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RESUMEN:  
En este artículo de investigación, se ha hecho un esfuerzo para desarrollar el modelo matemático, cuando las unidades 
en el inventario están sujetas al deterioro con el paso del tiempo, y el proveedor ofrece a su distribuidor el período de 
crédito para liquidar la cuenta de la adquisición de las unidades. El valor residual se asocia al deterioro de las 
unidades. El objetivo es reducir al mínimo el minorista total del costo de inventario. Se propone un algoritmo para 
encontrar la política óptima de pedidos. Un ejemplo numérico es la posibilidad de estudiar el efecto del período 
permisible de crédito y el deterioro de la variable de decisión y el costo total del minorista. 

 
ABSTRACT : 
In this research article, an attempt is made to develop mathematical model when units in inventory are subject to 
deterioration with time, and the supplier offers his retailer the credit period to settle the account of the procurement 
units. The salvage value is associated to the deterioration units. The objective is to minimize the retailer’s total 
inventory cost. An algorithm is proposed to find optimal ordering policy. A numerical example is given to study the 
effect of allowable credit period and deterioration on decision variable and the total cost of the retailer. 
 
KEY WORDS : Economic order quantity (EOQ), allowable credit period, time–dependent deterioration, salvage 
value. 
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1. INTRODUCTION 
 
Trade credit is the most effective tool of the supplier to encourage retailer to buy more and to attract 
more retailers. Goyal (1985) derived an economic order quantity inventory model when the supplier 
offers a credit period to settle the retailer’s account. Shah et al. (1988) extended Goyal’s model by 
allowing shortages. Mandal and Phaujdar (1989) developed a mathematical model including interest 
earned from the sales revenue on the stock remaining beyond the settlement period. Shah (1993) 
studied an an inventory model for constant deterioration of units in an inventory under the scenario of 
permissible a credit period. Jamal et al. (1997) developed an inventory model to allow for shortages 
under the permissible delay in payments. Shah (1993) analyzed an inventory model when the supplier 
offers a credit period to settle the retailer’s account by considering stochastic demand. Shah (1997) 
derived a probabilistic order – level system with lead – time when delay in payments is permissible. 
Jamal et al. (2000) formulated a mathematical model when retailer can settle the account either at the 
end of the credit period or later incurring interest charges on the un-paid balance for the over-due 
period. 
 
Arcelus et al. (2003) formulated a mathematical model to maximize the retailer’s profit when the 
supplier offers a credit period and /or price discount on the purchase of regular order when units in an 
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inventory are subject to a constant deterioration. Related articles are Haley and Higgins (1973), 
Kingsman (1983), Chapman at al.(1984),  Dallenbach (1986, 1988), Ward and Chapman (1987), 
Chapman and Ward (1988), Raafat (1991), Shah (1993), Jaggi and Aggrawal (1994), Aggrawal and 
Jaggi (1995), Shinn et al. (1996), Shah and Shah (1998), Chung (1998), Chu et al. (1998), Shah and 
Shah (2000), Chung (2000), Goyal and Giri (2001), Chung et al. (2001), Sarker et al. (2001), Teng 
(2002), Shinn et al. (2003), Salameh et al. (2003), Shah et al. (2004), Shah (2004),  Lokhandwala et al. 
(2005), Shah and Trivedi (2005), Chung and Liao (2006), Shah (2006), Yang and Wee (2006), Liao 
(2007) . 
 
In this article, an attempt is made to develop a mathematical model when the units in an inventory are 
subject to deterioration with respect to time and the supplier offers a credit period to the retailer to 
settle the account. The salvage value is associated to the deteriorated units. The objective is to 
minimize retailer’s total cost. An algorithm is given to explore the computational flow. The effects of 
deterioration rates of units salvage value and a credit period on objective function and decision variable 
is validated using numerical example. 
 
2. ASSUMPTIONS AND NOTATIONS 
 
The following assumptions are used to develop the aforesaid model: 
 

• The system deals with a single item. 
• The demand rate of R-units per time unit is deterministic and constant. 
• The replenishment rate is infinite. 
• The lead time is zero and shortages are  not allowed. 
• The deterioration rate of units in an inventory follows the Weibull distribution function 

given by  
( ) 1−= βαβθ tt ,                                                                                                    (2.1)  Tt ≤≤0

• where ( )0 ≤ <α α 1  denotes a scale parameter, ( )1 ≥β β  denotes a shape parameter 
and t (t > 0) is the time to deterioration. 

• The deteriorated units can neither be repaired nor be replaced during the cycle time. 
• During the fixed a credit period; M, the unit cost of the generated sales revenue is 

deposited in an interest bearing account. The difference between sales price and unit cost 
is retained by the system to meet the day–to–day expenses of the system. At the end of the 
credit period the account is settled and interest charges are payable on the un-paid account. 

• The salvage value, γ C ( 10 <≤ γ ) is associated to deteriorated units during the cycle 
time. Here C is the purchase cost of an item. 

 
The following notations are used in developing the model: 
 

R : demand rate per unit of time. 
C : purchase cost per unit. 
P : unit selling price (P > C). 
h : inventory holding cost per unit per time unit excluding interest charges. 
A : ordering cost per order. 
Ie : interest earned per unit per annum. 
Ic : interest charged per unit in stock per annum by the supplier to the retailer.  (Ic > Ie)                         
T : cycle time. (decision variable) 
M : allowable credit period offered by the supplier to the retailer for settling the accounts.        

 
3. A MATHEMATICAL MODEL 
 
Let Q(t) be the on-hand inventory at any instant of time t ( Tt ≤≤0 ) of a cycle. The depletion of 
units in an inventory is due to the demand and the deterioration of units. The instantaneous state of Q(t) 
at any instant of time is described by the differential equation 
 

( )
( ) ( ) ,

dQ t
t Q t R

dt
θ+ = −  Tt ≤≤0                                                                          (3.1) 
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with the initial condition Q(0) = Q and the boundary condition Q(T) = 0, where )(tθ is given by the 
equation (2.1). 
 
Taking series expansion and ignoring second and higher power of  α  (assuming α  to be  very small), 
the solution of the differential equation (3.1) using the boundary condition  Q(T) = 0 is given by 
 

 
                 (3.2)       
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Using Q(0) = Q, we get procurement quantity as 
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The number of units that deteriorate; D(T) during one cycle is given by 
 

1
)(

1

+
=−=

+
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α βRTRTQTD                                                                                                           (3.4) 

 
Hence, the cost due to deterioration (CD) is  
 

CD = 
1

1

+

+

β
α βCRT

                                                                                                                                (3.5)  

 
and salvage value of deteriorated units; SV is 
 

SV = 
1

1
 CRT βαγ
β

+

+
                                                                                                                             (3.6) 

 
The inventory holding cost; IHC during the cycle is  
 

IHC = h ∫ ⎥
⎦

⎤
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                                                                          (3.7) 

 
and the ordering cost; OC per order is  
 
OC = A                                                                                                                                                 (3.8) 
 
About the interest charged and the interest earned the following two cases arise: 
 
Case 1 : M≤T  (figure. 1) 
 
Case 2 : M >T  (figure 2) 
 
Next we compute the interest charged and the interest earned in both cases: 
 
Case 1: M≤T i.e. the offered credit period is less than or equal to the cycle time.    
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Figure 3.1 M  ≤   T 

 
The retailer can sale units during [0, M] at a sale price; P per unit which he can put at an interest rate Ie 
per unit per annum in an interest bearing account. So the total interest earned during [0, M] is: 
 

IE1 = PIe = ∫
M

Rtdt
0 2

2RMPIe                                                                                     (3.9) 

 
During [M, T], the supplier will charge the interest to the retailer on the remaining stock at the rate Ic 
per unit per annum. Hence, total interest charges payable by the retailer during [M, T] is 
  

∫=
T
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The total cost (K1(T)) per time unit is 
 

K1(T) = [ SVIEICCDIHCOC ]
T

−−+++ 11
1

                                                     (3.11) 

The necessary condition for K1(T) to be minimum is given in  
 

( )( )2
1

1 2 3 4 1 1 2
( ) 1 1( )K T
T TT
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 and solve it for T by a mathematical software. For obtained T, K1(T) is minimum only if  

0)(
2
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∂

∂
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TK
 for all T 

 
Case 2: T > M i.e. the offered credit period by the supplier to the retailer for settling the account is 
greater than cycle time. 
 

 

Q 

TimeT M 0 

Inventory level 

Figure 3.2  M > T 
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Here, the interest charges is zero i.e. 
 
                  IC2  = 0                                                                                                                             (3.12) 
  
and the interest earned; IE2 is 
 

IE2 = ( )
0

2
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Thus, total cost (K2(T)) per time unit is 
 

K2(T) = [ SVIEICCDIHCOC ]
T

−−+++ 22
1

                                           (3.14) 

 
For the optimal value T, solve  
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which minimizes K2(T) only if  
2

2
2
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 > 0 for all T. 

 
For T = M, we have 
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4. A COMPUTATIONAL ALGORITHM 
 
To find the optimal cycle time and hence the total cost, we follow the decision policy as shown in the 
flow chart in Figure 4.1 in the Appendix. 
 
5. ANALYTICAL RESULTS 
  
Proposition 5.1 The total cost is an increasing function of the deterioration rate (α ). 
Proof:  
 

1( )K T
α

∂
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where 
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Proposition 5.2 The total cost is a decreasing function of the allowable delay period M. 
 
Proof:  
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Proposition 5.3 The total cost is a decreasing function of the salvage parameter γ . 
 
Proof:  
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In the next section, we consider a numerical example to validate the analytical results. 
 
6. NUMERICAL EXAMPLE 
  
In this section, we illustrate the aforesaid mathematical model using a numerical example.   
 
Consider an inventory system with following parametric values in proper units: 
[A, C, h, P, α , β ,γ ,  R,  Ic,  Ie, M]   
               = [250, 50, 5, 75, 0.02, 1.5, 0.1, 1000, 18%, 14%, 15/365] 
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Then Case 1 is the optimal decision policy. The optimum cycle time T = 0.1853 years < 0.0411 = M 

and minimum total cost of an inventory system is K1 (T) = $ 2298.74 and 
2

1
2
( )∂

∂

K T
T

 = 1.5728 > 0.  

 
Next, we study the variations of the delay period; M, deterioration rate; α , shape parameter; β  and 
salvage value; γ  on decision variable and objective function.  
 

Table 1: Effect of M and α  when ,5.1=β  1..0=γ  
 
α  

M 15 days 20 days  25 days 30 days 

T 0.1853 0.1850 0.1845 0.1840 0.02 

TC 2298.74 2170.06 2040.81 1909.08 
T 0.1824 0.1820 0.1816 0.1810 0.04 

TC 2327.60 2198.79 2069.38 1937.48 
T 0.1796 0.1770 0.1780 0.1783 0.06 

TC 2355.79 2227.14 2097.29 1965.51 
T 0.1770 0.1767 0.1763 0.1758 0.08 
TC 2383.34 2254.26 2124.57 1992.35 

 
 
                                       Table 2: Effect of M and β  when 02.0=α , 1..0=γ  
 

 

 
β  

M 15 days 20 days  25 days 30 days 

T 0.1854 0.1850 0.1847 

Table 3: Effect of M and γ  when 02.0=α , 5.1=β  
 
γ  

M 15 days 20 days  25 days 30 days 

T 0.1854 0.1850 0.1847 0.1840 0.1 
TC 2298.74 2170.06 2075.17 1909.08 
T 0.1860 0.1857 0.1853 0.1846 0.3 
TC 2292.34 2163.68 2068.80 1902.75 
T 0.1867 0.1863 0.1860 0.1852 0.5 

TC 2285.90 2157.26 2062.41 1896.39 
T 0.1874 0.1870 0.1867 0.1860 0.7 
TC 2279.43 2150.81 2055.97 1890.00 

 
It is observed that the buyer’s total cost decreases with increases in the delay period for a fixed 
deterioration rate. This is because the buyer can earn interest by generating more revenue from the sold 
items. The deterioration of the units increases the buyer’s total inventory cost.  Increase in the shape 
parameter, i.e. increase in the deterioration rate with time, increases the cycle time of the buyer and 
decreases the total cost of an inventory system. The buyer can reduce his total cost by incorporating 
salvage value to the deteriorated units instead of considering it to be a total loss. 
 

0.1840 1.5 
TC 2298.74 2170.06 2075.17 1909.08 
T 0.1861 0.1858 0.1854 0.1847 1.7 
TC 2288.84 2160.20 2065.34 1899.30 
T 0.1867 0.1864 0.1860 0.1853 1.9 

TC 2282.32 2153.71 2058.87 1892.88 
T 0.1871 0.1868 0.1865 0.1858 2.1 
TC 2278.00 2149.41 2057.59 1888.63 
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7. CONCLUSIONS 
 
The economic order quantity for time dependent deteriorated units with associated salvage value when 
the supplier offers a credit period to the retailer to settle the account is analyzed in this study. The 
model is sensitive to deterioration rate ‘α ’ and a credit period ‘M ’. The retailer can keep an eye for 
low deterioration rate to reduce his total inventory cost. To reduce his total inventory cost, he can buy 
deteriorated units at a lower price and sell it off at the earliest. 
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           APPENDIX  
Figure 4.1   Flow – chart for optimal decision policy. 
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