 
amount of superplasticizer used. This approach has also 
been used in previous research to evaluate the effects 
of superplasticizers on the compressive and split tensile 
strength of concrete (Gu et al., 2021; Faraj et al., 2022a, 
2022b, 2022c), as well as the effects of age on these 
properties (Varga et al., 2012; Elaty, 2014). Our analysis 
determined a polynomial relationship with a correlation 
coefficient of 0,8897 (88,97%). This value indicates a 
significant relationship between the compressive strength 
of concrete and the amount of superplasticizer used. 
The test findings indicate that compressive strength 
increased along with the amount of superplasticizer. One 
of the factors contributing to this trend is the decreased 
proportion of water in the mixture (due to the use of 
a superplasticizer). Note that reducing the water content 
of concrete decreases the water-to-binder ratio, and 
cement requires a minimal amount of water to react. 
Due to evaporation during the hydration process, water 
is retained in the concrete when a sufficient volume is 
used. This allows it to expand the pores upon evaporation, 
resulting in a decreased compressive strength. However, 
water is required for the processing of fresh concrete. With 
the aid of this additive ingredient, the amount of water can 
be reduced significantly, and fresh concrete can become 
more plastic.

Figure 11 illustrates the results obtained regarding the 
splitting tensile strength of 28-day-old concrete with 
various concentrations of superplasticizer. The correlation 
coefficient between the splitting tensile strength and 
the amount of admixture is relatively high, reaching 
95,10%. The trend identified in our study indicates 
that tensile strength increases along with the amount 
of superplasticizer. This pattern closely resembles the 
compressive strength testing results. It is important to 
recall that the addition of superplasticizers can help to 
reduce the water content: even though the density of 
concrete decreases, its compressive and splitting tensile 
strength increase, as less water is trapped in it and the 
volume of the pores is reduced. Increasing the amount 
of superplasticizer also increases the workability of 
the concrete, resulting in a more uniform aggregate 
distribution. This is extremely helpful for the production 
of lightweight, high-performance concrete. It should be 
noted that the resulting compressive strength is still lower 
than that of conventional concrete made with coarse 
aggregate from natural resources such as rock. However, 
this lightweight aggregate can also be utilized in various 
non-structural concrete constructions.

Influence of the age of concrete
According to our results, compressive strength increases 
with age (Figure 12). This resembles the patterns shown by 
concrete with typical aggregate.
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Figure 11. Splitting tensile strength after 28 days for series II
Source: Authors

Table 6. Strength increase rate

 

Source: Authors

 
Figure 12. Relationship between age and compressive strength (series 
III)
Source: Authors

The relationship between age and splitting tensile strength 
is presented in Figure 13, and the evolution of compressive 
and splitting tensile strength is shown in Table 6. These 
findings indicate that the splitting tensile strength of concrete 
increases with age. Furthermore, the strength increase rate 
decreases with age, which is caused by the nearly complete 
hydration of the concrete, whose strength approaches 
ideal conditions. The conversion factor for the compressive 
and splitting tensile strength at a given age is presented 
in Table 7. With this factor, there will be no need to test 
for age differences, thus reducing the number of required 
samples during experimentation. This conversion factor 
applies to three shapes of expanded clay aggregate: cubic, 
oval, and round. There is a need for additional study on a 

more effective formula for producing improved hardened 
properties, such as compressive and splitting tensile strength. 
In addition, future studies aiming to use this aggregate for 
structural components must also conduct another types of 
experiments, such as flexural strength testing.

 
Figure 13. Relationship between age and splitting tensile strength 
(series III)
Source: Authors

Table 7. Conversion factor regarding compressive and splitting tensile 
strength

 

Source: Authors

Several specimens are shown in Figure 14 after testing. It is 
evident that the expanded clay aggregate component of the 
specimen can fail, alongside the surface mortar area. As a 
result, a compressive strength that is often lower than that 
of normal concrete is reported.

 

Figure 14. Specimens after testing
Source: Authors

Concrete age (Days) 3 to 7 7 to 14 14 to 21 21 to 28

Compressive strength (%) 59,24 23,14 15,99 10,51

Splitting tensile strength (%) 71,42 21,12 17,44 5,49

Concrete age (Days) 3 7 14 21 28

Compressive strength 0,30 0,57 0,76 0,91 1,00

Splitting tensile strength 0,18 0,40 0,62 0,84 1,00
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Conclusions

Based on the results and discussion, the following 
conclusions can be drawn.

1. The shape of expanded clay aggregate affects the 
qualities of hardened concrete. However, the obtained 
difference is insignificant. An oval aggregate improves 
the compressive and splitting tensile strength.

2. The incorporation of superplasticizers can lower the 
amount of water required for the casting of concrete. 
This reduces the amount of water consumed while 
improving the workability of fresh properties. In 
addition, the decrease in water content increases 
the compressive and flexural strength of lightweight 
concrete and decreases its density.

3. This study presents a conversion factor for predicting the 
compressive and splitting tensile strength of lightweight 
concrete made with expanded clay aggregate.

4. Using expanded clay aggregate as the coarse aggregate 
in concrete can result in the production of lightweight 
concrete.
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