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Abstract 
Many heuristics for network reconfiguration rely on the systematic applying of the branch-exchange technique. In this work, two novel 
genetic operators for crossover and mutation have been developed that are based on the referred technique. The chromosome's codification 
to use these operators is straightforward and is not required any additional knowledge of graph theory to achieve the feasibility of 
individuals. As one of their main novelties, the methodology shows how can be employed a local improvement step, used commonly in 
the single-objective optimization, in the multi-objective optimization. This step increases the convergence of the optimization with 
populations of much reduced size. The proposed methodology is tested by solving several examples of the literature, including or not the 
local improvement step. The comparison of the results with the best solutions published for these examples shows the effectiveness of the 
method. 
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Reconfiguración multi-objetivo de sistemas de distribución 
utilizando NSGA-II y mejora local 

 
Resumen 
Muchas heurísticas para la reconfiguración de redes se basan en la aplicación sistemática de la técnica de intercambio de ramas. En este 
trabajo se han desarrollado dos operadores genéticos novedosos para cruce y mutación basados en la técnica referida. La codificación del 
cromosoma para utilizar estos operadores es sencilla y no se requiere ningún conocimiento adicional de teoría de grafos para lograr la 
factibilidad de los individuos. Como una de sus principales novedades, la metodología muestra cómo se puede emplear un paso de mejora 
local, utilizado comúnmente en la optimización de un solo objetivo, en la optimización de múltiples objetivos. Este paso aumenta la 
convergencia de la optimización con poblaciones de tamaño muy reducido. La metodología propuesta se pone a prueba resolviendo varios 
ejemplos de la literatura, incluyendo o no el paso de mejora local. La comparación de los resultados con las mejores soluciones publicadas 
para estos ejemplos muestra la eficacia del método. 
 
Palabras clave: reconfiguración; systemas de distribución; algoritmo genético; NSGA-II. 

 
 
 

1. Introduction 
 
Research in algorithms for the optimal reconfiguration of 

radial distribution systems is always present in the 
specialized bibliography. Extensive reviews like Mishra’s 
[1], Sultana [2] or Mahdavi [3] present hundreds of 
contributions. 

The heuristic branch-exchange algorithms for the 
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distribution systems reconfiguration of Cinvalar [4] and 
Baran [5] are based on the interchange of the system’s open 
branches to obtain the minimal losses radial configuration 
that can supply the load at required voltage. Goswami [6] 
introduces the concept of optimal flow pattern to simplify the 
determination of the branch to open in a closed loop, while 
Nara [7] formalizes the single-stage branch-exchange 
algorithm as well as the multi-stage branch exchange 
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algorithm. In addition, Abul’Wafa [8] presents an efficient 
implementation of the branch-exchange method.  

In other line of thought, first Shirmohammadi [9] and late 
Gomes [10] propose a heuristic that starts analyzing a meshed 
distribution system which switches are open successively 
until eliminate the loops and obtain the optimal radial 
configuration. 

Different types of meta-heuristic methods are applied in 
reconfiguration. Ching-Tzong Su [11] uses an improved 
mixed-integer hybrid differential evolution method to reduce 
power losses and enhance the voltage profile by system 
reconfiguration. Das [12] presents an algorithm based on 
heuristic rules and fuzzy multi-objective approach that 
considers load balancing among the feeders, power losses, 
deviation of nodes voltage, and branch current constraints 
violation. In addition, Abdelaziz [13] proposes a modified 
particle swarm optimization (PSO) algorithm. Souza [14] 
[15] presents a very efficient artificial immune algorithm 
applied to distribution system reconfiguration with fixed or 
variable demand.  

There are many contributions to reconfiguration based in 
genetic algorithms. The binary coded chromosome of Nara 
[16] represents the on/off status of all system branches. As 
unfeasible solutions can appear, Ramaswamy [17] applies 
repeatedly genetic operations until the obtaining of feasible 
individuals is achieved. Their implementation of the non-
dominated sorting genetic algorithm (NSGA-II) minimizes 
power loss, voltage deviations, current deviations, etc. In 
addition, Tomoiagă [18] uses NSGA-II as well for optimizing 
losses and reliability indexes.  

Sahoo [19] uses a binary coded genetic algorithm for 
minimizing voltage stability factors, each tie branch is 
represented in chromosome by a binary substring that 
determines the branch to open for maintaining the radial 
configuration. Vitorino [20] utilizes the same codification. In 
addition, Hsu [21] employ NSGA-II, using a source zone 
encoding method to reduce the possible appearing of illegal 
chromosomes during reproduction. 

The genetic algorithm presented by Mendoza [22], 
utilizes a new codification strategy and novel genetic 
operators, called accentuated crossover and directed 
mutation. The method begins by identifying the fundamental 
loop vectors of the system’s graph.  The fact that only one 
branch can be open in each fundamental loop vector, 
simplifies the codification of chromosome, which represents 
the open branches by decimal integers. This improved 
technique can produce non-radial topologies, so, especial 
genetic operators complement the method to correct this. 
Even with that technique, infeasible individuals appear. In 
the same direction, Gupta [23] uses fundamental loop vectors 
to generate feasible individuals. In addition, he introduce 
common branch vectors and prohibited group vectors with 
rules that avoid the generation of infeasible individuals. 
Zidan [24] and Eldurssi [25] employ both the Gupta's 
codification. The difficulty of the method is the huge amount 
of prohibitive group vectors that appear in large circuits. 

In another direction, Carreno [26] implements a genetic 
algorithm which chromosome represents both: the closed and 
the open branches. In each step, only one descendent is 
generated using the selection, recombination, mutation and 

local improvement sequence based on the branch-exchange 
technique. Madhavi [3] uses a similar codification and local 
improvement in their efficient genetic algorithm 
contribution. 

As can be seen in literature, many heuristics for network 
reconfiguration rely on the systematic applying of the 
branch-exchange technique. In this work are developed two 
novel genetic operators for crossover and mutation that are 
based on the branch-exchange technique. The chromosome's 
codification to use these operators is straightforward and is 
not required any additional knowledge of graph theory to 
achieve the feasibility of individuals.  

As one of their main novelties, the methodology shows 
how can be employed a local improvement step, used 
commonly in the single-objective optimization, in the multi-
objective optimization. This step increases the convergence 
of the optimization with populations of much reduced size. 
The proposed methodology is tested by solving several 
examples of the literature, including or not the local 
improvement step. The comparison of the results with the 
best solutions published for these examples shows the 
effectiveness of the method. 

 
2. Problem formulation 

 
In essence, most of the formulations for the 

reconfiguration problem consider the minimization of losses 
as the objective function to minimize. Although other 
objective functions can be selected, the present work 
formulates reconfiguration as a multi-objective optimization 
problem that minimize system losses cost and voltage 
deviations in the load nodes. The solutions are subject to be 
feasible radial configurations. 

 
2.1 Independent variables 

 
The independent variables of the problem, represented by 

the array x, are the set of branches that must be open to obtain 
the radial circuit with optimal configuration respect to 
objective functions. For a meshed network of N nodes and M 
branches, the number of branches to be open to obtain a radial 
configuration is equal to L.  

 
1+−= NML  (1) 

 
2.2 Constraints 

 
The main constraint to this problem is that any solution of 

reconfiguration must represent a radial circuit. The 
fulfillment of this apparently simple constraint is one of the 
main difficulties in the solving of reconfiguration problem 
with any optimization method. 

 
2.3 Objective functions 

 
Several objective functions can be considered for the 

presented problem. This work considers two objective 
functions: minimum system losses cost (f1) and voltage 
deviations (f2) at load nodes. 

System losses cost in network conductors is calculated for 
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24h variable daily demand with variable costs of energy ck 
($/kWh) at the different k-hours as: 
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Where ΔPk(x) is the network power losses at hour k. 
On the other hand, the minimization of voltage deviations 

at load nodes is achieved by minimizing the maximum 
voltage deviation respect to the source among all i-nodes and 
the k-hours. 

 
 )(max)( ,2 xVxf ki∆=  (3) 

 
The determination of the voltages and the power losses at 

different load states is achieved by using a forward-backward 
sweep power flow. 

 
3. Optimization algorithm 

 
NSGA-II is one of the methods of more success in multi-

objective optimization. Like every genetic algorithm, the 
solving of a particular problem by the NSGA-II implies some 
adaptations and the programming of certain parts of the 
algorithm. In this case, a NSGA-II implemented in Matlab 
[27] is adapted for the solving of the presented problem.  

A solution of the reconfiguration problem is described by 
the set of open branches in the network. Thus, the 
chromosome is composed by an array of L integer values, 
which represent the indexes of the open branches.  

In order to obtain feasible radial configurations, the 
presented implementation of NSGA-II employs the 
technique of exchange of branches. That is, the change of the 
gene k in chromosome for a gene j that does not belong 
chromosome implies the closing in the circuit of the branch 
k and the opening of the branch j. This branch-exchange 
technique assures the circuit remains radial.  

Two genetic operators of crossover and mutation are 
developed in this work that applies the cited technique. The 
offspring of these operators is always a feasible radial circuit. 
In the presented implementation, an 80% of the offspring is 
generate by crossover and the remaining 20% is obtained by 
mutation of population.  

Optionally, the implemented algorithm includes a local 
improvement step, which is applied after the genetic 
operations of crossover and mutation.  

 
3.1 Crossover operator 

 
The crossover operator determines the offspring c1 and c2 

by interchanging a random subset u of genes between the 
chromosomes p1 and p2 of both parents, element to element. 
The process must guarantee that offspring chromosomes 
maintain the feasibility, that is, they must represent radial 
configurations of the circuit. However, due to the 
characteristics of the problem, is very rare that feasible 
offspring’s c1 and c2 be obtained with this technique.  

The extraction of a gene p1(k) from chromosome p1 
implies that branch p1(k) close, which forms a loop in the 

circuit. To retrieve the radial configuration, a branch 
belonging to the loop must open. This procedure assure the 
obtaining of feasible offspring chromosomes.  

After several tests, the implemented crossover operator 
works as follows. If branch p2(k) belongs to loop (about 3-
5% of cases), then the branch p1(k) is substituted by branch 
p2(k), otherwise, the branch p1(k) is substituted by mutation, 
selecting at random one of the branches adjacent to p1(k) in 
the loop. The following steps illustrate the procedure: 
1) Finds the loop created by closing p1(k) in the circuit. 
2) If branch p2(k) belongs to loop, loop(j) = p2(k). 

Otherwise, selects at random the branch loop(j) as one of 
the branches adjacent to p1(k) in the loop. 

3) Close the branch p1(k) and open the branch loop(j) in the 
circuit. 

4) The gene p1(k) is substituted by gene loop(j) 
Once all the selected genes p1(u) are substituted in 

chromosome p1 (up to 10% of genes), the offspring c1 is equal 
to the changed p1 vector. The offspring c2 is obtained by 
interchanging the parents’ position in the previous algorithm.  

 
3.2 Mutation operator 

 
The mutation operator determines the offspring c1 by 

mutation of the parent p1. In order to maintain the radial 
configuration, the extraction of a gene p1(k) from 
chromosome implies that a branch loop(j) that belongs to the 
loop created by closing p1(k) in the circuit, must open.  

The mutation of chromosome p1 begin with selecting the 
random sample u of genes (up to 10% of chromosome) to be 
mutated. The following steps show how a gene p1(k) in 
chromosome p1 can be changed by a gene loop(j): 
1) Finds the loop created by closing p1(k) in the circuit. 
2) Selects at random the branch loop(j) as one of the 

branches adjacent to p1(k) in the loop. 
3) Close the branch p1(k) and open the branch loop(j) in the 

circuit. 
4) The gene p1(k) is substituted by gene loop(j) 

Once all the genes p1(u) are mutated in chromosome p1, 
the offspring c1 is equal to the mutated p1 vector. 

 
3.3 Local improvement step 

 
Some authors (Carreno [26], Madhavi [7]) employ a local 

improvement step in single-objective optimization.  This 
mechanism pursues the minimization of losses by the 
successive application of the branch-exchange technique. 
Their use improves the performance of the optimization for 
much reduced size populations.  

However, none of the multi-objective contributions of 
literature includes the local improvement step in the 
optimization. The difficulty of applying the local 
improvement resides precisely in the multiplicity of 
objectives that can be improved by the procedure. 

The NSGA-II determines every new generation of 
individuals by the nondominated sorting and selecting of 
individuals from the offspring population obtained by 
crossover and mutation of parents. This process allows the 
appearing in the new generation of better solutions in every 
of the considered objectives. 
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In present work, the local improvement step is applied 
once the offspring individual is obtained by crossover or 
mutation. The local improvement begins by selecting at 
random which objective will be improved in the individual. 
Then, the successive applying of the branch-exchange 
technique minimizes the selected objective. 

In that way, the mechanism of sorting and selection of 
NSGA-II assures that the better solutions of different 
objectives, obtained by crossover, mutation and local 
improvement will be passed to the new generation. 

The following steps show how works the improve 
procedure on the chromosome p1: 
1) Selects at random the objective fi(x) to minimize. 
2) For each gene p1(k) in chromosome 

a. Finds the loop created by closing the branch p1(k) in 
the circuit. 

b. Open the branch loop(j) that minimizes the 
objective function fi(x). 

c. If the objective function fi(x) decreases, the gene 
p1(k) is substituted by gene loop(j) in chromosome 
p1.  

3) The procedure ends when none gene is substituted. 
 

3.4 Initial population and convergence criteria 
 
The initial population must contain only feasible 

chromosomes, which is achieved by using a variation of the Prim’s 
algorithm [28] for generate random configurations of radial 
circuits. The base configuration of the circuit (with the tie branches 
open) is used as one of individuals in the initial population. If the 
local improvement option is selected, the initial population's 
individuals are improved by using the cited procedure. 

The convergence of the optimization is achieved when all 
solutions in the population belongs to the first Pareto’s front, 
and NSGA-II reach five stall generations. Otherwise, if 60% 
of population belongs to the first Pareto’s front and NSGA-II 
reachs 50 stall generations, the optimization stops. 

 
3.5 Main optimization algorithm 

 
The main optimization algorithm developed for this work 

carries out the following steps:  
1) The system data are read 
2) The initial state of the system (base case) is evaluated. 
3) The NSGA-II optimizer is executed until convergence is 

achieved. 
4) The final population of the NSGA-II is saved for further 

analysis. 
 

4. Examples of application 
 
Among the many radial distribution systems present in 

literature, the 13.8 kV circuit of 136 nodes and 156 branches, 
and of the 10 kV circuit of 415 nodes and 473 branches (in 
references [14,15] is referred as the 417 nodes circuit), are 
used to test the presented methodology.  

For purpose of comparison with literature, the energy cost 
factors ck ($/kWh) and the set of daily variation load curves 
for residential, commercial and industrial customers, taken 
from Souza [15] are used in the examples. These load curves 

apply for both, active and reactive power taken into account 
the type of customer of the load. Possagnolo [29] presents all 
data of circuits as well as the type of customer of each load. 
All examples were run on an Intel® Core™ i5-4440 CPU@ 
2x3.10 GHz and 4 GB-RAM. 

Two different cases are solved in each circuit: 1) case 
with fixed load demand, and 2) case with variable load 
demand. The first objective function on cases with fixed load 
demand consists in the system power losses, while in cases 
with variable load demand, consists in the daily cost of the 
energy losses. Always the second objective function consists 
in the maximum voltage deviation (ΔVmax).  

In addition, the effect of the local improvement step was 
tested by comparing the performance of optimization with 
local improvement with the optimization without local 
improvement. In every example presented, they were 
executed ten runs of the optimization to evaluate the 
performance of the algorithm. 

 
4.1 Solutions for the circuit of 136 nodes with fixed 

demand  
 
The circuit of 136 nodes have 156 branches. Thus, the 

number of open branches for this circuit is 21. In the example, 
a population of only ten solutions is used for the optimization 
with local improvement while a population of 20 solutions is 
used for the optimization without local improvement.  

As have been determined by Mahdavi [3], Souza [14], 
Carreno [26] and Possagnolo [29], the best solution for 
minimum losses of this example consists in the opening of 
the branches: 7, 35, 51, 90, 96, 106, 118, 126, 135, 137, 138, 
141, 142, 144, 145, 146, 147, 148, 150, 151, 155. This 
configuration have losses of 280.18 kW and minimum 
voltage of 0.958918 pu (ΔVmax = 0.0411 pu). 

The performance of both variants of the algorithm in ten 
runs of the optimization of the circuit of 136 nodes with fixed 
demand is shown in Table 1. 

The results of the optimization with local improvement are 
better than that of the obtained without local improvement. The 
results show that the solution of minimum losses of 280.18 kW is 
not obtained in any of the runs without local improvement, while 
is reached in several of the runs with local improvement. However, 
the calculation time with local improvement is 5.43 times than that 
of the calculation time without local improvement. 

The Pareto’s front obtained with the best run of each 
variant (with local improvement and without local 
improvement) of the presented optimization algorithm are 
shown in Fig. 1, where is also shown the point that represents 
the referred best solution for minimum losses of 280.18 kW 
and maximum voltage deviation of 0.0411 pu. 

 
Table 1 
Optimization of the circuit of 136 nodes with fixed demand 

 with local improvement without local improvement 
 Best Mean Worst Best Mean Worst 

Losses(kW) 280.18 280.19 280.21 280.21 280.46 281.28 
ΔVmax(pu) 0.033 0.033 0.033 0.033 0.033 0.033 
Iterations 12.0 17.2 27.0 70.0 106.1 126 
Time (s) 23.8 30.4 42.3 4.1 5.6 6.4 

Source: The authors. 
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Figure 1. Frontiers of Pareto for the circuit of 136 nodes with fixed demand 
Source: The authors 

 
 
As can be seen (Fig. 1), the two objective functions are 

conflicting objectives. The solutions with lower losses 
present higher voltage deviations, while the solutions with 
lesser voltage deviations present higher losses.  

Other solution that is near the point of the minimum 
losses solution but with better voltage is the solution marked 
in the frontier of solutions with local improvement. This 
solution with losses 280.21 kW and with voltage deviation 
0.03945 pu (Vmin = 0.960551 pu), consists in the opening of 
branches: 7, 51, 53, 84, 90, 96, 106, 118, 126, 128, 137, 138, 
139, 141, 144, 145, 147, 148, 150, 151, 156. 

 
4.2 Solutions for the circuit of 136 nodes with variable 

demand  
 
Souza [15] and Possagnolo [29] have determined the 

solution for minimum cost of daily losses of this example. 
That solution consists in the opening of the branches 7, 38, 
51, 54, 84, 90, 96, 106, 118, 126, 135, 137, 138, 141, 144, 
145, 147, 148, 150, 151, 155.  This configuration have losses 
cost of $256.88, energy losses of 2211.285 kW.h and 
minimum voltage of 0.963865 pu  (ΔVmax = 0.0361 pu). 

The Table 2 shows the performance of both variants of 
the algorithm in ten runs of the optimization of the circuit of 
136 nodes with variable demand. Again, the optimization 
with local improvement is better respect to the quality of 
solutions in both objective functions. All runs with local 
improvement are capable of obtaining the solutions with 
minimum values of the two objective functions. 

 
Table 2 
Optimization of the circuit of 136 nodes with variable demand 

 with local improvement without local improvement 
 best mean worst best mean worst 

Cost ($) 256.88 256.88 256.88 256.88 256.94 257.08 
ΔVmax (pu) 0.029 0.029 0.029 0.029 0.0305 0.0316 

Iterations 11.0 16.1 24.0 81.0 111.6 194.0 
Time (s) 96.3 126.3 172.3 15.4 20.4 35.5 

Source: The authors. 

 

Figure 2. Frontiers of Pareto for the circuit of 136 nodes with variable 
demand 
Source: The authors. 

 
 
The Pareto’s front obtained with the best run of each 

variant of the optimization algorithm are shown in Fig. 2. In 
addition, the point with the best solution for the minimum 
cost presented in literature, is also shown. 

 
4.3 Solutions for the circuit of 415 nodes with fixed 

demand 
 
The circuit of 415 nodes have 473 branches and operates with 

59 open branches. The reconfiguration of this circuit is a much 
more complex problem than the reconfiguration of the circuit of 
136 nodes. In the following examples, a population of 60 
solutions is used for the optimization without local improvement 
and a population of only 15 solutions is used for the optimization 
with local improvement.  

The best solution for minimum losses of this example, 
slightly better than that found by Souza [14], have been 
presented by Possagnolo [29]. That solution with 581.55 kW 
of losses and minimum voltage of 0.95466 pu (ΔVmax = 
0.04534 pu), consists in the opening of branches: 5, 13, 15, 
16, 21, 26, 31, 54, 57, 59, 60, 73, 86, 87, 94, 96, 97, 111, 115, 
136, 142, 149, 150, 155, 156, 158, 163, 168, 169, 178, 179, 
191, 195, 199, 209, 214, 254, 256, 270, 294, 317, 322, 325, 
354, 362, 369, 392, 395, 403, 404, 416, 423, 426, 431, 436, 
437, 446, 449, 466. 

The performance of both variants of the algorithm in the 
optimization of the circuit of 415 nodes with fixed demand is 
shown in Table 3.  

 
Table 3 
Optimization of the circuit of 415 nodes with fixed demand 

 with local improvement without local improvement 
 best mean worst best mean worst 

Losses (kW) 581.55 581.68 582.61 583.13 583.80 585.92 
ΔVmax (pu) 0.0432 0.0442 0.045 0.0429 0.0436 0.0452 
Iterations 15.0 35.3 55.0 945.0 1701.2 2254.0 
Time (s) 487.3 993.0 1491.6 499.5 885.0 1156.9 
Source: The authors. 
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Figure 3. Frontiers of Pareto for the circuit of 415 nodes with fixed demand 
Source: The authors. 

 
 
In this case, the optimization without local improvement 

is not capable of obtaining the solution of minimum losses in 
none of the ten runs. Besides, the mean value of minimum 
losses obtained with the optimization without local 
improvement is 0.36% worst than the obtained with local 
improvement. Also, the spread of the minimum losses 
obtained without local improvement is 2.79 kW, almost three 
times the spread of the solutions obtained with local 
improvement.  

With respect to the second objective, the maximum 
voltage deviation obtained by the optimization without local 
improvement is 0.06% better than the obtained by the 
optimization with local improvement. Both variants of the 
algorithm are approximately the same respect to the 
calculation time. 

The Pareto’s fronts for this case, obtained from the best 
run of each variant of the presented optimization algorithm, 
are shown in Fig. 3. In addition, is also shown the point of 
the best solution for minimum losses present in literature. 

As can be seen (Fig. 3), the front of solutions obtained 
without local improvement is clearly separated from the zone 
of the minimum losses solution. Besides, the solutions with 
lower losses obtained without local improvement, have 
higher voltage deviations than the solutions obtained with 
local improvement. 

 
4.4 Solutions for the circuit of 415 nodes with variable 

demand 
 
The best solution for minimum losses cost for this 

example have been presented by Souza [15] and Possagnolo 
[29]. That solution with daily cost of $529.66 and minimum 
voltage of 0.962472 pu (ΔVmax = 0.03748 pu), consists in 
the opening of branches: 1, 2, 13, 15, 16, 26, 31, 40, 41, 50, 
59, 73, 82, 94, 96, 97, 111, 115, 136, 146, 150, 155, 156, 158, 
163, 168, 169, 178, 179, 190, 191, 194, 195, 209, 230, 254, 
256, 267, 270, 294, 310, 321, 354, 362, 385, 389, 392, 395, 
403, 404, 423, 424, 426, 436, 437, 439, 446, 449, 466. 

Table 4 
Optimization of the circuit of 415 nodes with variable demand 
 with local improvement without local improvement 
 best mean worst best mean worst 
Cost ($) 529.66 530.00 530.49 529.70 530.03 531.31 
ΔVmax(pu) 0.0342 0.0350 0.0360 0.0340 0.0343 0.0345 
Iterations 17.0 41.6 69.0 1203.0 1700.0 2459.0 
Time (s) 2148.1 4665.6 7537.6 2059.4 2896.8 4186.4 
Source: The authors. 

 
 

 
Figure 4. Frontiers of Pareto for the circuit of 415 nodes with variable 
demand 
Source: The authors. 

 
 
The performance of both variants of the algorithm in the 

optimization of the circuit of 415 nodes with variable demand 
is shown in Table 4. With respect to the first objective 
function, the mean value of minimum losses obtained with 
both variants of the algorithm is almost the same. However, 
the spread of the minimum losses obtained without local 
improvement is 1.61 kW, about twice the spread of the 
solutions obtained with local improvement. With respect to 
the second objective, the maximum voltage deviation 
obtained by the optimization without local improvement is 
0.08% better than the obtained by the optimization with local 
improvement. In this case, the calculation time of the 
optimization without local improvement is about the 62% 
with respect to the optimization with local improvement. 

The solutions of Pareto’s front obtained with the best run 
of each variant of the presented optimization algorithm are 
shown in Fig. 4. Again, the point of the best solution for 
minimum cost present in literature is shown for comparison. 

As can be seen (Fig.4), this is the example in which both 
Pareto’s fronts are more similar between them. Other 
remarkable solution that is near in losses to the minimum 
losses solution but with better voltage is the solution marked 
in the frontier obtained without local improvement. This 
solution with losses cost of $529.9 and voltage deviation 
0.03644 pu (Vmin = 0.963560 pu), consists in the opening of 
branches: 1, 2, 13, 15, 16, 26, 31, 40, 41, 50, 59, 73, 82, 94, 
96, 97, 111, 115, 136, 142, 150, 155, 156, 158, 163, 168, 169, 
178, 179, 190, 191, 194, 195, 221, 230, 254, 256, 266, 267, 

530 535 540 545 550 555 560
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without local improvement
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282, 314, 321, 354, 362, 385, 389, 392, 395, 403, 404, 423, 
424, 426, 436, 437, 439, 446, 449, 466. 

 
5. Conclusion 

 
In this work, the local improvement step commonly used 

in single-objective optimization is included in the multi-
objective optimization by selecting at random the objective 
function that will be improved on each individual of the 
genetic algorithm population. That improvement is applied 
once the individual is produced by crossover or mutation. 

Both variants of the algorithm, with or without local 
improvement, are capable to determine the frontier of Pareto 
for the multi-objective reconfiguration of distribution 
systems. However, the optimization with local improvement 
converges normally in lesser number of iterations to better 
non-dominated solutions. Besides, the use of the local 
improvement step reduce the spread among the solutions of 
consecutive runs, increasing the stability of results. 

With respect to the calculation time, the optimization with 
local improvement employs more time per iteration and 
converge in less iterations. To reduce the calculation time, a 
much-reduced population of about 0.25-0.5 times the number 
of open branches of the circuit is used. However, even with 
this reduced population, in general the optimization with 
local improvement uses more calculation time in all cases. 
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