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Abstract 
Recycled concrete aggregates (RCAs) and supplementary cementitious materials (SCMs) may substitute some cement and natural aggregates (NA) in 
concrete manufacturing. However, their effects on recycled aggregate concrete (RAC) compressive strength are difficult to model. Reactivity, silica, and 
alumina modulus were examined for cementitious materials' chemical complexity. Random Forest approaches were developed to predict and analyze 
RAC compressive strength. Even with RCAs and SCMs, the RF model accurately estimated concrete compressive strength. The Variable Importance 
(VI) research examined how input factors affected RAC compressive strength. VI indicated that silica fume contributes most to RAC compressive
strength, followed by cementitious materials' reactivity modulus, cement content, silica modulus, fine natural aggregate content, and coarse natural
aggregate dosage. The water dosage, water/binder ratio, and RCA content lower the RAC compressive strength. As a result, to highlight, the amount of 
SCM was not significant, but its nature was (i.e., hydraulic, silica pozzolanic, or alumina pozzolanic). 

Keywords: Random Forest algorithm; compressive strength; supplementary cementitious materials; recycled concrete aggregate; reactivity 
modulus; silica modulus; alumina modulus; sustainability. 

Modelación del impacto de los materiales cementantes 
suplementarios en la resistencia a compresión de los concretos con 

agregados reciclados - enfoque por bosques aleatorios 
Resumen 
Los agregados de concreto reciclado (ACR) y los materiales cementantes suplementarios (MCS) pueden sustituir parcialmente cemento y agregados 
naturales (NA) en la fabricación de concreto. Sin embargo, sus efectos sobre la resistencia a la compresión del concreto con agregados reciclados (CAR) 
son difíciles de modelar. Se examinaron los módulos de reactividad, sílice y alúmina para determinar la complejidad química de los materiales cementosos. 
Se desarrollaron enfoques de Random Forest para predecir y analizar la resistencia a la compresión de los CAR. Incluso con ACR y MCS, el modelo de 
RF estimó con precisión la resistencia a la compresión del concreto. El análisis de importancia de variable (IV) examinó cómo los factores de entrada 
afectaron a la resistencia a la compresión del RAC. IV indicó que el humo de sílice contribuye más a la resistencia a la compresión del CAR, seguido del 
módulo de reactividad de los materiales cementantes, el contenido de cemento, el módulo de sílice, el contenido de agregados naturales finos y la 
dosificación de agregados naturales gruesos. La dosificación de agua, la relación agua/cemento y el contenido de ACR reducen la resistencia a la 
compresión de CAR. Como resultado a destacar, la cantidad de MCS no fue significativa, pero sí su naturaleza (es decir, hidráulica, sílice puzolánica o 
alúmina puzolánica). 

Palabras clave: Algoritmo de bosques aleatorios; resistencia a la compresión; materiales cementantes suplementarios; agregados de 
concreto reciclado; módulo de reactividad; módulo de sílice; módulo de alúmina; sostenibilidad. 
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1. Introduction 
 

1.1 Recycled aggregate concrete definition, application and 
main challenges 

 
The construction and building material market remains 

dominated by concrete to this day, after becoming widely 
used since the turn of the 20th century [1]. Throughout most 
of the world, concrete is made using Portland cement as the 
major ingredient. During the past 20 years, Portland cement 
production has increased by three times (from 1.10 to 3.27 
billion tons). In 2030, the expansion of the construction 
industry will lead to a staggering 4,83 billion tonnes of 
cement being produced [2]. In consequence, concrete 
production will increase, requiring an increase in natural 
aggregate (NA) consumption, including fine and coarse 
aggregates, since the NA constitutes 60–75% of concrete 
production. According to estimates, NA consumption 
reached 48.3 billion tonnes in 2015 and has grown at a rate 
of more than 5% every five years [3]. The current growth 
rates are expected to lead to a doubling of NA demand within 
20 to 30 years [4]. The use of recycled aggregate (RA) from 
construction and demolition waste (CDW) can therefore 
conserve NA resources, reduce landfill demands, and 
contribute to a more sustainable built environment. Concrete 
produced by this process is referred to as RA concrete (RAC). 

Following World War II, demolition waste from 
construction was used to produce the first RAC. The 
bombardment of German and English cities during that time 
generated a tremendous amount of rubble and debris [5]. 
Globally, 40 billion tons of aggregate grain are produced as 
a result of a large number of development projects being 
undertaken throughout the world [6]. The CDW consists of 
metal, concrete, minerals, and wood, as well as other 
unsorted fractions and miscellaneous waste. In the last 25 
years, RAC has been extensively studied for its mechanical 
properties, durability, and structural performance. In general, 
the process of designing concrete mixes for RAC is the same 
as that used in conventional concrete [7]. A notable 
characteristic of recycled concrete aggregate (RCA) is that it 
is extremely water-absorbing, and therefore, it requires more 
water to be mixed into concrete. Additionally, Poon et al. [8] 
used scanning electron microscopy to examine the interfacial 
zone of RAC and conventional concrete. Their results 
showed that RAC contained predominantly loose and porous 
hydrate compositions, whereas conventional concrete 
consisted of dense hydrate compositions. Tam et al. [9] and 
Etxeberria [10] concluded that RAC microstructures were for 
the most part more complex than conventional concrete 
microstructures. RAC has two interfacial transition zones 
(ITZs): (i) one located between the old mortar matrix and the 
attached to the RCA (the former ITZ), and (ii) one located 
between the new mortar matrix and the RCA. RAC is 
susceptible to failure due to a weak link caused by the porous 
and cracked mortar. 

According to several research reports [11-13], RAC has a 
significantly lower elasticity modulus than conventional 
concrete (ranging between 15 and 45%). In general, with 

increasing RA content in RAC, its compressive strength will 
decrease [14-17]. The uniaxial compressive strength also 
decreases with an increase in RCA content [18]. In 
comparison with concrete produced with natural aggregates, 
RAC has approximately 81% compressive strength [19]. The 
low density in the transition zone between paste and 
aggregate plays a major role in the reduction of strength in 
RCA, but there are other characteristics of the recycled 
material that also contribute to this reduction [13]. Through 
the use of RCA, concrete properties can be improved in 
several ways, the most significant of which is the adoption of 
an extended curing cycle and the use of pozzolanic materials 
combined with an altered water-cement ratio [20]. Moreover, 
RAC concrete and conventional concrete provide 
comparable results in terms of uniaxial tensile strength [21]. 
In the study conducted by Li et al. [14], the researchers 
demonstrated that when mixing concrete, the proportions of 
cement and water can be adjusted fairly precisely to 
accomplish the targetted compressive strength (CS). This 
finding was corroborated by Buck's [22] experiments, which 
also demonstrated that RAC could be made stronger than the 
parent concrete that yields the RCA. Although RAC has a 
higher chloride ion permeability than conventional concrete 
[23], it still retains an acceptable resistance to chloride ion 
penetration [24, 25]. In the RAC, drying shrinkage increased 
with increased RCA replacement percentages and water-to-
cement ratios; however, it decreased when fly ash and 
superplasticizers were applied [26,27]. 

In recent years, RCA has been demonstrated to be a 
promising technique for adding sustainability characteristics 
to traditional concrete mixtures [28]. Several benefits can 
result from the use of RA rather than natural aggregates, 
including a reduction of production costs and the ability to 
ensure a high level of availability. In comparison with 
conventional concrete, the cost of replacing RA in 100, 50, 
and 30% of a fly ash cement composite was compared by 
Wang et al. [29]. Despite having 2% less strength than its 
target strength (27.2 MPa), the 30 and 50% fly ash RCA was 
15 and 26.5%, respectively, less expensive than conventional 
concrete. Although these savings may not seem significant, 
RA could be used to replace NA concrete by up to 100% [30]. 
Furthermore, the costs for the manufacture of cement 
composites are further reduced by accounting for the disposal 
income from construction waste 

Nevertheless, it is important to recognize that a major 
challenge lies in the perception of trustworthiness among 
users of these materials [31]. The environmental benefits of 
recycling concrete often outweigh the economic benefits of 
landfilling or disposing of it. Using this method will reduce 
pollution, transportation costs, and production costs of 
concrete, thereby reducing the consumption of natural 
resources. Since RCA originates from a wide variety of 
sources, its high degree of variability makes incorporating it 
into freshly cast concrete an extremely difficult process. The 
lack of specific guidelines regarding RCA specifications and 
their physical, chemical, and mechanical properties is another 
factor that needs to be addressed [32]. In concrete mixes 
containing RA, the negative chemical properties of the RA 
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can lead to deterioration during use, which can negatively 
affect the durability and performance of the concrete mix. As 
well, it is critical to pay attention to other concerns related to 
physical conditions, (e.g., size, type, angularity, and texture 
of RA) [33]. 

CDW can be recycled or reprocessed to replace a 
substantial proportion of construction materials in many 
developing countries. The problem is insufficient regulations 
and a lack of awareness of the advantages of these options. 
Developed countries are making efforts to promote the use of 
CDW globally. Therefore, it is likely that in the near future, 
RA derived from CDW will play a significant role in the 
commercial industry. The availability of landfill land is 
decreasing, and the aggregate demand for solid waste is 
approaching 40 billion tons per year. Due to this particular 
need, CDW can be viewed as a viable alternative to landfills. 
Nevertheless, research and development efforts will be 
required in order to find alternative materials that can be used 
for the production of concrete containing RA [34]. 

 
1.2 Random Forest models 

 
Random Forest (RF) algorithm is a collective learning 

method that involves inputting data into an ensemble and 
developing decision trees during the training process to 
determine a regression model [35,36]. Breiman [37] 
developed the method by combining bagging sampling [38] 
and random selection of features [39,40]. A decision tree 
based on controlled variation has been developed by 
combining these two methods. The RFs approach utilizes 
trees as the basis for determining the classification label for 
every unlabeled instance in the ensemble. In the past decade, 
RF has become increasingly relevant across almost all 
disciplines, leading to numerous applications in almost every 
field, and many more are still in development.  

The RFs method, for example, has been effectively 
utilized to model the properties of subsoils under a variety of 
conditions [41-44]. The effectiveness of this method has been 
demonstrated to be reasonable in predicting the behavior of 
various types of deep foundations [45-47]. A variety of 
construction management and engineering studies have also 
successfully applied the method in recent years [48-50]. This 
approach has also been successful in forecasting pavement 
material characteristics [51-53]. The modeling approach has 
been extensively used to model the characteristics of cement-
based materials during their fresh and hardened states for the 
past few decades [54-63]. 

 
1.3  Research objectives, and significance 

 
Despite its cost and carbon footprint advantages, RACs 

have not been used more in construction because of their 
inferior mechanical and durability properties. By including 
the appropriate SCMs, the harmful impacts of RCA may be 
mitigated in concrete. Owing to the vast chemical variety of 
SCMs and their combinations, material development 
research may need extensive testing, leading to costly 
experimental campaigns. This work provides a dependable 

RF model for predicting and evaluating the CS of concretes 
incorporating RCAs, even when SCMs are present. This 
approach is efficient for decreasing development costs and 
timelines for novel doses. 

 
2. Methodology 

 
2.1  Database 

 
2.1.1.  Data collection 

 
A total of 1181 dosages of RAC with and without SCMs, 

obtained from 116 literature sources, were gathered for use 
as train and test data for the model. The database mixture 
proportions encompassed a wide range of SCMs like silica 
fume, steel slag, fly ash, rice husk ash, and natural pozzolans, 
among others. Only those dosages with information on the 
oxide composition of the cement and all the cementitious 
materials that allow calculating the equivalent cementitious 
modulus of the concrete according to the studies by Xie and 
Visintin [64] were considered for the database. The reactivity 
of the cementitious materials was effectively assessed by 
those authors using a large experimental database. The 
moduli of critical oxides in any binder can be calculated 
based on their weight fractions, regardless of whether the 
binder is unary or blended [65]. In this study, the following 
cementitious indices were accordingly defined: (i) Modulus 
of reactivity [a RM value refers to the hydraulic reactivity of 
the binders], (ii) Silica modulus [SM, representing calcium 
silicate content in the binder (pozzolanic reactivity)], and (iii) 
Alumina modulus (AM, represents aluminate and ferrite 
phases in the binder (pozzolanic reactivity)]. Before 
calculating the aforementioned indices, the relative modules 
of each cementitious material must be determined. These 
indices are computed for each cementitious material i using 
the Eqs. given (1-3): 

 

𝑅𝑅𝑅𝑅𝑖𝑖 =
𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑅𝑅𝑀𝑀𝐶𝐶 + 𝐴𝐴𝑙𝑙2𝐶𝐶3

𝑆𝑆𝑆𝑆𝐶𝐶2
 (1) 

𝑆𝑆𝑅𝑅𝑖𝑖 =
𝑆𝑆𝑆𝑆𝐶𝐶2

𝐴𝐴𝑙𝑙2𝐶𝐶3 + 𝐹𝐹𝑒𝑒2𝐶𝐶3
 (2) 

𝐴𝐴𝑅𝑅𝑖𝑖 =
𝐴𝐴𝑙𝑙2𝐶𝐶3
𝐹𝐹𝑒𝑒2𝐶𝐶3

 (3) 

 
Where RMi is the reactivity modulus of cementitious 

material i and SMi and AMi are utilized to define the silica and 
alumina modulus of cementitious material i respectively. 

With the relative reactivity modulus, it is possible to 
compute the cementitious modulus using Eqs. (4-6): 

 
𝑅𝑅𝑅𝑅 = � 𝑅𝑅𝑅𝑅𝑖𝑖 × 𝑤𝑤𝑤𝑤𝑖𝑖

𝑛𝑛

𝑖𝑖=1
 (4) 

𝑆𝑆𝑅𝑅 = � 𝑆𝑆𝑅𝑅𝑖𝑖 × 𝑤𝑤𝑤𝑤𝑖𝑖
𝑛𝑛

𝑖𝑖=1
 (5) 

𝐴𝐴𝑅𝑅 = � 𝐴𝐴𝑅𝑅𝑖𝑖 × 𝑤𝑤𝑤𝑤𝑖𝑖
𝑛𝑛

𝑖𝑖=1
 (6) 
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Where n is the number of cementitious materials in the 
concrete dosage; and wri is the ratio by weight of 
cementitious material i to the sum by weight of all 
cementitious materials in the dosage. 

Therefore, the gathered input variables are as follows: (I1) 
cement dosage in kg/m3; (I2) silica fume dosage in kg/m3; (I3) 
SCMs - except silica fume - also in kg/m3; (I4) is the reactivity 
modulus (RM) as per Eq. (4); (I5) is the silica modulus (SM) as per 
Eq. (5); (I6) is the alumina modulus (AM) as per Eq. (6); (I7) 
represents the dosage of fine NA in kg/m3, while (I8) represents the 
dosage of fine RA; (I9) represents the dosage of coarse NA in 
kg/m3, and (I10) that of coarse RA; (I11) represents the water 
dosage in kg/m3; (I12) represents the superplasticizer content in 
kg/m3 (HRWR); (I13) represents the aggregate's maximum size 
(MSA) in mm; and (I14) denotes the water–binder ratio (w/b). 

 
2.1.2.  Outliers 

 
The term outlier refers to a statistically significant data 

point that deviates significantly from what is expected, thus 
revealing an anomaly [66]. An outlier may be discovered in 
a data set as a result of a mistake made during the experiment, 
a problem with a measurement variable, or a signal that was 
detected in newly acquired data. Although outliers can 
provide insight into exciting possibilities, their presence can 
present serious challenges to statistical models and analysis, 
particularly when large datasets are involved [67,68]. There 
are several methods available for identifying outliers, 
depending on the type of data being analyzed. These methods 
can also be used for detecting the emergence of new 
phenomena as well as detecting anomalous behavior. It is 
possible to identify outliers using several methods, including 
Chauvenet's criteria, Grubb's test, ...etc., which rely on 
averages and standard deviations and assume the data is 
normally distributed [69]. 

Typically, outliers are the first factor to be addressed in a 
regression analysis, which can greatly influence the outcome 
[70]. The descriptive statistics applied to the variables in this 
study have been applied in order to detect any outliers among 
them, in accordance with [71,72]. The data were 
preprocessed using bivariate boxplots and Cook's distances 
in order to identify errors, outliers, and odd distributions. 
With the use of 2D patterns of graphed data in conjunction 
with robust methods and the use of ellipses to indicate 
possible errors, a bivariate boxplot can detect outliers as well 
as inconsistent data [73]. For this approach to be effective, it 
must, however, be complemented by a critical analysis of the 
data. It is possible that bivariate boxplots, which display data 
in two dimensions, would have portrayed some points as 
suspicious, whereas the rest might have been viewed as 
clustered, thus hiding the patterns that are actually present in 
the data [72]. The database was eventually cleaned up by 
removing 347 outliers, leaving 834 observations that could 
be used as training and validation data.Table 1 contains the 
statistical information of the database after the detection and 
treatment of outliers. 

 
 

Table 1. 
Statistical information of resulting database after outlier’s treatment. 

Input variable Maximum Minimum Average Standard 
deviation 

I1[cement (kg/m3)] 578.00 117.00 345.12 87.52 
I2 [SF (kg/m3)] 35.00 0.00 0.64 3.83 
I3 [SCM (kg/m3)] 280.00 0.00 54.52 71.54 
I4 [RM] 4.82 1.21 3.17 0.69 
I5 [SM] 19.52 0.69 2.63 1.79 
I6 [AM] 10.98 0.22 2.46 1.51 
I7 [fine NA (kg/m3)] 1066.00 180.00 678.24 163.84 
I8 [fine RA (kg/m3)]  611.25 0.00 28.64 94.60 
I9 [coarse NA (kg/m3)] 1470.00 0.00 610.69 442.97 
I10 [coarse RA (kg/m3)] 1280.00 0.00 424.15 395.27 
I11[water (kg/m3)] 277.00 97.00 187.41 27.78 
I12[HRWR (kg/m3)] 2.50 0.00 0.37 0.58 
I13[MSA (mm)] 31.50 5.00 18.94 4.62 
I14 [w/b] 0.75 0.25 0.48 0.08 
Compressive strength 
(MPa) 80.20 17.00 40.92 12.16 

Source: The authors. 
 
 

2.1.3.  Data division: train data and test data subsets 
 
We divided the data set randomly into two subsets for the 

purpose of training and evaluating the random forest 
prediction models. After outliers were removed, the training 
dataset contained 75% of the available data, whereas the test 
dataset contained the remaining 25%. Particular effort was 
made to ensure that all possible combinations of features and 
input variables were accounted for in the database before the 
division was also included in the resultant subsets. During the 
development of this algorithm, it was necessary to implement 
a verification filter in order to ensure this condition. During 
the random division of subsets, if any of the aforementioned 
criteria are not satisfied, the division is not considered 
legitimate, and a new division is performed until the 
condition is satisfied once again. 

 
2.2  Classification and regression trees (CART) 

 
Breiman et al. [74] introduced classification and 

regression trees (CART) in 1984, an innovative data analysis 
technique based on computational modeling. CART, 
sometimes known as a decision tree, has been used for 
classification and regression issues. A CART model 
conceptually resembles an inverted tree. This paradigm has 
both terminal and non-terminal nodes [75]. The solution to a 
query with two alternative answers should be a non-terminal 
node that indicates the direction in which two derivative 
nodes will progress. 

The terminal nodes, on the other hand, offer a final 
forecast [75]. After the strategy has been modified, predicting 
a reaction is straightforward. With a given set of input 
variable values, following the tree's path from the root to the 
terminal nodes is sufficient, answering the questions 
presented at the non-terminal nodes up to the predicted 
response value of the response [75]. If the criteria at the non-
terminal node is met, the CART model must go to the node 
on the left; otherwise, it must proceed to the node on the right. 
According to Genuer and Poggi [75], a CART model entails 
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dividing a space into rational and binary sections, then 
selecting the best out of both of these divisions that will 
produce the desired response. Thus, two phases are required 
to create this prediction technique. Initial construction of a 
comprehensive CART model must include all terminal and 
non-terminal nodes and their respective link routes. Then, it 
is required to prune the whole CART strategy in order to 
generate optimum subtrees which is picked as the best 
suitable tree that ensures there is no model overfitting 
concerns. See references [74-75] for further information on 
the CART algorithm's technique. 

 
2.3  Random forest prediction models 

 
A Random Forest technique is a machine learning 

paradigm that integrates numerous tree-prediction models, 
according to Dietterich [76]. In a regression problem, the 
ensemble technique estimates the response based on the 
midpoint of the forecasts from all tree models. The ensemble 
approach, on the other hand, utilizes a simple majority to solve 
a classification problem. Since the study given in this 
publication relies on regression methods, the following 
explanation focuses on this kind of analysis. The Random 
Forest regression model consists of m tree-based models 
{𝑓𝑓(. ,𝛩𝛩1), … , 𝑓𝑓(. ,𝛩𝛩𝑚𝑚)}. Each CART model is trained using a 
distinct subset of the total train data [37]. In order to adapt the 
tree-based techniques, a bootstrapping algorithm picks many 
random subgroups of data of the same size. As a result, the 
remaining dataset is not used for this model since each CART 
model is trained using just a subset of the complete data. 
Hence, the out-of-bag sample (OOB) data subset might be 
defined as the fraction of data not used to train a CART [55]. 

Furthermore, it is vital to specify the two characteristics that 
must be satisfied for the ensemble technique to be more 
successful than CART methods used individually. The first 
criterion is that the performance of any tree model must surpass 
that of random predictors. The second criterion is that each of the 
techniques included in the ensembled model must be distinct, i.e., 
there must be no connection between their mistakes [77]. As seen 
in Eq. (7), the forecasting approach employed by the Random 
Forest regression (𝑓𝑓𝑅𝑅𝑅𝑅) can be computed as the average value of 
the forecastings of all trees that compound the ensembled model. 

 

𝑓𝑓𝑅𝑅𝑅𝑅(𝑥𝑥) =
1
𝑚𝑚�𝑓𝑓(𝑥𝑥,𝛩𝛩𝑖𝑖)

𝑚𝑚

𝑖𝑖=1

 (7) 

 
where 𝑓𝑓(𝑥𝑥,𝛩𝛩𝑖𝑖) is the forecast of the response performed 

by the i regression tree approach, being 𝛩𝛩𝑖𝑖  the bootstrap 
sampling utilized to fit the individual model. 

According to Oshiro et al. [78], increasing the number of 
trees does not guarantee that the Random Forest method 
would outperform the previous one (where the number of 
trees was lower), and increasing the number of trees by a 
factor of two is illogical. Hence, the Random Forest method 
takes into consideration an optimal number of CART models 

[63,78]. References [37,63] can be consulted for a deeper 
knowledge of these machine-learning methodologies.  

Using fourteen input variables, the current study proposes 
a Random Forest regression model designed to predict the 
compressive strength of RAC, even when utilizing SCMs. 
Table 1 contains the definitions of the considered input 
variables. 

 
2.4  Performance metrics of the Random Forest approach 

 
Using a cross-validation process, the Random Forest 

regression models were evaluated on the testing subset and 
modified using the test data. This sort of training aids in 
avoiding the overfitting and bias difficulties that these 
machine learning strategies often encounter [79]. In addition, 
to confirm the validity of the findings, this extra validation 
process and six statistical performance measures were 
applied to each of the generated models. Viz., the root of the 
mean squared error (RMSE), the mean absolute error (MAE), 
the normalized mean bias error (NMBE), the ratio of the 
RMSE to the standard deviation of measured data (RSR), the 
Nash coefficient of efficiency (E), and the coefficient of 
determination (R2), whose formulations are presented in Eqs. 
(8-13) respectively. The use of multi-fitness criteria to ensure 
the correctness of the suggested techniques is made possible 
by the combination of different statistical indices that may 
overcome some of the limits of each individual one [79]. 

 

𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅 = �∑ (𝐶𝐶𝑖𝑖 − 𝐶𝐶�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛  (8) 

𝑅𝑅𝐴𝐴𝑅𝑅 =
1
𝑛𝑛�

|𝐶𝐶𝑖𝑖 − 𝐶𝐶�𝑖𝑖|
𝑛𝑛

𝑖𝑖=1

 (9) 

𝑁𝑁𝑅𝑅𝑁𝑁𝑅𝑅(%) =
1
𝑛𝑛∑ (𝐶𝐶𝑖𝑖 − 𝐶𝐶�𝑖𝑖)𝑛𝑛

𝑖𝑖=1

𝐶𝐶�𝑖𝑖
 × 100 (10) 

𝑅𝑅𝑆𝑆𝑅𝑅 = �
𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅

1
𝑛𝑛∑ (𝐶𝐶𝑖𝑖 − 𝐶𝐶�𝑖𝑖)2𝑛𝑛

𝑖𝑖=1

 (11) 

𝑅𝑅 =
∑ (𝐶𝐶𝑖𝑖 − 𝐶𝐶�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

∑ (𝐶𝐶𝑖𝑖 − 𝐶𝐶�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

 (12) 

𝑅𝑅2 = 1 −
∑ (𝐶𝐶𝑖𝑖 − 𝐶𝐶�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1
∑ (𝐶𝐶�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

 (13) 

 
being a database's real value of the dependant variable; 

Whereas ā represents the mean of the answers to the data, â 
is the result of the Random Forest regression method, and n 
is the total number of observations. 

 
2.5  Variable importance in Random Forest approaches 

 
With the Random Forest method, one approach to 

determine the importance of a variable is to observe how 
much the model's goodness-of-fit reduces if the variable is 
removed [37]. Since that each tree-based model has its own 
OOB data subset, this may be used to determine the 
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significance of a certain input component. Specifically, the 
OOB predicting performance is calculated for each particular 
CART technique. The OOB input variable is then randomly 
shuffled while maintaining the significance of the other 
components. The forecast accuracy decline resulting from the 
rearranged data is then calculated. Thus, the estimation of the 
factor significance of the j input component in the i CART 
method may be estimated as shown in Eq. (14): 

 
𝐼𝐼𝑗𝑗,𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑒𝑒 �𝑓𝑓(𝑥𝑥,𝛩𝛩𝑖𝑖)� − 𝑚𝑚𝑚𝑚𝑒𝑒 �𝑓𝑓�𝑥𝑥𝑗𝑗 ,𝐶𝐶𝐶𝐶𝑁𝑁𝑖𝑖�� (14) 

 
being mse the mean squared error of the forecasting, and 

𝑓𝑓(𝑥𝑥𝑗𝑗,𝐶𝐶𝐶𝐶𝑁𝑁𝑖𝑖) represents the forecasting estimated by the individual 
tree-based regression on the OOBi data subset, removing the factor j. 

In the end, the j input's variable importance metrics may 
be calculated for the Random Forest regression by 
determining the average variable relevance of each tree 
model, as shown in Eq. (15): 

 

𝐼𝐼𝑗𝑗,𝑅𝑅𝑅𝑅 =
1
𝑚𝑚�𝐼𝐼𝑗𝑗,𝑖𝑖

𝑚𝑚

𝑖𝑖=1

 (15) 

 
where Ij,RF represents the importance of the input variable j on 

the considered response as per the ensembled Random Forest 
regression approach, Ij,i represents the importante of that input 
variable according to the individual tree-based model i, and m is 
the total number of trees in the Random Forest model. 

 
3. Results and discussions 

 
3.1  Random forest approaches 

 
In this research, the Random Forest regression models 

were made with the help of the R statistical and programming 
language [80] and the randomForest package [75]. When the 
models were being trained, a limit of 1,000 CARTs per model 
was considered. The number of trees that led to the minor 
RMSE was used was chosen on the test data subset, as 
presented in Fig. 1. According to that analysis, a number of 
563 CART models was selected for the RF approach.  

Fig. 2 shows the first CART individual regression model for 
the Random Forest method to predict the concrete compressive 
strength. 

The results of the performance metrics measured in both 
data subsets is presented in Table 2. Moreover, the regression 
plot is put forward in Fig. 3. From the analysis of these 
results, it can be concluded the good efficiency of the model 
in prediction the CS of RAC even with SCMs. 

 

 
Figure 1. Measure on the RMSE on the test subset versus the number of 
CART approaches in the RF model.  
Source: The authors 

 
Figure 2. First of the 563 CART models that from the RF approach.  
Source: The authors 

 
 

Table 2. 
Performance metrics of the RF regression model. 

Subset RMSE MAE NMBE RSR E R2 
Train 3.548 2.047 0.424% 0.292 0.915 0.919 
Test 3.846 2.869 -0.397% 0.317 0.899 0.901 
Source: The authors. 

 
 

 
Figure 3. RF regression plot on both subsets (i.e., train and test).  
Source: The authors 

 
As can be appreciated in Fig. 3 and Table 2, results on 

train and test data subsets are similar, which points out the 
good performance of the model regarding overfitting [59,72]. 

 
3.2  Variable importance findings 

 
Fig. 4 present the results of the Variable Importance (VI) 

in RF approach. The correlation between the input factors 
and the compressive strength of the RAC was examined in 
this instance in order to gain insight into their relationship. 
The study found that, in that order, silica fume (I2), RM (I4), 
and cement dosage (I1) had the most significant influence on 
the result. Silica fume is known to have significant 
pozzolanic reactivity due to its tiny particle size (about 150 
nm) and high amorphous SiO2 concentration. It forms a CSH 
gel when it reacts with the pore solution's Ca(OH)2. The 
increase in CSH leads to the refining of the pore structure of  
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Figure 4. RF variable importance findings.  
Source: The authors 

 
 

the cementitious paste. This modification contributes to the 
enhancement of concrete's mechanical characteristics, 
particularly its CS [81]. RM is the second most influential 
parameter on the CS of concrete. Its reactivity is connected 
to the cement dosage, the most important contributor to this 
modulus. Moreover, certain SCMs with a high CaO 
concentration, such as blast furnace slag and type C fly ash, 
may create cementitious products, enhancing the mechanical 
properties of the cement paste and the concrete [82]. 
Researchers determined that adding cement or SCMs with 
high hydraulic reactivity [83] is a good strategy to mitigate 
the resistance losses caused by using recycled aggregates, 
hence validating the VI findings. 

Regarding the cement content (I1), it is well known that 
cement is the principal source of hydration products that are 
responsible for the increased density and strength, even when 
RCAs are used [84]. 

As per [85], some other RAC features have a significant 
beneficial effect on the reaction of concrete to compressive 
stresses. These variables include silica modulus (I5), coarse 
NA content (I9), fine NA content (I8), SCMs excluding silica 
fume (I3), and superplasticizer dose (I12). Supplementary 
cementitious materials with high silicon and aluminum 
content, such as type F fly ash, recycled glass powder, rice 
husk ash, and metakaolin, possess pozzolanic properties. It 
has been demonstrated that in adequate proportions, they 
contribute to the increase in strength, particularly at advanced 
ages (e.g., after 56 days of curing), as they can react with the 
water and calcium hydroxide to produce calcium silicate 
hydrates (CSH) or calcium (CASH). Hydration products 
contribute to the cement matrix's densification and concrete's 
mechanical performance at advanced ages [17]. Certain 
SCMs have hydraulic characteristics that enable them to react 
with water to form cement-like hydration products [86]. The 
VI analysis demonstrates that these SCMs contribute to the 
RM index (I4). The research revealed, however, that the 
content of SCMs (I3) seems to be of minimal significance, 
indicating that it is not the dosage of SCMs that is significant 
but rather their nature. Hence, if these SCMs have hydraulic 
(recognized by the RM index) or pozzolanic (identified by 

the SM index) capabilities on the siliceous side, the impact 
will be favorable. Nevertheless, it will be exposed later that 
the impact will be notably negative if the pozzolanic 
characteristics are on the aluminum side (as determined by 
the AM modulus). 

Research [87,88] have indicated that the proportion of 
NAs replaced with RCAs reduces the compressive strength 
of concretes with comparable w/b ratios. This is mostly due 
to the higher water demand required to produce concrete 
workability and adequate hydration of cement paste and/or 
cementitious components. RCAs often have greater porosity 
than NAs and may retain residues of mortar and carbonated 
hydration products, resulting in lower effective bonding of 
cementitious elements in the new concrete and, as a result, 
fewer nucleation sites for freshly created CSH or CASH. The 
study's findings suggest that superplasticizers are essential 
for controlling the increasing demand for water in recycled 
aggregate concrete mixes. Hence, using superplasticizers 
favors the compressive strength (CS) of concrete, including 
RCAs, by decreasing the needed water content for such 
mixes, enhancing CS. When paired with the use of SCMs, its 
beneficial impact is supposed to compensate for the drop in 
CS caused by the use of RCAs [89-91]. However, the 
significance of the SCM appears to be limited in Fig. 4. 
Nevertheless, the impact of the superplasticizer (I12) on CS 
seems to be restricted and perhaps obscured by the impacts 
and interactions of the cement content (I1) and water (I11). It 
is important to note that superplasticizers are supposed to 
substantially affect the cement–water system [92]. The water 
content (I11), the w/b ratio (I14), and the coarse RA are 
among the most important input factors that negatively 
impact the CS of concrete containing RCAs [85]. Hence its 
importance, as observed in Fig. 4, where it can be seen that 
these factors occupy the fifth and sixth place in relevance. 
The negative impact of these factors on the compression 
response of RAC is consistent with the current literature, 
which demonstrates that water and the w/b ratio have a well-
known detrimental effect on the mechanical resistance of 
concrete. In addition, several studies have shown that using 
RCAs reduces the CS of concrete proportionally to the 
replacement volume due to the great porosity, low resistance, 
and high-water absorption of these recycled aggregates. 
Hence, it is possible to deduce that recycled aggregates 
enhance the porosity of concrete, leading to a lower density 
and CS [88, 93-95]. 

Fine RA (I8), AM modulus of cementitious materials (I6), 
and MSA (I13) have a reduced effect on the CS of RAC 
concrete. Recent research has proved that these factors are 
harmful but not especially relevant for CS [85]. The impact 
of SCMs with a high aluminum content on RAC performance 
is particularly intriguing. Despite their high pozzolanic 
reactivity index, these components have a detrimental effect 
on the compressive strength of RAC concretes, according to 
the VI findings. Many mechanisms may explain this 
phenomenon, including the production of CASH-type gel 
compounds and the decrease in pH of the pore solution owing 
to the high aluminosilicate concentration. Even though this 
reaction initially enhances mechanical qualities, it is 
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detrimental in the long run [96]. In addition, several research 
[96,97] observed that the chemical interaction of reactive 
SiO2 and Al2O3 concentration in SCMs with a high AM 
modulus increases the temperature during the cement's 
hydration process, resulting in decreased flowability, which 
could negatively affect the pouring process and the final 
mechanical performance of the concrete. In addition, several 
investigations have shown that more water or superplasticizer 
is necessary to obtain the appropriate workability when 
employing SCMs with a high alumina modulus [98-102]. 
Considering the unique situation of RCAs regarding porosity 
and water demand, the higher water needs of SCMs with high 
AM values may explain the findings reported in Fig. 4. 

The CS of concrete made only with NAs is influenced by 
the maximum size of the aggregate (I13). Studies have shown 
that smaller aggregate sizes require larger amounts of cement 
paste to achieve a given resistance [59, 103]. Therefore, it can 
be concluded that a larger MSA should positively influence 
the CS of concrete. However, in the case of RAC, MSA (I13) 
has a noticeably negative impact on CS. The reason for this 
change in trend can be attributed to the fact that the thickness 
of the interstitial transition zone is directly proportional to the 
aggregate size [103], and in concrete with recycled 
aggregate, this zone is even more porous than in concrete 
made with only NAs, which impairs the CS of the concrete 
[104]. Hence, as the mixtures in the database combined NA 
and RCA, this factor appears to have a little significance as 
per Fig. 4. 

 
4. Conclusions 

 
To predict the CS of concrete with RCA and/or SCMs, 

this study analyzed the feasibility of using random forest 
regression. In light of the findings of this study, the following 
conclusions can be drawn: 
1. The suggested RF approach with 563 CART models’ 

data presents the lowest RSME on the test data subset. 
This justifies its selection. 

2. Using different performance metrics, such as RMSE, 
MAE, NMBE, RSR, E, and R2, gave unbiased 
information that showed how well the proposed RF 
regression approach worked. Hence, can be concluded 
that the RF model is a good way to predict the 
compressive strength of concrete with RCAs and/or 
SCMs. 

3. The results of the VI analysis show that the content of 
SCM does not have much of an effect on the 
compressive strength of RAC. It is more affected by the 
properties of the SCMs, such as whether they are 
hydraulic, pozzolanic on the silicon side, or pozzolanic 
on the aluminum side. 

4. The findings of the VI analysis were consistent with 
many international research studies in the field, 
demonstrating the validity of the model from a scientific 
perspective. 

The study's outcomes are expected to hasten the 
development of environmentally friendly concrete products, 

addressing negative environmental impacts in the concrete 
industry. 

In future research, exploring additional AI tools like 
Bootstrapping systems could be valuable. These systems 
offer sensitivity analysis through partial dependency graphs, 
providing insights into how different input variables impact 
the analyzed concrete's response, enhancing our 
understanding of its performance. 

Also, future work should prioritize experimental 
validations of AI-derived results. This step will ensure the 
reliability and robustness of AI-based findings. 
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