Multi-objective reconfiguration of the distribution systems by using NSGA-II and local improvement

Gustavo Crespo-Sánchez ${ }^{a}$ \& Ignacio Pérez-Abril ${ }^{b}$
${ }^{a}$ Universidad de Cienfuegos "Carlos Rafael Rodriguez", Cienfuegos, Cuba. gcsanchez@ucf.edu.cu
${ }^{b}$ Universidad Central "Marta Abreu" de Las Villas, Santa Clara, Cuba. iperez@uclv.edu.cu

Received: April $18^{\text {th }}, 2023$. Received in revised form: October $10^{\text {th }}, 2023$. Accepted: October $13^{\text {th }}, 2023$.

Abstract

Many heuristics for network reconfiguration rely on the systematic applying of the branch-exchange technique. In this work, two novel genetic operators for crossover and mutation have been developed that are based on the referred technique. The chromosome's codification to use these operators is straightforward and is not required any additional knowledge of graph theory to achieve the feasibility of individuals. As one of their main novelties, the methodology shows how can be employed a local improvement step, used commonly in the single-objective optimization, in the multi-objective optimization. This step increases the convergence of the optimization with populations of much reduced size. The proposed methodology is tested by solving several examples of the literature, including or not the local improvement step. The comparison of the results with the best solutions published for these examples shows the effectiveness of the method.

Keywords: reconfiguration; distribution systems; genetic algorithm; NSGA-II.

Reconfiguración multi-objetivo de sistemas de distribución utilizando NSGA-II y mejora local

Abstract

Resumen Muchas heurísticas para la reconfiguración de redes se basan en la aplicación sistemática de la técnica de intercambio de ramas. En este trabajo se han desarrollado dos operadores genéticos novedosos para cruce y mutación basados en la técnica referida. La codificación del cromosoma para utilizar estos operadores es sencilla y no se requiere ningún conocimiento adicional de teoría de grafos para lograr la factibilidad de los individuos. Como una de sus principales novedades, la metodología muestra cómo se puede emplear un paso de mejora local, utilizado comúnmente en la optimización de un solo objetivo, en la optimización de múltiples objetivos. Este paso aumenta la convergencia de la optimización con poblaciones de tamaño muy reducido. La metodología propuesta se pone a prueba resolviendo varios ejemplos de la literatura, incluyendo o no el paso de mejora local. La comparación de los resultados con las mejores soluciones publicadas para estos ejemplos muestra la eficacia del método.

Palabras clave: reconfiguración; systemas de distribución; algoritmo genético; NSGA-II.

1. Introduction

Research in algorithms for the optimal reconfiguration of radial distribution systems is always present in the specialized bibliography. Extensive reviews like Mishra's [1], Sultana [2] or Mahdavi [3] present hundreds of contributions.

The heuristic branch-exchange algorithms for the
distribution systems reconfiguration of Cinvalar [4] and Baran [5] are based on the interchange of the system's open branches to obtain the minimal losses radial configuration that can supply the load at required voltage. Goswami [6] introduces the concept of optimal flow pattern to simplify the determination of the branch to open in a closed loop, while Nara [7] formalizes the single-stage branch-exchange algorithm as well as the multi-stage branch exchange

[^0] 89-96, October - December, 2023.
algorithm. In addition, Abul'Wafa [8] presents an efficient implementation of the branch-exchange method.

In other line of thought, first Shirmohammadi [9] and late Gomes [10] propose a heuristic that starts analyzing a meshed distribution system which switches are open successively until eliminate the loops and obtain the optimal radial configuration.

Different types of meta-heuristic methods are applied in reconfiguration. Ching-Tzong Su [11] uses an improved mixed-integer hybrid differential evolution method to reduce power losses and enhance the voltage profile by system reconfiguration. Das [12] presents an algorithm based on heuristic rules and fuzzy multi-objective approach that considers load balancing among the feeders, power losses, deviation of nodes voltage, and branch current constraints violation. In addition, Abdelaziz [13] proposes a modified particle swarm optimization (PSO) algorithm. Souza [14] [15] presents a very efficient artificial immune algorithm applied to distribution system reconfiguration with fixed or variable demand.

There are many contributions to reconfiguration based in genetic algorithms. The binary coded chromosome of Nara [16] represents the on/off status of all system branches. As unfeasible solutions can appear, Ramaswamy [17] applies repeatedly genetic operations until the obtaining of feasible individuals is achieved. Their implementation of the nondominated sorting genetic algorithm (NSGA-II) minimizes power loss, voltage deviations, current deviations, etc. In addition, Tomoiagă [18] uses NSGA-II as well for optimizing losses and reliability indexes.

Sahoo [19] uses a binary coded genetic algorithm for minimizing voltage stability factors, each tie branch is represented in chromosome by a binary substring that determines the branch to open for maintaining the radial configuration. Vitorino [20] utilizes the same codification. In addition, Hsu [21] employ NSGA-II, using a source zone encoding method to reduce the possible appearing of illegal chromosomes during reproduction.

The genetic algorithm presented by Mendoza [22], utilizes a new codification strategy and novel genetic operators, called accentuated crossover and directed mutation. The method begins by identifying the fundamental loop vectors of the system's graph. The fact that only one branch can be open in each fundamental loop vector, simplifies the codification of chromosome, which represents the open branches by decimal integers. This improved technique can produce non-radial topologies, so, especial genetic operators complement the method to correct this. Even with that technique, infeasible individuals appear. In the same direction, Gupta [23] uses fundamental loop vectors to generate feasible individuals. In addition, he introduce common branch vectors and prohibited group vectors with rules that avoid the generation of infeasible individuals. Zidan [24] and Eldurssi [25] employ both the Gupta's codification. The difficulty of the method is the huge amount of prohibitive group vectors that appear in large circuits.

In another direction, Carreno [26] implements a genetic algorithm which chromosome represents both: the closed and the open branches. In each step, only one descendent is generated using the selection, recombination, mutation and
local improvement sequence based on the branch-exchange technique. Madhavi [3] uses a similar codification and local improvement in their efficient genetic algorithm contribution.

As can be seen in literature, many heuristics for network reconfiguration rely on the systematic applying of the branch-exchange technique. In this work are developed two novel genetic operators for crossover and mutation that are based on the branch-exchange technique. The chromosome's codification to use these operators is straightforward and is not required any additional knowledge of graph theory to achieve the feasibility of individuals.

As one of their main novelties, the methodology shows how can be employed a local improvement step, used commonly in the single-objective optimization, in the multiobjective optimization. This step increases the convergence of the optimization with populations of much reduced size. The proposed methodology is tested by solving several examples of the literature, including or not the local improvement step. The comparison of the results with the best solutions published for these examples shows the effectiveness of the method.

2. Problem formulation

In essence, most of the formulations for the reconfiguration problem consider the minimization of losses as the objective function to minimize. Although other objective functions can be selected, the present work formulates reconfiguration as a multi-objective optimization problem that minimize system losses cost and voltage deviations in the load nodes. The solutions are subject to be feasible radial configurations.

2.1 Independent variables

The independent variables of the problem, represented by the array x, are the set of branches that must be open to obtain the radial circuit with optimal configuration respect to objective functions. For a meshed network of N nodes and M branches, the number of branches to be open to obtain a radial configuration is equal to L.

$$
\begin{equation*}
L=M-N+1 \tag{1}
\end{equation*}
$$

2.2 Constraints

The main constraint to this problem is that any solution of reconfiguration must represent a radial circuit. The fulfillment of this apparently simple constraint is one of the main difficulties in the solving of reconfiguration problem with any optimization method.

2.3 Objective functions

Several objective functions can be considered for the presented problem. This work considers two objective functions: minimum system losses cost $\left(f_{1}\right)$ and voltage deviations $\left(f_{2}\right)$ at load nodes.

System losses cost in network conductors is calculated for

24h variable daily demand with variable costs of energy c_{k} $(\$ / \mathrm{kWh})$ at the different k-hours as:

$$
\begin{equation*}
f_{1}(x)=\sum_{k=1}^{24} c_{k} \Delta P_{k}(x) \tag{2}
\end{equation*}
$$

Where $\Delta \mathrm{P}_{\mathrm{k}}(x)$ is the network power losses at hour k.
On the other hand, the minimization of voltage deviations at load nodes is achieved by minimizing the maximum voltage deviation respect to the source among all i-nodes and the k-hours.

$$
\begin{equation*}
f_{2}(x)=\max \left|\Delta V_{i, k}(x)\right| \tag{3}
\end{equation*}
$$

The determination of the voltages and the power losses at different load states is achieved by using a forward-backward sweep power flow.

3. Optimization algorithm

NSGA-II is one of the methods of more success in multiobjective optimization. Like every genetic algorithm, the solving of a particular problem by the NSGA-II implies some adaptations and the programming of certain parts of the algorithm. In this case, a NSGA-II implemented in Matlab [27] is adapted for the solving of the presented problem.

A solution of the reconfiguration problem is described by the set of open branches in the network. Thus, the chromosome is composed by an array of L integer values, which represent the indexes of the open branches.

In order to obtain feasible radial configurations, the presented implementation of NSGA-II employs the technique of exchange of branches. That is, the change of the gene k in chromosome for a gene j that does not belong chromosome implies the closing in the circuit of the branch k and the opening of the branch j . This branch-exchange technique assures the circuit remains radial.

Two genetic operators of crossover and mutation are developed in this work that applies the cited technique. The offspring of these operators is always a feasible radial circuit. In the presented implementation, an 80% of the offspring is generate by crossover and the remaining 20% is obtained by mutation of population.

Optionally, the implemented algorithm includes a local improvement step, which is applied after the genetic operations of crossover and mutation.

3.1 Crossover operator

The crossover operator determines the offspring c_{1} and c_{2} by interchanging a random subset u of genes between the chromosomes p_{1} and p_{2} of both parents, element to element. The process must guarantee that offspring chromosomes maintain the feasibility, that is, they must represent radial configurations of the circuit. However, due to the characteristics of the problem, is very rare that feasible offspring's c_{1} and c_{2} be obtained with this technique.

The extraction of a gene $p_{1}(k)$ from chromosome p_{1} implies that branch $p_{1}(k)$ close, which forms a loop in the
circuit. To retrieve the radial configuration, a branch belonging to the loop must open. This procedure assure the obtaining of feasible offspring chromosomes.

After several tests, the implemented crossover operator works as follows. If branch $p_{2}(k)$ belongs to loop (about 3$5 \%$ of cases), then the branch $p_{1}(k)$ is substituted by branch $p_{2}(k)$, otherwise, the branch $p_{1}(k)$ is substituted by mutation, selecting at random one of the branches adjacent to $p_{1}(k)$ in the loop. The following steps illustrate the procedure:

1) Finds the loop created by closing $p_{1}(k)$ in the circuit.
2) If branch $p_{2}(k)$ belongs to loop, $\operatorname{loop}(j)=p_{2}(k)$. Otherwise, selects at random the branch $\operatorname{loop}(j)$ as one of the branches adjacent to $p_{1}(\mathrm{k})$ in the loop.
3) Close the branch $p_{1}(k)$ and open the branch $\operatorname{loop}(j)$ in the circuit.
4) The gene $p_{1}(k)$ is substituted by gene loop (j)

Once all the selected genes $p_{1}(u)$ are substituted in chromosome p_{1} (up to 10% of genes), the offspring c_{1} is equal to the changed p_{1} vector. The offspring c_{2} is obtained by interchanging the parents' position in the previous algorithm.

3.2 Mutation operator

The mutation operator determines the offspring c_{1} by mutation of the parent p_{1}. In order to maintain the radial configuration, the extraction of a gene $p_{1}(k)$ from chromosome implies that a branch $\operatorname{loop}(j)$ that belongs to the loop created by closing $p_{1}(k)$ in the circuit, must open.

The mutation of chromosome p_{1} begin with selecting the random sample u of genes (up to 10% of chromosome) to be mutated. The following steps show how a gene $p_{1}(k)$ in chromosome p_{1} can be changed by a gene loop (j) :

1) Finds the loop created by closing $\mathrm{p} 1(\mathrm{k})$ in the circuit.
2) Selects at random the branch $\operatorname{loop}(\mathrm{j})$ as one of the branches adjacent to $\mathrm{p} 1(\mathrm{k})$ in the loop.
3) Close the branch p1(k) and open the branch loop(j) in the circuit.
4) The gene $\mathrm{p} 1(\mathrm{k})$ is substituted by gene loop (j)

Once all the genes $p_{1}(u)$ are mutated in chromosome p_{1}, the offspring c_{1} is equal to the mutated p_{1} vector.

3.3 Local improvement step

Some authors (Carreno [26], Madhavi [7]) employ a local improvement step in single-objective optimization. This mechanism pursues the minimization of losses by the successive application of the branch-exchange technique. Their use improves the performance of the optimization for much reduced size populations.

However, none of the multi-objective contributions of literature includes the local improvement step in the optimization. The difficulty of applying the local improvement resides precisely in the multiplicity of objectives that can be improved by the procedure.

The NSGA-II determines every new generation of individuals by the nondominated sorting and selecting of individuals from the offspring population obtained by crossover and mutation of parents. This process allows the appearing in the new generation of better solutions in every of the considered objectives.

In present work, the local improvement step is applied once the offspring individual is obtained by crossover or mutation. The local improvement begins by selecting at random which objective will be improved in the individual. Then, the successive applying of the branch-exchange technique minimizes the selected objective.

In that way, the mechanism of sorting and selection of NSGA-II assures that the better solutions of different objectives, obtained by crossover, mutation and local improvement will be passed to the new generation.

The following steps show how works the improve procedure on the chromosome p_{1} :

1) Selects at random the objective $f_{\mathrm{i}}(x)$ to minimize.
2) For each gene $p_{1}(k)$ in chromosome
a. Finds the loop created by closing the branch $p_{1}(k)$ in the circuit.
b. Open the branch $\operatorname{loop}(j)$ that minimizes the objective function $f_{\mathrm{i}}(x)$.
c. If the objective function $f_{\mathrm{i}}(x)$ decreases, the gene $p_{1}(k)$ is substituted by gene loop (j) in chromosome p_{1}.
3) The procedure ends when none gene is substituted.

3.4 Initial population and convergence criteria

The initial population must contain only feasible chromosomes, which is achieved by using a variation of the Prim's algorithm [28] for generate random configurations of radial circuits. The base configuration of the circuit (with the tie branches open) is used as one of individuals in the initial population. If the local improvement option is selected, the initial population's individuals are improved by using the cited procedure.

The convergence of the optimization is achieved when all solutions in the population belongs to the first Pareto's front, and NSGA-II reach five stall generations. Otherwise, if 60% of population belongs to the first Pareto's front and NSGA-II reachs 50 stall generations, the optimization stops.

3.5 Main optimization algorithm

The main optimization algorithm developed for this work carries out the following steps:

1) The system data are read
2) The initial state of the system (base case) is evaluated.
3) The NSGA-II optimizer is executed until convergence is achieved.
4) The final population of the NSGA-II is saved for further analysis.

4. Examples of application

Among the many radial distribution systems present in literature, the 13.8 kV circuit of 136 nodes and 156 branches, and of the 10 kV circuit of 415 nodes and 473 branches (in references [14,15] is referred as the 417 nodes circuit), are used to test the presented methodology.

For purpose of comparison with literature, the energy cost factors $c_{k}(\$ / \mathrm{kWh})$ and the set of daily variation load curves for residential, commercial and industrial customers, taken from Souza [15] are used in the examples. These load curves
apply for both, active and reactive power taken into account the type of customer of the load. Possagnolo [29] presents all data of circuits as well as the type of customer of each load. All examples were run on an Intel® Core ${ }^{\mathrm{TM}}$ i5-4440 CPU@ $2 \times 3.10 \mathrm{GHz}$ and $4 \mathrm{~GB}-\mathrm{RAM}$.

Two different cases are solved in each circuit: 1) case with fixed load demand, and 2) case with variable load demand. The first objective function on cases with fixed load demand consists in the system power losses, while in cases with variable load demand, consists in the daily cost of the energy losses. Always the second objective function consists in the maximum voltage deviation ($\Delta \mathrm{V}$ max).

In addition, the effect of the local improvement step was tested by comparing the performance of optimization with local improvement with the optimization without local improvement. In every example presented, they were executed ten runs of the optimization to evaluate the performance of the algorithm.

4.1 Solutions for the circuit of 136 nodes with fixed demand

The circuit of 136 nodes have 156 branches. Thus, the number of open branches for this circuit is 21 . In the example, a population of only ten solutions is used for the optimization with local improvement while a population of 20 solutions is used for the optimization without local improvement.

As have been determined by Mahdavi [3], Souza [14], Carreno [26] and Possagnolo [29], the best solution for minimum losses of this example consists in the opening of the branches: $7,35,51,90,96,106,118,126,135,137,138$, $141,142,144,145,146,147,148,150,151,155$. This configuration have losses of 280.18 kW and minimum voltage of $0.958918 \mathrm{pu}(\Delta \mathrm{Vmax}=0.0411 \mathrm{pu})$.

The performance of both variants of the algorithm in ten runs of the optimization of the circuit of 136 nodes with fixed demand is shown in Table 1.

The results of the optimization with local improvement are better than that of the obtained without local improvement. The results show that the solution of minimum losses of 280.18 kW is not obtained in any of the runs without local improvement, while is reached in several of the runs with local improvement. However, the calculation time with local improvement is 5.43 times than that of the calculation time without local improvement.

The Pareto's front obtained with the best run of each variant (with local improvement and without local improvement) of the presented optimization algorithm are shown in Fig. 1, where is also shown the point that represents the referred best solution for minimum losses of 280.18 kW and maximum voltage deviation of 0.0411 pu .

Table 1
Optimization of the circuit of 136 nodes with fixed demand

	with local improvement		without local improvement				
	Best	Mean	Worst	Best	Mean	Worst	
Losses(kW)	280.18	280.19	280.21	280.21	280.46	281.28	
$\Delta V m a x(p u)$	0.033	0.033	0.033	0.033	0.033	0.033	
Iterations	12.0	17.2	27.0	70.0	106.1	126	
Time (s)	23.8	30.4	42.3	4.1	5.6	6.4	

Source: The authors.

Figure 1. Frontiers of Pareto for the circuit of 136 nodes with fixed demand Source: The authors

As can be seen (Fig. 1), the two objective functions are conflicting objectives. The solutions with lower losses present higher voltage deviations, while the solutions with lesser voltage deviations present higher losses.

Other solution that is near the point of the minimum losses solution but with better voltage is the solution marked in the frontier of solutions with local improvement. This solution with losses 280.21 kW and with voltage deviation $0.03945 \mathrm{pu}(\mathrm{Vmin}=0.960551 \mathrm{pu})$, consists in the opening of branches: $7,51,53,84,90,96,106,118,126,128,137,138$, $139,141,144,145,147,148,150,151,156$.

4.2 Solutions for the circuit of 136 nodes with variable demand

Souza [15] and Possagnolo [29] have determined the solution for minimum cost of daily losses of this example. That solution consists in the opening of the branches 7, 38, $51,54,84,90,96,106,118,126,135,137,138,141,144$, $145,147,148,150,151,155$. This configuration have losses cost of $\$ 256.88$, energy losses of 2211.285 kW.h and minimum voltage of $0.963865 \mathrm{pu}(\Delta \mathrm{Vmax}=0.0361 \mathrm{pu})$.

The Table 2 shows the performance of both variants of the algorithm in ten runs of the optimization of the circuit of 136 nodes with variable demand. Again, the optimization with local improvement is better respect to the quality of solutions in both objective functions. All runs with local improvement are capable of obtaining the solutions with minimum values of the two objective functions.

Table 2
Optimization of the circuit of 136 nodes with variable demand

	with local improvement		without local improvement			
	best	mean	worst	best	mean	worst
Cost (\$)	256.88	256.88	256.88	256.88	256.94	257.08
Δ Vmax (pu)	0.029	0.029	0.029	0.029	0.0305	0.0316
Iterations	11.0	16.1	24.0	81.0	111.6	194.0
Time (s)	96.3	126.3	172.3	15.4	20.4	35.5

Source: The authors.

Figure 2. Frontiers of Pareto for the circuit of 136 nodes with variable demand
Source: The authors

The Pareto's front obtained with the best run of each variant of the optimization algorithm are shown in Fig. 2. In addition, the point with the best solution for the minimum cost presented in literature, is also shown.

4.3 Solutions for the circuit of 415 nodes with fixed demand

The circuit of 415 nodes have 473 branches and operates with 59 open branches. The reconfiguration of this circuit is a much more complex problem than the reconfiguration of the circuit of 136 nodes. In the following examples, a population of 60 solutions is used for the optimization without local improvement and a population of only 15 solutions is used for the optimization with local improvement.

The best solution for minimum losses of this example, slightly better than that found by Souza [14], have been presented by Possagnolo [29]. That solution with 581.55 kW of losses and minimum voltage of 0.95466 pu ($\Delta \mathrm{Vmax}=$ 0.04534 pu), consists in the opening of branches: $5,13,15$, $16,21,26,31,54,57,59,60,73,86,87,94,96,97,111,115$, $136,142,149,150,155,156,158,163,168,169,178,179$, $191,195,199,209,214,254,256,270,294,317,322,325$, $354,362,369,392,395,403,404,416,423,426,431,436$, 437, 446, 449, 466.

The performance of both variants of the algorithm in the optimization of the circuit of 415 nodes with fixed demand is shown in Table 3.

Table 3
Optimization of the circuit of 415 nodes with fixed demand

	with local improvement		without local improvement			
	best	mean	worst	best	mean	worst
Losses (kW)	581.55	581.68	582.61	583.13	583.80	585.92
$\Delta V m a x ~(p u)$	0.0432	0.0442	0.045	0.0429	0.0436	0.0452
Iterations	15.0	35.3	55.0	945.0	1701.2	2254.0
Time (s)	487.3	993.0	1491.6	499.5	885.0	1156.9

Source: The authors.

Figure 3. Frontiers of Pareto for the circuit of 415 nodes with fixed demand Source: The authors.

In this case, the optimization without local improvement is not capable of obtaining the solution of minimum losses in none of the ten runs. Besides, the mean value of minimum losses obtained with the optimization without local improvement is 0.36% worst than the obtained with local improvement. Also, the spread of the minimum losses obtained without local improvement is 2.79 kW , almost three times the spread of the solutions obtained with local improvement.

With respect to the second objective, the maximum voltage deviation obtained by the optimization without local improvement is 0.06% better than the obtained by the optimization with local improvement. Both variants of the algorithm are approximately the same respect to the calculation time.

The Pareto's fronts for this case, obtained from the best run of each variant of the presented optimization algorithm, are shown in Fig. 3. In addition, is also shown the point of the best solution for minimum losses present in literature.

As can be seen (Fig. 3), the front of solutions obtained without local improvement is clearly separated from the zone of the minimum losses solution. Besides, the solutions with lower losses obtained without local improvement, have higher voltage deviations than the solutions obtained with local improvement.

4.4 Solutions for the circuit of 415 nodes with variable demand

The best solution for minimum losses cost for this example have been presented by Souza [15] and Possagnolo [29]. That solution with daily cost of $\$ 529.66$ and minimum voltage of $0.962472 \mathrm{pu}(\Delta \mathrm{Vmax}=0.03748 \mathrm{pu})$, consists in the opening of branches: $1,2,13,15,16,26,31,40,41,50$, $59,73,82,94,96,97,111,115,136,146,150,155,156,158$, $163,168,169,178,179,190,191,194,195,209,230,254$, $256,267,270,294,310,321,354,362,385,389,392,395$, 403, 404, 423, 424, 426, 436, 437, 439, 446, 449, 466.

Table 4
Optimization of the circuit of 415 nodes with variable demand

	with local improvement		without local improvement			
	best	mean	worst	best	mean	worst
Cost (\$)	529.66	530.00	530.49	529.70	530.03	531.31
$\Delta V m a x(p u)$	0.0342	0.0350	0.0360	0.0340	0.0343	0.0345
Iterations	17.0	41.6	69.0	1203.0	1700.0	2459.0
Time (s)	2148.1	4665.6	7537.6	2059.4	2896.8	4186.4

Source: The authors.

Figure 4. Frontiers of Pareto for the circuit of 415 nodes with variable demand
Source: The authors.

The performance of both variants of the algorithm in the optimization of the circuit of 415 nodes with variable demand is shown in Table 4. With respect to the first objective function, the mean value of minimum losses obtained with both variants of the algorithm is almost the same. However, the spread of the minimum losses obtained without local improvement is 1.61 kW , about twice the spread of the solutions obtained with local improvement. With respect to the second objective, the maximum voltage deviation obtained by the optimization without local improvement is 0.08% better than the obtained by the optimization with local improvement. In this case, the calculation time of the optimization without local improvement is about the 62% with respect to the optimization with local improvement.

The solutions of Pareto's front obtained with the best run of each variant of the presented optimization algorithm are shown in Fig. 4. Again, the point of the best solution for minimum cost present in literature is shown for comparison.

As can be seen (Fig.4), this is the example in which both Pareto's fronts are more similar between them. Other remarkable solution that is near in losses to the minimum losses solution but with better voltage is the solution marked in the frontier obtained without local improvement. This solution with losses cost of $\$ 529.9$ and voltage deviation $0.03644 \mathrm{pu}(\mathrm{Vmin}=0.963560 \mathrm{pu}$), consists in the opening of branches: $1,2,13,15,16,26,31,40,41,50,59,73,82,94$, $96,97,111,115,136,142,150,155,156,158,163,168,169$, $178,179,190,191,194,195,221,230,254,256,266,267$,
$282,314,321,354,362,385,389,392,395,403,404,423$, 424, 426, 436, 437, 439, 446, 449, 466.

5. Conclusion

In this work, the local improvement step commonly used in single-objective optimization is included in the multiobjective optimization by selecting at random the objective function that will be improved on each individual of the genetic algorithm population. That improvement is applied once the individual is produced by crossover or mutation.

Both variants of the algorithm, with or without local improvement, are capable to determine the frontier of Pareto for the multi-objective reconfiguration of distribution systems. However, the optimization with local improvement converges normally in lesser number of iterations to better non-dominated solutions. Besides, the use of the local improvement step reduce the spread among the solutions of consecutive runs, increasing the stability of results.

With respect to the calculation time, the optimization with local improvement employs more time per iteration and converge in less iterations. To reduce the calculation time, a much-reduced population of about 0.25-0.5 times the number of open branches of the circuit is used. However, even with this reduced population, in general the optimization with local improvement uses more calculation time in all cases.

References

[1] Mishra, S., Das, D., and Paul, S., A comprehensive review on power distribution network reconfiguration. Energy Systems, 8(2), pp. 227284. 2017. DOI: https://doi.org/10.1007/s12667-016-0195-7
[2] Sultana, B., Mustafa, M.W., Sultana, U., and Bhatti, A.R., Review on reliability improvement and power loss reduction in distribution system via network reconfiguration. Renewable and sustainable energy reviews, 66, pp. 297-310, 2016. DOI: https://doi.org/10.1016/j.rser.2016.08.011
[3] Mahdavi, M., Alhelou, H.H., Bagheri, A., Djokic, S.Z. and Ramos, R.A.V., A comprehensive review of metaheuristic methods for the reconfiguration of electric power distribution systems and comparison with a novel approach based on efficient genetic algorithm. IEEE Access, 2021. DOI: https://doi.org/10.1109/ACCESS.2021.3107475.
[4] Civanlar, S., Grainger, J.J., Yin, H. and Lee, S.S., H., Distribution feeder reconfiguration for loss reduction. IEEE Transactions on Power Delivery, 3(3), pp. 1217-1223, 1988. DOI: https://doi.org/10.1109/61.193906
[5] Baran, M.E. and Wu, F.F., Network reconfiguration in distribution systems for loss reduction and load balancing. IEEE Power Engineering Review, 9(4), pp. 101-102, 1989. DOI: https://doi.org/10.1109/61.25627
[6] Goswami, S.K. and Basu, S.K., A new algorithm for the reconfiguration of distribution feeders for loss minimization. IEEE Transactions on Power Delivery, 7(3), pp. 1484-1491, 1992. DOI: https://doi.org/10.1109/61.141868
[7] Nara, K., Satoh, T., Kuwabara, H., Aoki, K., Kitagawa, M. and Ishihara, T., Distribution systems expansion planning by multi-stage branch exchange. IEEE transactions on power systems, 7(1), pp. 208214, 1992. DOI: https://doi.org/10.1109/59.141705
[8] Abul-Wafa, A.R., A new heuristic approach for optimal reconfiguration in distribution systems. Electric Power Systems Research, 81(2), pp. 282-289, 2011. DOI: https://doi.org/10.1016/j.epsr.2010.09.00
[9] Shirmohammadi, D. and Hong, H.W., Reconfiguration of electric distribution networks for resistive line losses reduction. IEEE Transactions on Power Delivery, 4(2), pp. 1492-1498, 1989. DOI: https://doi.org/10.1109/61.25637
[10] Gomes, F.V., Carneiro, S., Pereira, J.L.R., Vinagre, M.P., Garcia, P.A.N. and Araujo, L.R., A new heuristic reconfiguration algorithm for large distribution systems. IEEE Transactions on Power systems, 20(3), pp. 1373-1378, 2005. DOI: https://doi.org/10.1109/TPWRS.2005.851937
[11] Su, C.T. and Lee, C.S., Network reconfiguration of distribution systems using improved mixed-integer hybrid differential evolution. IEEE Transactions on power delivery, 18(3), pp. 1022-1027, 2003. DOI: https://doi.org/10.1109/TPWRD.2003.813641
[12] Das, D., A fuzzy multiobjective approach for network reconfiguration of distribution systems. IEEE transactions on power delivery, 21(1), pp. 202-209, 2005 DOI: https://doi.org/10.1109/TPWRD.2005.852335
[13] Abdelaziz, A.Y., Mohammed, F.M., Mekhamer, S.F. and Badr, M.A.L., Distribution systems reconfiguration using a modified particle swarm optimization algorithm. Electric Power Systems Research, 79(11), pp. 1521-1530, 2009. DOI: https://doi.org/10.1016/j.epsr.2009.05.004
[14] Souza, S.S., Romero, R. and Franco, J.F., Artificial immune networks Copt-aiNet and Opt-aiNet applied to the reconfiguration problem of radial electrical distribution systems. Electric Power Systems Research, 119, pp. 304-312, 2015. DOI: https://doi.org/10.1016/j.epsr.2014.10.012
[15] Souza, S.S., Romero, R., Pereira, J. and Saraiva, J.T., Artificial immune algorithm applied to distribution system reconfiguration with variable demand. International Journal of Electrical Power \& Energy Systems, 82, pp. 561-568, 2016. DOI: http://dx.doi.org/10.1016/j.ijepes.2016.04.038
[16] Nara, K., Shiose, A., Kitagawa, M. and Ishihara, T., Implementation of genetic algorithm for distribution systems loss minimum reconfiguration. IEEE Transactions on Power systems, 7(3), pp. 10441051, 1992. DOI: https://doi.org/10.1109/59.207317
[17] Ramaswamy, P.C. and Deconinck, G., Smart grid reconfiguration using simple genetic algorithm and NSGA-II. $3^{\text {rd }}$ IEEE PES Innovative Smart Grid Technologies Europe, pp. 1-8, 2012. IEEE. DOI: https://doi.org/10.1109/ISGTEurope.2012.6465615
[18] Tomoiagă, B., Chindriş, M., Sumper, A., Sudria-Andreu, A. and Villafafila-Robles, R., Pareto optimal reconfiguration of power distribution systems using a genetic algorithm based on NSGA-II. Energies, 6(3), pp. 1439-1455, $2013 . \quad$ DOI: https://doi.org/10.3390/en6031439
[19] Sahoo, N.C. and Prasad, K., A fuzzy genetic approach for network reconfiguration to enhance voltage stability in radial distribution systems. Energy conversion and management, 47(18-19), pp. 32883306, 2006. DOI: https://doi.org/10.1016/j.enconman.2006.01.004
[20] Vitorino, R.M., Jorge, H.M. and Neves, L.P., Multi-objective optimization using NSGA-II for power distribution system reconfiguration. International Transactions on Electrical Energy Systems, 25(1), pp. 38-53, 2013. DOI: https://doi.org/10.1002/etep. 1819
[21] Hsu, F.Y. and Tsai, M.S., A non-dominated sorting evolutionary programming algorithm for multi-objectives power distribution system feeder reconfiguration problems. International Transactions on Electrical Energy Systems, 23(2), pp. 191-213, 2013. DOI: https://doi.org/10.1002/etep. 652
[22] Mendoza, J., López, R., Morales, D., López, E., Dessante, P. and Moraga, R., Minimal loss reconfiguration using genetic algorithms with restricted population and addressed operators: real application. IEEE Transactions on Power Systems, 21(2), pp. 948-954, 2006. DOI: https://doi.org/10.1109/TPWRS.2006.873124
[23] Gupta, N., Swarnkar, A., Niazi, K.R. and Bansal, R.C., Multi-objective reconfiguration of distribution systems using adaptive genetic algorithm in fuzzy framework. IET Generation, Transmission \& Distribution, 4(12), pp. 1288-1298, 2010. DOI: https://doi.org/10.1049/iet-gtd.2010.0056
[24] Zidan, A. and El-Saadany, E.F., Distribution system reconfiguration for energy loss reduction considering the variability of load and local renewable generation. Energy, 59, pp. 698-707, 2013. DOI: https://doi.org/10.1016/j.energy.2013.06.061
[25] Eldurssi, A.M., and O'Connell, R.M., A fast nondominated sorting guided genetic algorithm for multi-objective power distribution system reconfiguration problem. IEEE Transactions on Power Systems, 30(2),
pp. \quad 593-601, $2014 . \quad$ DOI: https://doi.org/10.1109/TPWRS.2014.2332953
[26] Carreno, E.M., Romero, R. and Padilha-Feltrin, A., An efficient codification to solve distribution network reconfiguration for loss reduction problem. IEEE Transactions on Power Systems, 23(4), pp. 1542-1551, 2008.

DOI: https://doi.org/10.1109/TPWRS.2008.2002178
[27] Aravind, S., NSGA-II source code [Online]. 2012. Available at: http://www.mathworks.com/ matlabcentral/fileexchange/10429-nsga-ii-a-multi-objective-optimization-algorithm/ content/NSGA-II/
[28] Prim, R.C., Shortest connection networks and some generalizations. Bell System Technical Journal, 36(6), pp. 1389-1401. DOI: https://doi.org/10.1002/j.1538-7305.1957.tb01515.x
[29] Possagnolo L.H.F.M., Distribution systems reconfiguration operating in several demand levels through of the variable neighborhood search. MSc. Thesis, Campus of Ilha Solteira, Unesp, Univ Estadual Paulista, 2015

G. Crespo-Sánchez, received the BSc. Eng. in Electrical Engineering and MSc. in the Electrical Engineering School, from the Central University "Marta Abreu" of Las Villas, Santa Clara, Cuba in 1984 and 2005, respectively. He is an auxiliary professor and vice dean of research and postgraduates since 2006 and 2020 respectively, of Engineering School at University of Cienfuegos, Cienfuegos, Cuba. He received the BSc. in English Language in 2019. Current master's degree professor team member in energy efficiency. His research interests include electrical distribution network reconfiguration, optimization, electrical power systems operation and energy efficiency. ORCID: 0000-0003-0850-197X

I. Pérez-Abril, received the BSc. Eng. in Electrical Engineering and PhD . at Electrical Engineering School, from the Central University "Marta Abreu" of Las Villas, Santa Clara, Cuba in 1984 and 1995, respectively. He is a full professor of Electrical Engineering at Central University "Marta Abreu" of Las Villas and Director of the Electric Studies Center from 2006. His research interests include efficiency and quality of electrical power systems, optimization, and electrical power systems operation.
ORCID: 0000-0001-9547-6615

[^0]: How to cite: Crespo-Sánchez, G. and Pérez-Abril, I., Multi-objective reconfiguration of the distribution systems by using NSGA-II and local improvement. DYNA, 90(229), pp.

