
  

 

 

 

 

Universidad Nacional de Colombia.  
Revista DYNA, 91(231), pp. 16-26, January - March, 2024, ISSN 0012-7353 

DOI:  https://doi.org/10.15446/dyna.v91n231.110437 

Bibliometric study of distribution system state estimation: advances 
and challenges• 

 
Jorge A. Lara Sánchez, Mauricio E. Samper & D. Graciela Colomé 

 
Instituto de Energía Eléctrica, Universidad Nacional de San Juan - CONICET, San Juan, San Juan, Argentina.  

jlara@iee.unsj.edu.ar, msamper@iee-unsjconicet.org, gcolome@iee-unsjconicet.org 
 

Received: August 14th, 2023. Received in revised form: November 7th, 2023. Accepted: November 23th, 2023 
 

Abstract 
An active distribution network with a large amount of distributed energy resources (DER) requires knowledge of the operational status of 
the network. In this sense, state estimation is one of the most widely used techniques and a well-developed concept in transmission systems. 
DERs have some monitoring, protection, and control devices. But due to the large size of the network and the number of users, the massive 
installation of meters is not yet economically feasible. Therefore, it is necessary to generate artificial measurements to perform all stages 
of distribution system state estimation (DSSE). DSSE is currently the subject of active research, so this article performs a descriptive 
bibliometric study, which qualitatively and quantitatively analyzes the topics found in the specialized literature in the period from 2000 to 
2022 and part of the 2023. It also identifies the advances, challenges, and proposals for future lines of research in DSSE. 

Keywords: distribution system state estimation; bibliometrics study; pseudo-measurements; observability analysis; topology analysis; bad 
data detection. 

 
 

Estudio bibliométrico de la estimación del estado de los sistemas de 
distribución: avances y retos 

 
Resumen 
Una red de distribución activa con una gran cantidad de recursos energéticos distribuidos (DER) requiere conocer el estado operativo de la 
red. En este sentido, la estimación del estado es una de las técnicas más utilizadas y un concepto bien desarrollado en los sistemas de 
transmisión. Los DER disponen de algunos dispositivos de supervisión, protección y control. Pero debido al gran tamaño de la red y al 
número de usuarios, la instalación masiva de medidores aún no es económicamente viable. Por lo cual, es necesario generar mediciones 
artificiales para realizar todas las etapas de la estimación del estado del sistema de distribución (DSSE). DSSE es actualmente objeto de 
investigación activa, por lo que este artículo realiza un estudio bibliométrico descriptivo, que analiza cualitativa y cuantitativamente los 
temas encontrados en la literatura especializada en el periodo comprendido entre 2000 al 2022 y parte del 2023. Asimismo, se identifican 
los avances, retos y propuestas para futuras líneas de investigación en DSSE. 
 
Palabras clave: estimación del estado del sistema de distribución; Estudio bibliométrico; pseudomediciones; análisis de observabilidad; 
análisis de topología; detección de datos erróneos. 

 

 
1 Introduction 

 
An active distribution network can be defined as a 

synergy (join development) of the traditional electric network 
with modern technologies of information, measurement, 
protection, control, and communication that allow a more 
efficient, secure, and reliable operation of the network from 
the technical and economical point of view. In this new 
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paradigm, Distribution System Operators (DSO) must carry 
out actions or take decisions to maintain the levels of 
reliability and service quality, so it is necessary first, to have 
a complete knowledge of the network state. Thus, the state 
estimation (SE) is one of the methods mostly used, since it 
uses real-time measures of voltages and bus flow injections, 
flow and current line measurements that can be obtained from 
the HV/MV, reconnectors, switchers in MV, Distribution  
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Figure. 1. Density per number of publications in DSSE per country  
Source: Own elaboration. 

 
 

Phasor Measurement Units (D-PMU or μPMU) [1], smart 
meters [2] and artificial measurements which allow the 
observability of the system and thus execute the SE 
algorithm. 

Having into account that the SE is a well-developed 
concept and widely used in transmission systems (TS), its use 
at the distribution level still has problems of implementation 
due to the low amount of measurements available since the 
massive installment is not economically viable up to now, 
apart from the unbalance of phases, network size, inaccurate 
network models due to lack of updating or previous 
validation, design form, and construction, where the line 
lengths are shorter and have higher R/X relations. So, 
countries like the United States, China, Germany, Italy, 
Brazil, United Kingdom, India, and the rest of the world 
consider distribution system state estimator (DSSE) an object 
of active research as it is observed in Fig. 1. 

The DSSE is an important tool for distribution network 
monitoring, as it allows estimating the behavior of the 
network in a short time. This is useful for distribution system 
management, as it allows operators to optimize network 
configuration and detect potential problems before they 
occur. In addition, DSSE are used to monitor network 
performance, detect not only the presence of faults on 
distribution lines but also of unwanted loads, estimate the 
status of distribution network equipment, find out changes in 
network behavior, and adjust power supply to meet demand. 
However, DSSE faces challenges due to errors in the network 
topology data, the need for a large number of measurements 
with little error at the time of data acquisition and the 
subsequent communication with the control center. 

Despite the challenges and complexity of the problem, in 
the state-of-the-art review, it was identified that the most 
used method for the DSSE is Weighted Least Squares 
(WLS). The first proposals in this sense were developed in 
the ‘90s [2]. After those proposals, there were incorporated 

Automated Meter Reading (AMR), intelligent meters with 
architecture Advanced Metering Infrastructure (AMI), and 
renewable and non-renewable Distributed Energy Resources 
(DERs). Later, it was included and analyzed the impact and 
implementation of synchronized or non-synchronized D-
PMU. These advances and developments can be found in 
several state-of-the-art reviews [2-7]. In [2,4] technologies, 
obstacles, challenges, and components of a DSSE are 
presented and analyzed. Related works on SE in transmission 
and distribution systems and critical issues of DSSE 
concerning the mathematical formulation and other 
components for estimating the state of DS are analyzed in 
Dehghanpour´s paper [8].  In [5] highlights the importance of 
using Machine and Deep Learning to address DSSE. The 
advantages, disadvantages and applications and a summary 
of different DSSE methods is presented in [6,7]. 

The aim of this work, in addition to complementing the 
aforementioned reviews of the state-of-the-art, is to make a 
descriptive bibliometric study, in which the topics found in 
the specialized literature of the last two decades are analyzed 
not only qualitatively but also quantitatively. The topics 
found are classified into the three areas that make up a DSSE: 
input data, functions, and applications, which in turn are 
divided into sub-areas that have a description of the proposals 
in the period 2018-2022. This is to identify the advances, 
challenges, and proposals for future lines of research in 
DSSE.  

The content of this paper is organized as follows: the 
search procedure and literature review with the classification 
of topics and subtopics of aspects that make up a DSSE are 
detailed in Section 2, followed by a description of each. 
Proposals for future research with the problems that the 
authors considered relevant to DSSE are included in Section 
3. Final conclusions are developed in Section 4. 

 
2 Searching procedure and bibliographic analysis 

 
In the literature review, each paper is analyzed and 

classified according to the areas described in the Section, so 
that it can be a quantitative and qualitative distribution to 
evidence the most investigated areas as well as those 
relegated ones. All this is done to identify trends and suggest 
future lines of research. The procedure is established in the 
following way:  
1. Selection of a database: the database covers a complete 

review of papers or chapters using IEEE Xplore, Google 
Scholar, ISI Web of Knowledge, and Scopus searching 
motors.  

2. Selection of papers from the database: the compilation 
covers the main themes of the field of DSSE; each paper 
is analyzed to verify its relation with the theme and to 
consider to which classification area or subarea (detailed 
in Section 3) it belongs.  

3. Gathering information: All selected attributions of 
predefined classifying levels are searched and extracted 
from each paper.  

4. Relational database: a relational database is created and 
completed since the same paper can provide 
contributions to different areas of Section 3.  

5. Identification of main trends: Based on data stored in 
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step 4, the papers are grouped obtaining quantitative data 
and percentages. These are visually grouped to identify 
trends according to the year of publication. 

6. Deep analysis of each trend: based on the main trends 
identified in step (5) and the knowledge of the authors, 
the research lines are proposed. 
 
 

2.1 Analysis and bibliographic classification per 
research areas  

 
In order, to obtain a solution with the DSSE algorithm it 

is necessary to count with minimum information of the 
system which depends on the number of state variables to be 
calculated and the number of existent measurements. These 
data are for the electrical modeling of the network as well as 
other additional information which are used to obtain a 
solution. Data related to the local characteristics of the 
electric network must be previously analyzed and if it is 
necessary these must be completed artificially, only then the 
algorithm of DSSE can be run. The result of the algorithm 
must overcome a stage of detection and identification of bad 
data to be ready to be used in a Distribution Management 
System (DMS). All this process described before is classified 
into data, functions, and applications together with the 
number of papers per area (Fig. 2). 

From the classification of Fig. 2. 795 papers published 
between 2000 and 2023 were analyzed, where 48,19%, 
37,73%, and 14,08% consider the analysis of data, functions, 
and applications respectively (Fig. 3). 

It must be noted that 42,96% of the total amount of 
publications are from the period 2018-2022, where it 
maintained the trend of the areas of study (see Fig. 4a). 
Nevertheless, it is evident that 60,05% of the contributions 
are centered in four areas (see Fig. 4b). First, the static DSSE 
algorithms with 25%, second the solution and temporal 
synchronization with 11,78%, third the location and 
distribution of different types of measurements with 12,64% 
and at last, the analysis and algorithms of data generation for 
pseudo measurements with the 10,63%.  

 

 
Figure. 2. Classification per areas of research in DSSE 
Source: Own elaboration. 

 
Figure. 3. Percentage and distribution of papers according to data, functions, 
and applications 
Source: Own elaboration. 

 
 

 
Figure 4. a) Distribution per component b) Number of papers per area of 
research in the period 2018 – 2023. 
Source: Own elaboration. 

 
 
In addition, the data analysis concluded that 1 out of 6 

articles studied the DSSE problem in balanced or single-
phase networks the rest corresponds to multiphase and 
unbalanced systems. In the following sections, the 
description of each area and the different methodologies 
proposed in the literature are presented in detail, together 
with the percentages per number of papers per area in the 
period 2000-2023. Due to space reasons, only those papers 
which the authors considered more relevant from 2018-2022 
are referenced; several from 2023 are included. 
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2.2 Input Data 
 
DSSE inputs include every knowledge of the system 

which could affect the result, as well as the physical 
characteristics of the network. These data include the 
information technology and the physical attributes gathered 
at the control center and visualized through a Supervisory 
Control and Data Acquisition (SCADA) system and which 
provide measurements such as: 

SCADA Measurements: They generally provide data at 
the substation level, including the active and reactive power, 
the current magnitude at each distribution feeder, and the 
voltage magnitude in the bus of the substation. Besides, 
metering installed along the feeder, which is also included. 
1. Smart meters: These meters are installed at the 

customer’s side, connected through bidirectional 
networks of communication with the system of data 
management located at the electric company. These 
devices can provide measurements of active and reactive 
power, voltage and current and medium power. 

2. PMU o D-PMU: The main output is the phasor 
measurement of voltage waveforms and sampled 
currents, magnitude, and angle, with which other 
measurements can be derived and calculated.  

3. Pseudo-measurements: To compensate for the lack of 
data, the set of input data must be increased artificially 
and/or corrected to compensate for erroneous data. This 
can be done using “pseudo-measurements”, which are 
generated artificially, for example, active/reactive 
power, voltage, current, etc. 

4. Virtual measurements: these are voltage falls to a cero in 
closed commutation devices, cero power flows in open 
commutation devices, and cero bus injections passive in 
nodes, as a commutation station.  

Other important aspects to be considered are data or 
network parameters, i.e., all permanent features of the 
electric system which do not change in the daily operation. In 
particular, those network parameters include network 
connectivity, line parameters (line and mutual impedance, 
phase configuration, etc.) bus parameters (connected 
customers, network equipment, derivation elements, etc.), 
and equipment parameters (transformers, switchers, 
protection elements, etc.). 

 
2.2.1 Pseudo-measurements 

 
The existent measurements are stored to be used later on 

to generate the missing data required for the DSSE, which are 
used as pseudo-measurements. This represents the 13,88% 
where it can be found the analysis of uncertainties and 
correlations detailed in [9]. As well as load forecasting 
proposals with methods of load estimation [10] and 
allocating profiles [11], Markov model [9]. Finally, it must 
be mentioned criteria based on learning such as Artificial 
Neural Networks [12–14], Relevance Vector Machine 
(RVM) [15], and clustering techniques [16]. 

 
2.2.2 Distribution and location of measurements 

 
This area deals with the 12,92% of the papers which have 

the aim of determining the location of PMUs, smart meters, 
pseudo-measurements, and line flow meters among others, 
through optimization functions with constraints that consider 
costs, yield indexes, number of measurements, measurement 
redundancy and the error in the DSSE. An analysis of the 
state-of-the-art in this field is presented in [17].  

In addition, there are proposals related with noise of non-
Gaussian measurements [18], chaos simulation and/or Monte 
Carlo [10,19], Genetics Algorithm [20], Heuristic Methods, 
Combined or Hybrid [9,21] Integer Linear Programming 
(ILP) [22], Mixed Integer Semi-Definite Programming 
(MISDP) [23], Information Entropy Evaluation and multi-
objective optimization [24]. 

 
2.2.3 Accuracy and temporal solution  

 
Another field is the analysis of the accuracy and temporal 

solution, which includes 8,29% of the works, where it is 
considered that the distribution system is commonly 
comprised of a wide variety of measurement equipment, 
located at different voltage levels and with different time 
resolutions and measurement errors, Table 1. 

Thus, these data considered have a wide range of 
temporal resolution and different measurement errors. In this 
sense, two fields of study are identified. The first one is 
related to the analysis of measurements, i.e., correlations, 
accuracy, and uncertainties that can appear considering 
measurements with or without synchronism. The second one 
is related to the effects that the different types of 
measurements have on the result of the DSSE, here, the 
different types of measurements and communication 
techniques, times of acquisition, non-synchronic and lacking 
measurements are included. The different areas of research 
identified are detailed in Table 2. 

 
Table 1.  
Type of measurement, location, and temporal resolution 

Type Error Location Temporal resolution 
MV LV msec sec min hours 

D-PMU 1% X  X X   

SCADA 3% to 
5% X   X X  

AMI 10%  X   X X 
Source: Own elaboration 

 
 

Table 2. 
Areas of research referred to measurements and their effect on the DSSE. 

Area Analysis Ref. 

Analysis of 
measurements 

Correlations [25] 
Accuracy and uncertainties [26,27] 
Optimal management of the 

information [28] 

Synchronic [29,30] 
Non-synchronic [31,32] 

Effects in the DSSE 

Including measurements [33] 
System of communication [34,35] 

Times of acquisition [36,37] 
Non-synchronic 
measurements [29,38] 

Lacking measurements [39] 
Source: Own elaboration 
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2.2.4 Including DERS in the DSSE 
 
Publications related to the inclusion of the renewable and non-

renewable DERs in the DSSE correspond to 7,66%. They include 
the analysis of the correlation between the DERs and the result of 
the DSSE in [11] and how it affects the result is developed in [40]. 
To deal with this theme the injection curves and DERs 
measurements are used as well as the result of the DSSE in [41], 
then mathematic models according to the type of generator [42] or 
models which consider environmental variables [43], and others 
with probabilistic points of view [44] and learning ones [45]. 

 
2.2.5 Topology processor 

 
Its function is to verify that the parameters and network 

model are the correct ones before running the algorithm of the 
DSSE. This represents 4,78% of the works and they include 
proposals where the basic topology will suffer changes over time 
due to local events such as faults, line disconnections, 
commutation events, etc. Therefore, various proposals have been 
done which include the analysis of uncertainties in the network 
topologies [46], in which variables related to the commutation 
devices and/or measurements are used [47,48]. As well as 
methods based on decision trees [49], or learning [50,51], 
verifying signs of temporal series [52], and an approach based on 
tracking data [53,54]. 

 
2.3 Functions 

 
2.3.1 Analysis of observability 

 
The aim is to determine if the number of available 

measurements as well as their geographical distribution allows 
estimating all the states of the system. It must be taken into 
account that, if the measurements are wrongly distributed, this 
can be over-determined in one zone and even though be 
unobservable. Proposals in this area correspond to 1,12%, these 
are focused on knowing if the system is or not observable. Thus, 
redundant and critical measurements were identified, detecting 
observable isles. Therefore, various methodologies have been 
introduced based on: numerical approaches [55,56], learning, 
heuristic, topological, algebraic, null space, probabilistic, and 
graphs theory [57] just to mention the most important ones. 

 
2.3.2 State estimation algorithm 

 
As it was mentioned the most widely used method in the 

DSSE is WLS. Greater details of the mathematical 
formulation of this method can be found in [4,58].  

Nevertheless, depending on the state variables calculated, 
these can be Node Voltage (NV) or Branch Current (BC). In 
the literature, these two formulations are compared as regards 
their implementation, inclusion of PMU, computing time, 
numerical stability, convergence, sensitivity, and other 
aspects in [4]. The BC offers better advantages than the NV 
in the DSSE. A similar comparison was done in [59] with 
PMU synchronized and non-synchronized measurements 
from the SCADA. 

 
 

Table 3. 
Proposals for static algorithms of DSSE 

Methodology Ref. 
Weighted 

Least Squares 
(WLS) 

Linear approach [22,60] 
Modifications to WLS [61,62] 

Load flow [63] 

Alternative 
ones 

Alternative WLS [64,65] 
Admittance Matrix Based (AMB) [66] 

Accelerated Probabilistic State 
Estimator (APSE) [67] 

Robust 
Hybrids [49,68] 

Interval Arithmetic (IA) [27,69] 
Block tensor completion [70] 

Heuristic and 
computational 

intelligence 
techniques 

Neural networks [71,72] 
Semi-definite programming (SDP) [73] 

Particle Swarm Optimization (PSO) [68] 
Another heuristic algorithm [74] 

Source: Own elaboration 
 
 
Table 4. 
Proposals for dynamic algorithms and MASE – Multilevel 

Methodologies Ref. 

Kalman filter 
(KF) 

KF [75] 
Ensemble KF (EnKF) [76] 

IEKF [42,77] 
Unscented KF (UKF) [78] 

Augmented Complex KF (ACKF) [79] 

Alternative to 
KF 

First-Order Prediction-Correction 
(FOPC) [80] 

Alternating Direction Method of 
Multipliers (ADMM ) [81] 

FASE - Recursive [82,83] 
Hybrids [84] 

Hybrid AC/DC [85] 
MASE – Multilevel – Distributed [19,86] 

Source: Own elaboration 
 
 
Nevertheless, no matter the type of state variable calculated, 

they are classified in statics with 27,27%, dynamics known as 
Dynamic State Estimation (DSE) or Forecasting-Aided State 
Estimation (FASE) with 5,74% and Multi Area State Estimation 
(MASE) – Multilevel approach with 5,74%. Static algorithms 
are divided into methodologies based on WLS, alternatives to 
WLS, robust approaches, and those based on computational 
intelligence and heuristic methods. Dynamic algorithms are 
based on the Kalman filter and other alternative methods. 
Proposals of static, dynamic, and MASE-Multilevel algorithms 
are detailed in Tables 3 and 4, respectively.  

 
2.4 Applications of the estimated state  

 
2.4.1 Detection and identification of bad data 

 
Erroneous measurements are processed, identified, and 

eliminated here, those which are erroneous due to faults in 
the communication or to the package of false metrics/data 
[64] from the calculated state. This area belongs to the 2,87% 
of the works, where the methodologies are based on 
statistical analysis, such as the chi-square test, normalized 
residual test [45,87], and orthogonal formulation [88]. 
Besides, techniques with approaches to neural networks and 
geometrics are also included. 



Lara-Sánchez et al / Revista DYNA, 91(231), pp. 16-26, January - March, 2024. 

21 

2.4.2 Identification of parameters 
 
Only in 0,96% of them are analyzed how the line 

impedances and network equipment affect the quality result 
of the state estimation. Proposals are related to the 
connectivity of the network/mapping of incidence [89] and 
line parameters [90].  

 
2.4.3 Cyber security 

 
This topic represents the 3,35%, where it is analyzed how 

the malicious alteration of data from certain measurement 
devices [91], the injection of false data [92], and topological 
data affect the knowledge of the real state of the system and 
the risk in the privacy and confidentiality of users. A review 
of the state-of-the-art in this area can be seen in [93]. 

 
2.4.4 Other applications for distribution systems  

 
The aim of using the DSSE in real time operation is to 

provide a higher level of confidence of the network state to 
support decision making or to find an optimal solution. These 
proposals correspond to 5,42%, as the ones included in [94] , 
where the results indicate that the identification of non-
technical losses from the erroneous data detection approach 
is promising. While a sensitivity analysis of the DSSE with 
respect to phase mislabeling of single-phase service 
transformers is presented in Trevizan et al [95]. In Bindu et 
al. [96] a methodology for using DSSE in DG interconnected 
distribution network is proposed which, in turn, depends on 
the minimization of system losses. In [97], a centralized self-
healing scheme employing a three-phase state estimator with 
a short-term load forecasting method and a fault location 
algorithm for service restoration is designed and simulated. 
Another use for running DSSE with topology detection is to 
locate faults and isolated components [60,98] [66,104]. In 
demand response schemes, DSSE improves the basis for 
sending load disturbance signals to dynamic consumers [99]. 
Finally, in transmission and distribution operator 
coordination, DSSE improves load forecasting techniques 
and current state accuracy integrating into the transmission 
model [100]. In addition, it can be included in applications or 
algorithms that contribute to data cleansing, network 
optimization and topology, system reliability, dynamic 
energy pricing, monitoring, and operation control. 

 
3 Proposals of Future Research 

 
After analyzing the literature, proposals have focused on 

improving the quality of the information and completing the 
observability of the distribution system before running the 
DSSE algorithm. However, unlike TS, there are various factors 
that make distribution system (DS) very diverse in terms of 
construction, load, topology, investments in technologies or 
network reinforcements, insufficient metering, adoption of 
DERs, communication systems, etc. Therefore, DSSE still faces 
the challenges of estimating non-measurable variables in non-
linear DS. Thus, the authors propose the following lines of future 
research to help achieving the effective adoption of DSSE in the 
face of ADNs challenges. 

3.1 Pseudo-measurements 
 
Accuracy of pseudo-measurements can be improved 

through the use of a scheme of the close circuit in which the 
output of DSSE feedback the load models [101], or in turn 
using data mining techniques [102]. 

In fact, in case of smart meters, they can have two 
metering schemes Net Billing or Net Metering. In the case of 
Net Billing, the pseudo-algorithms could use data from users 
and injection power to model the load behavior in the DSSE. 
But in the case of Net Metering, more parameters, models, 
environmental, social variables, uncertainties, etc. must be 
selected which allows the recognition of the difference 
between consumption and generation. 

 
3.2 System operation  

 
At an active distribution network (ADN), being operated 

dynamically, with constant changes in generation, load, and 
network topology, among others, the static algorithms of 
DSSE are not able to capture these changes easily, since they 
consider that the state of the system does not change much 
between two consecutive updates of the state estimator. 
While the DSE or FASE techniques, consider the state 
temporal evolution over time and they can track the system 
changes during normal performance [4], requiring only the 
reduction of the computational load and times of 
convergence of the DSSE [103]. These are the proposals that 
take advantage of the MASE executing various estimators in 
sequence or parallel. 

 
3.3 DERs progressive insertion 

 
The impact of the presence of DERs analyzed from the 

point of view of the DSSE will depend on the percentage of 
insertion and the type of installed technology, a low 
percentage of power injection to the system does not affect 
the calculus of state variables, but as this percentage 
increases, the DSO must differentiate between load and 
generation. In addition, it becomes necessary to consider the 
uncertainties related to the type of generation due to the 
dependence on intermittent natural resource and their 
storage. Thus, approaches, techniques, and the most 
advanced challenges regarding the modeling of uncertainties 
of DERs in the electric system are briefly presented in [104]. 

 
3.4 Microgrids and storage systems  

 
In the system operation, there must be coordination 

between the network and the existent microgrid or 
microgrids, so that the result of the SE be used as input data 
for the functions of self-reestablishment of a microgrid, and 
depending on the result of such functions, they will be used 
as input in the new calculation of DSSE.  

In the case of those storage systems that do not belong to 
a Microgrid, their state will depend on the control system of 
the inverter or the present regulation, so the DSO needs to 
quantify the load level about the maximum nominal load of 
the battery to be used as measurement or in case to obtain 
observability as pseudo-measurement. These load and 
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discharge models must be considered within the DSSE, to be 
able to control temporal variations of state variables [105]. 

 
3.5 Efficient metering and data acquisition 

architectures 
 
It is necessary to develop low-cost smart metering devices 

that comply with international standards [106] and 
architectures for data collection from thousands of smart 
meters in a relatively short period (on the order of minutes) it 
is not feasible nowadays [107], having into account the 
diversity of metering technologies installed, the acquisition 
time and uncertainties associated to each of them [108]. The 
DSSE must model these uncertainties locally and find ways 
to take advantage of information from different time scales 
and combine them with artificial measurements if necessary. 

 
3.6 Relegated research areas 

 
According to Fig. 4b, the contributions to the state-of-the-

art during the year 2018-2022 are focused on four areas: static 
DSSE algorithms, analysis and effects in the DSSE, the 
resolution and temporal synchronization, location and 
distribution of different types of measurements, and 
generation of data to be used as pseudo-measurements.  

Nevertheless, according to the proposed classification, 
the new contributions could focus on areas such as 
Topological processor which considers the presence of DERs 
with fast algorithms with a low computational load to detect 
the constant changes expected in ADN; the detection and 
identification of bad data using methods based on artificial 
intelligence; cyber security seen from a point of view of the 
DSSE. The identification of parameters that use phasor 
meters at strategic points of the network allows for 
determining parameters through the measures provided by 
them. Finally, in the observability analysis and considering 
the enormous size of distribution networks with few 
measurements, it was identified that it is still necessary to 
propose solutions related to the detection of critical 
measurements that guarantee the observability of the 
network. 

 
4 Conclusions 

 
From the analysis of the state-of-the-art and the 

development of ADN, it is understood that in order to 
improve the real-time operation it is necessary to have an 
efficient estimation of DSSE. For this reason, this work 
identified the advances, challenges and proposals for future 
lines of research in DSSE, after analyzing 795 papers. Thus, 
a descriptive bibliometric study was carried out, in which the 
topics that make up a DSSE are qualitative and quantitatively 
analyzed 

Countries such as the United States, China, Germany, 
Italy, Brazil, the United Kingdom and India have generated 
around 60% of contributions on the subject and it continues 
to be an active area of research with new articles being 
published every year. 

Distribution systems are quite diverse in their form of 
construction, loading, topology, DER adoption, technologies, 

etc. Consequently, DSSE faces challenges due to errors in the 
network topology data and the need of a large number of 
measurements. However, DSSE is necessary for DSO since 
it helps them to have higher reliability in the short term 
through the estimated state because it allows the detection of 
potential problems before they occur. In addition, DSSE can 
be included in applications or algorithms that contribute to 
data cleansing, network and topology optimization, system 
reliability, dynamic energy pricing, operations monitoring, 
and control. 

The contributions of the period 2018-2022 are focused on 
four areas: static DSSE algorithms, analysis and algorithms 
of data generation for pseudo-measurements, location and 
distribution of different types of measurements, and the 
resolution and temporal synchronization.  

Due to the dynamics and uncertainties expected in the 
ADN, state estimation conventional techniques proposed for 
transmission systems cannot be applied to distribution 
systems. Therefore, future research should focus on DSSE 
algorithms or FASE and MASE ones with less convergence 
time and low computational load thinking on a real-time 
operation. 

Barriers to the development of DSSE are mostly related 
to the availability of communications and the effective use of 
the information generated by the AMI, as well as the low 
PMU installed and SCADA distributed measurements.  

There are still some pending challenges as regards the 
DSSE in such areas as pseudo-measurements, system 
operation, DERs progressive insertion, microgrids and 
storage systems, efficient metering and data acquisition 
architectures, and research areas detailed in Section 3. So, it 
is expected that this paper contributes to developing the 
research on those themes that may achieve the effective 
adoption of DSSE by electric service companies.  

This work allows an evaluation of the different advances 
in the areas of knowledge concerning DSSE and can be a 
guide to propose new lines of research or as a decision-
making process for the allocation of resources for research 
and development in the case that an electric company plans 
to implement a DSSE in the short term. 
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