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Abstract 
The traveling salesman problem (TSP) is the canonical combinatorial optimization problem famous throughout literature.  There exists an 
objective function associated with every feasible solution.  However, the increase in the number of possible solutions makes this an NP-
Hard problem.  We show that the central limit theorem (CLT) applies to the problem.  We then conduct extensive computational testing to 
show that the cycle lengths tend to a normal distribution as the problem grows large.  When the size of the TSP problem exceeds 
computational power, better understanding solution distributions allows us to save resources.  This is a non-trivial result as understanding 
solution distributions in huge TSP problems helps us to minimize computational effort that may not lead to significantly better results. 
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Corrección de interpretaciones erróneas sobre la distribución de 
longitudes de solución factibles en el problema del viajante 

 
Resumen 
El problema del agente viajero (“Traveling Salesman Problem” o TSP) es el problema canónico de optimización combinatoria usando en 
la literatura. Existe una función objetivo asociada con cada solución factible. Sin embargo, la tasa de aumento en el número de soluciones 
posibles hace que este sea un problema NP Difícil. Mostramos que el teorema del límite central (Central Limit Theorem o CLT) se aplica 
al problema y luego realizamos pruebas computacionales extensas para mostrar que las longitudes de los ciclos tienden a una distribución 
normal a medida que el tamaño del problema crece. Cuando el tamaño del problema TSP excede el poder computacional, una mejor 
comprensión de las distribuciones de soluciones nos permite ahorrar recursos. Este es un resultado no trivial, ya que comprender las 
distribuciones de soluciones en problemas TSP enormes nos ayuda a minimizar el esfuerzo computacional que puede no conducir a 
resultados significativamente mejores. 
 
Palabras clave: problema del viajante de comercio; accesorios de distribución; teoría de grafos. 

 
 
 

1 Introduction 
 
Our contribution is to dispel two widely held but incorrect 

perceptions regarding the Traveling Salesman Problem 
(TSP) in the Operations Research field.  The first is that the 
set of feasible TSP solution objective function values is 
proven to not be Normally distributed.  This assumption 
derives from the failure to prove that the cycle lengths tend 
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to normality in the general case using analytic means.  A 
second misnomer is that feasible objective function values 
have a Weibull distribution.  That inference derives from a 
misreading of Golden and a misinterpretation of extremal 
value theory [1].   

The Weibull does work well to model the distribution of 
extremal values, but not necessarily entire populations.  
Derigs recounts Golden’s work and then extends the 
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application of the Weibull to estimate minima in problems 
with few locations [2].  A careful application of analytic 
methods enables us to construct the argument that the lengths 
of randomly generated feasible TSP solutions do indeed tend 
to normal distributions, as would be expected in light of the 
Central Limit Theorem.   

This research corrects at least two widely held but 
incorrect perceptions in the operations research field.  One is 
that the set of feasible traveling salesman problem (TSP) 
solutions objective function values is proven to not be 
normally distributed.  This assumption derives from the 
failure to prove that the cycle lengths tend to normality in the 
general (including one-dimensional) case using analytic 
means.  A second misnomer is that feasible objective 
function values have a Weibull distribution.  That inference 
derives from a misreading of Golden as well as a 
misinterpretation of extremal value theory [1].  The Weibull 
does work well to model the distribution of extreme values, 
but not necessarily entire populations.  Derigs recounts 
Golden’s work and then extends the application of the 
Weibull to estimate minima in problems with few locations 
[2].  A careful application of analytic methods enables us to 
construct the argument that the lengths of randomly 
generated feasible TSP solutions do indeed tend to normal 
distributions as would be expected in light of the Central 
Limit Theorem. 

The TSP is the best-known combinatorial optimization 
problem.  While there are several versions of this problem, 
we consider the simplest.  Here, the objective of the problem 
is to create a minimum length round trip through a set of 
locations.  In its most common form, (1) the locations exist 
in a bounded space in R2; and (2) the distances between 
locations are calculated using a Euclidean metric. 

The problem has historical precedent predating its 
popularization among academics [3–6].  Extensive histories 
of the problem are found in literature [7, 8].  The problem 
continues to influence researchers in fields ranging from 
computational geometry [9,10] to statistical mechanics 
[11,12] 

Beardwood et al.is a seminal work that strongly 
influenced later researchers’ understanding of the problem 
[13,14].  Their main contribution was to apply analytic rigor 
to the TSP.  They showed that there exists a limit to the rate 
of increase in the length (in the sense of Lebesgue measure) 
of cycles as the number of vertices in a problem increases.  
This relationship is usually reported as lim

𝑁𝑁→∞

𝐿𝐿𝐸𝐸
𝑁𝑁1−1/𝑑𝑑 = 𝛽𝛽𝐸𝐸(𝑑𝑑); 

the rate of increase in length of a cycle through “many” points 
approaches a constant value. 

Beardwood asserts that the lengths of random cycles 
through a point set in R1 are not asymptotically normal in all 
cases [13].  However, the behavior in R1 is not the same as in 
Rk where k > 1.  On account of this, they declared that they 
failed to prove that cycle lengths are not provably normal in 
the general case.  They stated that conditions for convergence 
to the Normal distribution exist in the special case where C = 
E while E is the set of points and C is a closed region of unit 
measure.  The problems we address exist in R2. 

Golden noted that an estimate on lower bounds on TSP 
solution values could be obtained using a Weibull 
distribution [1].  Derigs extended that work to place bounds 

on a broader set of combinatorial optimization problems [15].  
Other researchers reported the influence of Golden’s work 
[16–18].  The Weibull distribution does have properties that 
would make it attractive for use in modeling feasible TSP 
solution values.  First, it can be used to model distributions 
with specific lower values.  Second, its parametrization 
supports multiple distribution shapes, such as the “bell 
shape” that we find during our computational 
experimentation. 

Beardwood et al. cited that the probabilistic nature of 
locations in the data set could cause cycle lengths to not 
converge [13].  For instance, a point to be visited could exist 
at some position with some probability.  We assert, however, 
that this concern does not apply to the set of locations in the 
test TSP data sets.  The locations for the problem sets are 
given.  Once the set of locations to be visited is fixed, there 
is no longer a question of the probable location of any given 
location.  While most applications focus on exact solutions to 
symmetric TSP instances, recent work exists on “good 
enough” solutions [19].  Similarly, research has been 
published on finding maximum-length TSP cycles or as 
Barvinok [2007] writes, “…known informally as the “taxicab 
ripoff problem” [20]. 

We show, both through analysis and computational 
results, that cycle lengths for feasible TSP solutions tend to 
follow a Normal distribution as the problem size grows large.  
Other authors have alluded to this behavior but have not 
published computational evidence to support or disprove the 
tendency [7,21].  Consequently, research on potential 
opportunities to exploit the statistical properties of cycle 
lengths has gone undone. 

 
2 Research Objectives and Analytic Basis 

 
Our purpose is to show that (1) TSP objective function 

values can be expressed as random variables; (2) the Central 
Limit Theorem can be applied to TSP cycle lengths; and (3) 
computational experimentation supports the hypothesis that 
cycle lengths tend to a normal distribution as the problem size 
increases.  Research on the TSP is central to the fields of 
operations research, theoretical computer science, 
combinatorics, and graph theory.   

While there is a great deal of commonality in the 
terminology used in these fields, there are also some 
differences.  We have tried to reduce any confusion that may 
arise from the differing backgrounds of readers.  We use both 
the terms “vertex” and “location.” In general, “vertex” is used 
when the context of the passage derives from graph theoretic 
sources.  The terms “distance” and “length” refer to a 
Lebesgue metric rather than the number of edges transited as 
is common in graph theory. 

Definition 2.1 A walk is a nonempty sequence of edges 
(uv, vw, . . .) such that the tail of an edge is the head of the 
next edge if the sequence contains more than one edge. 

Definition 2.2 A closed walk is a walk such that the 
number of edges equals the number of vertices and the degree 
of each vertex is 2. 

Definition 2.3 A cycle is a closed walk (v1, v2, . . . , vn, ∀ 
n ≥ 3), in which then points vi are distinct [22]. 

Definition 2.4 A permutation is “The arrangement of 
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different objects into a linear order using each object exactly 
once” [23]. 

Lemma 2.1 A cycle can be constructed from a 
permutation of the vertices of Kn. 

A random variable is a variable quantity whose values 
depend on chance and for which a distribution function of 
probabilities has been defined [24].  Similarly, a function 
defined on a sample space is called a random variable [2].  
Thus, the distance between randomly generated locations is 
itself a random variable.  The Central Limit Theorem states 
that sums of Independent Identically Distributed (IID) 
random variables with finite variance approach a Normal 
distribution as the number of random variables (RVs) grows 
large [25].  As Hogg and Tanis state: “Given a random 
experiment with an outcome space S, a function X that 
assigns one and only one real number X(s) = x to each element 
s in S is called a random variable [26].  The space of X is the 
set of real numbers, where S{x : X (s) = x, s ∈ S}, where s ∈ 
S means that the element s belongs to the set S.” 

The position of each vertex in the tour is dictated by a 
random number associated with that particular vertex as will 
be shown in Section 3.  As the traveler transits the cycle, the 
distance between two successive vertices (say the first and 
second vertices visited) is a function on two random variables 
(the vertices).  In this case, the distance between the each 
successive pair of vertices is a random variable.  The total 
distance traveled is the sum along the respective edges the 
traveler transits in a cycle. 

Lemma 2.2 The distance between two locations having 
finite coordinates is finite.  If we assume the lemma is false, 
then one of the end points must be infinitely far from the 
other.  But each location has finite coordinates.  Since the 
difference between finite numbers is finite, the distance 
between the points cannot be infinite.  This is a contradiction.  
Thus the lemma is proven. 

Lemma 2.3 The variance of the distances between 
locations having finite coordinates is finite.  The sum of 
finitely many finite quantities is finite.    Here we define 
variance as 𝜎𝜎2 =   ∑ (𝜇𝜇−𝑥𝑥𝑖𝑖)

𝑛𝑛
𝑖𝑖

2

𝑛𝑛
 where ,  𝜇𝜇 = ∑ 𝑥𝑥𝑖𝑖

𝑛𝑛
𝑖𝑖=1
𝑛𝑛

.  Thus, µ 
must be finite.  The definition of variance is a squared sum of 
finitely many finite quantities.  Therefore, the variance of the 
distances between locations, σ2, is finite 

 
3 Methodology 

 
While the usual objective of the problem is to find the 

minimum length cycle through the locations, a feasible 
solution can be derived from any ordered list of locations 
[27].  The cycle length is the sum of the distances between 
each location in the round trip that constitutes the cycle.  
Assuming that the locations are chosen randomly, the cycle 
length is the sum of random variables. 

We now show how to generate a cycle whose edges are 
constructed from IID random variables.  The methods used 
coincidental similarity to that of Tercariol et al. but were 
developed independently [27].  The weight for any arc in this 
case is the Euclidean distance between the arc endpoints. 

To generate a random cycle: let there be a cycle along the 
elements of the newly created ordering of Pr. 

The Euclidean distance between successive vertices in the 

new list is a random variable.  Each element in v exists at a 
specified location and is addressed using Cartesian 
coordinates.  Therefore, the distance between any two 
elements is finite.  Since every element in the set of distances 
is finite, the variance of the distances must also be finite in 
the strictly numerical sense.  It is well to remember that the 
TSPs we consider exist in the real world and that we treat the 
subject in an engineering context rather than in a solely 
abstract mathematical space.  In the engineering sense it 
makes no sense to consider vertices located infinitely distant. 

Lemma 3.1 A cycle constructed as shown above is a 
sequence of IIDs with finite mean and variance.  There is a 
bijection between each location and a uniformly distributed 
random number.  That random number is a random variable.  
In each instance the generated random comes from the same 
distribution without regard to any possible previous trial.  
Therefore, these random variables are IID.  The locations are 
then sorted in order by the generated random.  The resulting 
ordering is a random variable.  This ordered list constitutes 
a permutation and thus defines a cycle. 

 
 

Algorithm 1 Random Cycle Generation 
1: Where, P is a set of indices mapped to locations (A) 
2: R : P → A ∋ A U (0, 1). R is a bijection on P 
3: Input: Generate R−1 as a mapping of the elements of A 

: P ∋ |A| = |P | 
4: Sort: A to produce an ordered list, Ar 
5: Condition: let Pr ⊂ P : A 
6: Output: Generate A as a randomized ordering of 

locations where A maps to P 
7: Result: The position in which every element of P 

appears in Pr is the result of a random process. 
 
 
The distances between any pair of locations is finite by 

Lemma 2.2.  The variance of the distances is finite by Lemma 
2.3.  Thus is constructed a cycle composed of IID random 
variables with finite mean and variance. 

Theorem 3.1 The length of cycles created as above tend 
to a Normal distribution as the number of locations grows 
large without bound. 

Proof 3.1 The Central Limit Theorem states that sums of 
Independent Identically Distributed (IID) random variables 
with finite variance approach a Normal distribution as the 
number of random variables (RVs) grows large [25].  Lemma 
4 showed that cycle lengths are composed of the sum of IID 
random variables with finite mean and variance.  Therefore, 
the cycles so constructed satisfy the requirement of the 
Central Limit Theorem. 

To illustrate a short example of cycle generation, we 
assign random deviates (rvs) generated for five locations 
labeled a through e.  The resulting sequence of locations is 
then a random variable.  Since the distances between 
successive locations are dictated by random variables, those 
distances are also random variables.  The total cycle length is 
the sum of random variables.  See Table 1 for an example of 
five data points using this method. 
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Table 1. 
Example of five randomly generated locations and mappings 

Location rv v rv v 
1 0.997 a 0.284 d 
2 0.825 b 0.312 c 
3 0.312 c 0.825 b 
4 0.284 d 0.941 e 
5 0.941 e 0.997 a 

Source: the authors. 
 
 
The resulting sequence of locations is then a random 

variable.  Since the distances between successive locations 
are dictated by random variables, those distances are also 
random variables.  The total cycle length is the sum of 
random variables. 

The remainder of the paper describes our computational 
methodology, results, conclusions, and recommendations for 
further work.  Computations were executed on an AMD 
Ryzen 7 4800H 8-core CPU with 32 GB RAM using code 
written by the authors in Python 3.5. 

 
4 Results and Discussion 

 
Standard data sets for the TSP can be found in the TSP 

Library [28].  Those problems are labeled T in the Problem 
Source column in Table 2.  Data sets motivated by human 
population centers (denoted as N) and Very Large-Scale 
Integrated circuits (denoted as V) are available from the 
Waterloo University, Department of Computer Science site.  
Results for problems containing as few as 25 locations are 
displayed in Table 2.  For each of the test problems the null 
hypothesis is that the distribution of cycle lengths is Normal.  
To test that hypothesis, we generated closed paths containing 
each location in the problem.  The resulting cycle lengths 
were then subjected to three tests to check for normality. 

Those tests include: D’Agostino, Jarque-Bera, and 
Anderson-Darling.  Our use of these tests are consistent with 
current literature regarding tests for normality [29–32].  
Similarly, we did not use Kolmorogov- Smirnov (KS) tests 
or similar tests due to sensitivity to large data sets [32]. In all 
instances the confidence level was 99%.  Anderson-Darling 
test statistics that do not exceed the 99%certainty critical 
value (1.092) result in rejection of the null hypothesis.  We 
highlight the results of our tests in Table 2. 

In all instances the confidence level was 99%.  Anderson-
Darling test statistics that do not exceed the 99%certainty 
critical value (1.092) result in rejection of the null hypothesis.  
We highlight the results of our tests in Tables 2 and 3 in the 
Appendices. 

 
Table 2. 
Summary of datasets tested 

Vertices Datasets 
Tested 

Jarque 
Failures 

Anderson 
Failures 

D’Agostino 
Failures 

>5000 28 0 0 0 
4999-
1000 45 0 0 0 

994-226 45 0 0 0 
<226 96 56 42 55 

Source: the authors. 
 

Results from a subset of the tested data sets are displayed in the 
table below.  Statistics for each of the three the tests are shown for 
each data set.  The test statistic or p-value is displayed in bold for 
instances in which the null hypothesis is rejected.  For example, the 
null hypothesis for the CH150 data set is rejected on account of 
Jarque-Bera and D’Agostino tests.  In Table 2 we see no failures to 
reject the null hypothesis for problems exceeding 1000 vertices.  
Consistent with our theory, we see multiple rejection of the null 
hypothesis where the number of vertices drop below 225. 

Fig. 1 display histograms of the cycle lengths produced 
through experimentation.  While these histograms “look” 
Normal, statistical testing shows this is not always the case.  
Results from testing shows that the null hypothesis is rejected for 
the test problems. This is more easily shown in the Q-Q plots 
depicted in Fig. 2. 

 

 

(a) Western Sahara29 

 

(b) Djibouti38 

 

(c) Bbz25234 

 

(d) Xib32892 
Figure 1. Histogram plots for small (1a, 1b) and large (1c, 1d) TSP problems 
Source: the authors. 
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a) Western Sahara29 

 
b) Djbouti28 

 
c) Bbz25234 

 
d) Xib32892 

Figure 2. Q-Q plots for small(2a, 2b) and large (2c, 2d) TSP problems. 
Source: the authors. 

 
 
Problem sizes varied from 25 to 85,900 locations.  In general, 

the null hypothesis was rejected more frequently in problems 
having fewer vertices.  The null hypothesis was not rejected for any 
problem having over 225 vertices. 

In this research paper, we did the following: 
1. We showed a generative mechanism to generate IID random 

vertex orderings that create cycles that produce feasible TSP 
solutions.  Since the resulting inter-vertex distances are the 
products of a random process, they are random variables.  The 
overall lengths of the resulting cycles are, thus, the sums of 
random variables. 

2. The CLT tells us that the sums of RVs tend to a Normal 
distribution as the number of summands grows large.  

Consequently, we can say that as the problem size (in terms 
of vertices) grows large, the lengths of the so-generated 
feasible solutions tend to a Normal distribution. 

3. Hypothesis testing on the experimentally generated routes 
failed to disprove the null hypothesis – that route lengths of 
feasible solutions do not tend to a Normal distribution. 

The experimental results support our claim that the objective 
function values for feasible TSP solutions tends to a Normal 
distribution as the number of vertices increases.  We are not aware 
of testing of this type in existing reported literature. 

While only a relatively small portion of the total number of 
cycle lengths are represented by in the tails of the distribution, this 
still accounts for a very large number in absolute terms.  The 
experimental results support our claim that the objective function 
values for feasible TSP solutions tends to a Normal distribution as 
the number of vertices increases.  Testing of this type has not been 
reported in the literature. 

The overall probabilistic nature of feasible TSP cycle lengths 
has considered and then largely ignored.  Carling noted that 
Golden’s work generated great interest but research on related 
topics went largely dormant [16].  Doubtless the restrictions on 
computational experimentation at the time hampered widespread 
study of the topic.  The technology now exists to enable much more 
experimentation. 

While a cursory examination of the CLT suggested our results, 
some hurdles had to be overcome to produce these results.  The 
highly influential paper from Beardwood et al. noted a failure to 
prove asymptotic convergence of cycle lengths to a Normal 
distribution.  However, that research relied primarily on hand 
calculations and analytic methods.  Beardwood’s assertion that 
there exists an upper limit to the rate of increase in solutions has 
been positively received over the last six decades. 

This research used some well-known tools and modern, if 
modest, computational resources to illustrate an interesting linkage 
between some combinatorial objects and probability theory.  
Knowing that the set of feasible solutions for a given problem 
yields paths whose lengths tend to a normal distribution should 
provide insight into the underlying structure of some combinatorial 
optimization problems.  Since the TSP is NP Complete, we may 
be able to apply related analytic methods to other NP Complete 
problems.  A natural direction of future work is to consider whether 
there might be statistical properties that optimal or good solutions 
share.  Additional research might explore the use of this work to 
compute some relatively hard bounds on optimal solution objective 
values.  We also recognize that while a two-dimensional TSP 
generates univariate random lengths, a higher dimensional TSP 
would require a multivariate test such as Mardia’s Test. [33].  
Because of the large size of the tests, we discounted the 
Kolmogorov-Smirnov test and focused our analysis with the 
Anderson-Darling, D’Agostino, and Jarque-Bera tests.  In future 
studies it would be of interest to determine the robustness of each 
test with respect to random cycle lengths. 

This work has significant potential to affect commercial 
and public logistics activities.  One interesting question is 
whether problems with similar vertex counts covering similar 
spatial areas would have similar cycle lengths.  Likewise, can 
we relate mean cycle lengths in problems having similar 
spatial properties and vertex counts.  A positive answer to this 
question could be coupled with Beardwood’s growth rate 
limit for length to produce cycle length estimates for different 
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data sets.  This would be useful in capacity planning for 
commercial delivery companies as well as utility companies. 
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