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Abstract
Aim of study: (i) To investigate the diversity of arbuscular mycorrhizal fungi (AMF) associated with the roots of seed 

trees stands in a conserved and natural population of mahogany (Swietenia macrophylla), based on rDNA sequences; 
and (ii) to evaluate the dual colonization by AMF and dark septate fungi (DSF), showing the types of fungal colonization 
patterns in the dry season..

Area of study: Tropical rainforest of Ejido Laguna Om, Quintana Roo, Mexico.
Materials and methods: We evaluated the AMF and DSF colonization in secondary root segments of ten adult trees of 

mahogany. We analysed the diversity of AMF in one composite sample of mahogany roots (three trees) using 18S rDNA 
gene with Illumina MiSeq platform.

Main results: Through metabarcoding 14 virtual taxa belonging mainly to the genus Glomus and Diversispora were 
obtained, VTX00186 being the most abundant. The percentages of colonization for the different fungal structures were 
hyphae 80%, vesicles 18%, coils 2%, and arbuscules 0.5%; for DSF, 60% hyphae and 12% microsclerotia. The Paris-type 
colonization predominated with 61% in the roots. 

Research highlights: The knowledge of the AMF diversity present in natural mahogany forests will allow the selection 
of species for inoculation management seeking to enhance seedling survival and growth of this species. 

Additional key words: arbuscular mycorrhiza fungi; dark septate endophytes; symbiosis; mahogany; tropical tree; 
virtual taxon.

Abbreviations used: AMF (arbuscular mycorrhizal fungi); DSF (dark septate fungi); VT (virtual taxa).
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Introduction

The big-leaf mahogany (Swietenia macrophylla 
King) is a tree mainly found in natural wet and dry 
tropical forests worldwide, in a wide variety of climatic 
and edaphic conditions (Mayhew & Newyon, 1998; 
Navarro-Martínez et al., 2018). Big-leaf mahogany is a 
highly appreciated fine timber that is an economically 
important and emblematic species from the Neotropics 
(Langbour et al., 2011; Navarro-Martínez et al., 2020). 
Its natural distribution includes fragmented populations 
from southeastern Mexico along the Atlantic coast of 
Central America and northern South America, occupying 
a large geographical arc south of the Amazon, between 
Brazil, Colombia, Peru and Bolivia (Lamb, 1966; Snook, 
1996). This tropical tree has been intensively exploited 
and subjected to international trade for over 300 years, 
showing, therefore, a decline in its population size and 
increased fragmentation in several areas of its natural 
distribution (Navarro & Hernández, 2004; Grogan et 
al., 2010). Mexico reports a loss of 76% of the tropical 
evergreen forest areas containing mahogany trees by the 
end of the 20th century (Calvo et al., 2000). The original 
distribution of mahogany in Peru and Bolivia decreased 
by 4% and 8%, respectively, while a region between 
Venezuela and Bolivia, underwent 58 million hectares 
of deforestation until 2001 (representing 20% of the 
original distribution) (Kometter et al., 2004). In contrast, 
the Yucatan Peninsula, specifically in protected areas and 
forest ejidos in Quintana Roo and Campeche, harbors 
semievergreen and semideciduous forests with abundant 
and conserved populations of mahogany (Navarro-
Martínez et al., 2018, 2020). Currently, mahogany is a 
preferred species for reforestation and the establishment 
of commercial plantations throughout tropical America 
(Negreros-Castillo et al., 2018).

Vascular plants host a great variety of soil fungi, being 
susceptible to soil-borne pathogens, but plant roots are 
also colonized by non-pathogenic fungi like arbuscular 
mycorrhizal fungi (AMF) and dark septate fungi (DSF) 
(Mandyam & Jumpponen, 2005). Remarkably, AMF 
(belonging to Glomeromycota phylum) are an important 
ecological and economics group of soil fungi forming 
symbiotic associations with the vast majority of plants 
(Wang & Qiu, 2006; Brundrett & Tedersoo, 2018; Chen et 
al., 2018), including most forest tropical species (Stürmer 
et al., 2018). In this association, these fungi receive their 
carbon sources from the plants in exchange for water 
and minerals (e.g., P, N). As such, they play critical 
roles in the biogeochemical cycle of C, N and P (van der 
Heijden et al., 2015). Most tropical forest species have 
different grades of dependence on AMF, depending on 
successional stages or soil fertility (Danieli-Silva et al., 
2010; Schüßler et al., 2016).

The AMF symbiosis deserves more attention in trop-
ical ecosystems, especially in degraded tropical regions 

where the availability of nutrients such as phosphorus is 
a limiting factor in plant growth. Different studies have 
addressed the identification of AMF spores within the 
rhizosphere and root colonization (i.e., vesicles and ar-
buscules) of seedling and mahogany trees in Neotropical 
natural areas (Herrera & Ferrer, 1980; Rodriguez-More-
los et al., 2014), young plantations in the Amazon re-
gion (Noldt & Bauch, 2001; Pereira et al., 2014) and 
agroforestry systems and tropical forests of Southeast 
Asia where mahogany was introduced for cultivation 
(Dhar & Mridha, 2006, 2012; Shi et al., 2006, 2007; 
Mridha & Dhar, 2007; Nandi et al., 2014). However, 
the taxonomic identity of the specific AMF species col-
onizing the roots of S. macrophylla remains unknown. 
An increasing number of case studies report Glomero-
mycota molecular diversity from ecosystems worldwide 
(Husband et al., 2002; Lara-Pérez et al., 2020. A unique 
molecular operational taxonomic unit (MOTU) nomen-
clature – virtual taxa (VT) –, was performed to classify 
AMF rRNA sequences, as implemented in a public data-
base MaarjAM (http://www.maarjam.botany.ut.ee; Öpik 
et al., 2010, 2014). Then a consistently named system of 
small-subunit (SSU) rRNA gene sequence phylogroups 
can be used as a proxy for species and/or higher-level 
organism identification in ecological research (Öpik et 
al., 2014).

According to Rodriguez et al. (2009), the DSF (Class 
4 endophytes) are distinguished as a functional group 
based on the presence of darkly melanized septa, and 
their restriction to plant roots, primarily ascomycetous 
fungi that are conidial or sterile and that form melanized 
structures such as inter- and intracellular hyphae and 
microsclerotia in the roots. DSF are found worldwide 
and coexist often with different mycorrhizal fungi. They 
have been reported from 600 plant species including 
plants that have been considered non-mycorrhizal 
(Jumpponen & Trappe, 1998). However, studies of 
endophytic fungi carried out in tropical forests are 
limited to fungal species that colonize the above-
ground part of the plant (Arnold et al., 2000; Cannon 
& Simmons, 2002; Silva et al., 2018). Lately, 55 
endophytic fungi (Class 2 endophytes) were isolated 
from the roots of mahogany monoculture and identified 
by their rDNA ITS1 region (Rodriguez et al., 2009; 
Maulana et al., 2018). A close relationship between 
DSF and AMF with P availability and uptake in plants 
was suggested. Whereas DSF increases the pool of P in 
the rhizosphere, AMF are responsible for P transfer to 
the host, with co-colonization of plants by dual fungal 
colonization suggesting a synergistic outcome (García 
et al., 2012; Della Monica et al., 2015).

In the present study, the specific objectives were 
to (i) describe the diversity of AMF in the roots of S. 
macrophylla, based on rDNA sequences and (ii) evaluate 
the dual colonization by AMF and DSF, showing the 
types of fungal colonization patterns.
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Material and methods

Study area and sampling design
This study was conducted in permanent plots of S. 

macrophylla seed trees, within a natural tropical rainforest 
from Ejido Laguna Om (18°25’60”N & 89°7’60”W), 
municipality of Othón P. Blanco, Quintana Roo, Mexico. 
The dominant accompanying plant species include 
Manilkara zapota (L.) P. Royen, Vitex gaumeri Greenm, 
Lysiloma latisiliquum (L.) Benth, Brosimum alicastrum 
Sw. and Acacia collinsii Saff. The climate is warm 
subhumid with rains in summer and winter. The average 
temperature is 26°C and the annual precipitation is 1290 
mm (INEGI, 2016).

Ten adult seed trees of mahogany were selected, 
at a distance of at least 100 m between individuals, for 
sampling mycorrhizal roots. Select trees had ages of 32.6 ± 
4.6 years, basal diameter (± SD) of 1.4 ± 0.43 m and height 
(± SD) of 12.3 ± 3.21 m. Samples were obtained during the 
dry season of 2016, from February to April, removing the 
organic matter and digging up to 20 cm depth; secondary 
roots anchored to the supporting mahogany roots were 
collected. After removing adhering soil, samples were 
deposited in hermetic bags and microtubes of 1.5 mL;10 
cm of additional roots were placed in cetyltrimethyl 
ammonium bromide (CTAB) buffer solution as described 
by Harrison et al. (1994), for their temporary preservation 
and subsequent laboratory analysis.

Mycorrhizal and DSF colonization

To determine the degree of mycorrhizal and DSF 
colonization, we used the method of Phillips & Hayman 
(1970) as modified by Kormanik et al. (1980). Secondary 
root segments of 1-2 cm were used, KOH (10% w/v) was 
added to permeate and clarify the cells, then root segments 
were autoclaved for 10 min at 121 °C (68977.59 Pa), then 
H2O2 (10% v/v) was added for 10 min to remove pigments, 
then roots were acidified with HCl (10% v/v) for 3 min, 
and stained with trypan blue in an autoclave for 10 min at 
121 °C.

To evaluate fungal colonization, three replicates of 
15 root segments of 1 cm each (45 cm total per tree), 
were placed in parallel on a slide and fixed with glycerin 
for observation under a microscope a 10x and 40x. We 
analyzed a total of 450 cm of root for this study, and only 
stained cenocitic hyphae, coils, vesicles, and arbuscules 
were counted to determine AMF colonization. The 
mean percentages of these fungal structures in all root 
segments were used in our analysis. To quantify dark 
septate fungal colonization, we counted the presence 
of hyphae that were both septate and melanized with 
thick walls, and microsclerotia. The fungal structures 
observed were recorded with a Nikon D850 camera. The 

Figure 1. Relative abundance (%) of virtual taxa of 
arbuscular mycorrhizal fungi associated with secondary 
roots of mature trees of Swietenia macrophylla.

presence of intracellular and intercellular hyphae, as well 
as Arum-type arbuscules and Paris-type arbuscules, and 
the percentage of total colonization was quantified. The 
Arum-type colonization is characterized by intercellular 
hyphae and well-defined arbuscules; Paris-type consists 
of intracellular hyphae, the presence of coils or coils 
with rudimentary arbuscules; and the intermediate is the 
combination of the two patterns of colonization (Dickson, 
2004). The data were analyzed with the non-parametric 
U-Mann Whitney test (p < 0.05), in the PAleontological 
STatistics (PAST) program.

DNA extraction and bioinformatics 

Genomics DNA was extracted from 300 mg of a 
composite sample of mahogany roots (three trees) using 
the DNeasy Plant Mini Kit (QIAGEN, Hilden, Germany) 
following the manufacturer´s instructions with 50 mL of 
elution buffer. DNA was sent to the Research and Testing 
Laboratory (Lubbock, TX, USA) for Illumina MiSeq 
sequencing, targeting a partial sequence of the small-
subunit (SSU) 18S rRNA gene. To perform sequencing 
reactions, the methodology reported by Lara-Pérez et al. 
(2020) was followed.

Denoising, homopolymers, and chimeric sequences 
were removed using UCHIME (Edgar et al., 2011). 
Virtual taxa (VT) were assigned with Blast search against 
the MaarjAM AMF database with sequence similarity ≥ 
97%, and choosing the sequences with the highest values 
for the phylogenetic tree. We used the VT concept that 
allows standardization, as well as binomial taxonomic 
nomenclature, and comparison between studies where 
phylogenetically defined sequence variations correspond 
roughly to species-level taxa. We employed MaarjAM 
database described by Öpik et al. (2014) for the 
identification of environmental sequences. Application of 
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VT is becoming widespread, and the MaarjAM database 
is increasingly used as a reference for environmental 
sequence identification.

Representative sequences for each VT were chosen 
for phylogenetic analysis. The phylogenetic tree was 
performed using the Neighbor-joining methodology 
with the MEGA 7 program (Tamura et al., 2007) with 
the Kimura-2 model (Kimura, 1980), and the bootstrap 
method (Felsenstein, 1985) with 1000 replicates as 
support for the branches. Sequences of Paraglomus 
laccatum (AM295493) and Paraglomus brasilianum 
(AJ301862) were obtained from the NCBI database 
(www.ncbi.nlm.nih.gov) and used as outgroup. 
Representative sequences of each VT were submitted 
to the NCBI database under accession numbers from 
MK511799 to MK511809.

Figure 2. Phylogenetic tree of representative sequences of arbuscular 
mycorrhizal fungi virtual taxa associated with secondary roots of 
Swietenia macrophylla. Reference sequences from the MaarjAM database 
(Öpik et al., 2010). Bootstrap support values > 50 (999 iterations) are 
shown. Sequences from the present study are indicated with gray circles. 
New sequences have been submitted to the NCBI database (accession 
numbers from MK511799 to MK511809).

Results

Metabarcoding
In total, we obtained 2840 reads and designated VT 

based on sequence similarity with a minimum identity 
≥ 97%. Eleven VTs were obtained, that correspond to 
Glomus sp. (10) and Diversispora sp. (1). The four most 
abundant VT were VT186, VT126, VT129, and VT87 in 
order of priority (Figs. 1 and 2).

Colonization by fungal groups

In the present study, the co-occurrence of interactions 
of fungi like AMF and DSF were observed in mahogany 
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Figure 3. Arbuscular mycorrhizal 
fungi structures in secondary roots of 
mature trees of Swietenia macrophylla. 
A, arbuscules; V, vesicles; C, coils; Ih, 
intracellular hyphae. Bar: 50 µm.

Figure 4. Dark septate fungi structures on 
secondary roots of mature trees of Swietenia 
macrophylla: mc, microsclerotia; sh, 
septate hyphae. Bar: 50 µm.

roots. Different AMF structures such as hyphae, coils, 
vesicles, and arbuscules were identified (Fig. 3). Septate 
hyphae and microsclerotia corresponding to DSF were 
also observed (Fig. 4). We found significantly (p < 0.05) 
higher colonization of AMF than DSF. The roots of adult 
mahogany trees presented 80% of AMF colonization, 
while DSF fungal structures were present in 66% of 
root-length colonization (Fig. 5a). Hyphae were the 
most frequent structures in mahogany roots with 80% 
colonization, followed by vesicles with 18%, coils 2%, 
and arbuscules with 0.5%. Septate hyphae were observed 
in 60% and microsclerotia in 12 % of root length 
colonization (Fig. 5b).

Mycorrhizal colonization

Mycorrhizal colonization on mahogany roots was 
mainly Paris-type, characterized by intracellular hyphae 
and arbuscules, with 62% of root length colonization. The 
intermedia type colonization was 7% and the Arum-type 
was detected in only 4% of the root length (Fig. 5c).

Discussion
The great majority of the VT detected in this study 

belonged to the Glomeraceae, which is the most widespread 
and largest family within the phylum Glomeromycota 
that includes 16 genera (Wijayawardene et al., 2022). 

Nowadays, comparisons between AMF diversity studies 
are difficult due to the scarcity of studies in natural 
tropical ecosystems, and the different methods used (e.g., 
spore identification, PCR-cloning, Terminal Restriction 
Fragment Length Polymorphism, pyrosequencing) 
(Rodríguez-Echeverría et al., 2017). A high diversity of 
AMF colonizing the roots of woody species from tropical 
forests has been reported (Husband et al., 2002). However, 
morphological and molecular studies on colonized roots 
by AMF in neotropical rain forests are still limited.

In general, a high predominance of Glomeraceae 
has been observed by spore identification within the 
rhizosphere of mahogany mature trees, like in agroforestry 
systems established in Bangladesh (Dhar & Mridha, 2006, 
2012; Mridha & Dhar, 2007), tropical evergreen forest 
(plantation) in China (Shi et al., 2006, 2007), or young 
plantations in the Atlantic Forest in Brazil (Pereira et al., 
2014). However, Rodríguez-Morelos et al. (2014) observed 
a weaker predominance of Glomeraceae in mature trees 
of tropical rain forests in Mexico; they reported 21 AMF 
spore morphotypes, primarily of Glomeraceae (52.3%) and 
Acaulosporaceae (38%). Indeed, in general co-dominance 
by Glomeraceae and Acaulosporaceae in the tropical forest 
has been suggested (Leal et al., 2013). Our study showed 
a single VT belonged to the Diversisporaceae family. 
Likewise, an AMF spore morphotype (e.g. Diversispora 
aurantium) was identified whatever the phenological 
stage of mahogany (Rodríguez-Morelos et al., 2014). 
We recorded a VT (Glomus macrocarpum), previously 
reported as the dominant AMF in the mahogany plantations 



Forest Systems December 2023 ● Volume 32 ● Issue 3 ● e018

6 Guadalupe Sánchez-Reyes, Luis A. Lara-Pérez, Luis Sáenz-Carbonell, Víctor H. Rodríguez-Morelos et al.

colonize the roots (Hart & Reader, 2002; de Souza et 
al., 2005). Conversely, the Glomeraceae family allocates 
energy to high intraradical colonization (e.g., arbuscules, 
vesicles, coils, and unspecialized hyphae) (de Souza 
et al., 2005). Root colonization levels for individual 
fungi strongly depend on the host tree species and the 
colonization strength does not correlate with plant growth 
promotion (Schüßler et al., 2016). 

Results from studies based on the isolation of 
glomerospores from the rhizosphere of mahogany and 
the molecular approach in this study indicate that the 
predominant AMF species belong to the genus Glomus. 
Certain species in this family have been shown to be 
easily propagated in trap cultures, which can be used to 
obtain inoculum for commercial forest plants (Schüßler 
et al., 2016). The interaction between these species and 
mahogany seedlings has been demonstrated to improve 
their relative growth rate and water potential, both of 
which are key factors in increasing seedling survival in 
commercial plantations and restoration programs (Rajan et 
al., 2020). The first step in this process is to isolate the AMF 
from seed tree stands in conserved and natural populations 
of mahogany, and then to test the different effects of single 
AMF species or consortia in controlled environments 
(Holste & Kobe, 2017). An alternative method is to collect 
roots from mahogany to generate trap cultures and obtain 
the species associated with the target species, although 
this approach is less successful than using soil to increase 
inoculum. The percentage of root length colonization 
by DSF is high, which could be significant for nutrient 
acquisition by established adult plants and seedlings. It is 
noteworthy that some species of the DSF can be isolated 
and cultured successfully using basic techniques (Maulana 
et al., 2018).

In this study, a high AMF colonization (80%) in 
mahogany roots was observed. Meanwhile, colonization 
between 30% and 69.3% was reported from plantations 
of introduced populations of mahogany in Southeast Asia 
(Shi et al., 2006; Mridha & Dhar, 2007; Dhar & Mridha, 
2012; Nandi et al., 2014) and 53.2% was noticed on 
mahogany plants after two years in Costa Rica (Holste 
& Kobe, 2017). A pot experiment found a percentage of 
root colonization between 27.4% and 44.9% according to 
AMF inoculation after 180 days (Rajan et al., 2020). Our 
findings show different percentages of root colonization 
in mahogany compared to previous works, where they 
have studied various environments such as natural and 
introduced populations (Shi et al., 2006; Mridha & Dhar, 
2007; Rajan et al., 2020). However, all works showed that 
mahogany is consistently colonized by AMF.

Our results showed mainly Paris-type colonization 
in roots. Similarly, a predominant presence of Paris-
type colonization was observed in Meliaceae trees of 
natural forest (Smith & Smith, 1997; Shi et al., 2006). 
Noldt & Bauch (2001) recorded in roots of mahogany 
seedlings, under plantation, structures of the Arum-type, 

Figure 5. Percentages of root length colonization on 
secondary roots of Swietenia macrophylla mature trees 
by: (a) arbuscular mycorrhizal fungi (AMF) and dark 
septate fungi (DSF); (b) AMF (hyphae, vesicles, coils and 
arbuscules) and DSF (septate hyphae and microsclerotia); 
(c) AMF colonization types; intermediate colonization is 
the combination of Arum-type and Paris-type colonization. 
Values are presented as means ± SE (n = 10). Different letters 
above the histogram bars indicate significant differences 
between groups (p<0.05, U-Mann Whitney test).

(Pereira et al., 2014). Members of Acaulosporaceae, 
Ambisporaceae, Gigasporaceae and Paraglomeraceae 
previously reported in mahogany rhizosphere were not 
found colonizing roots (Rodríguez-Morelos et al., 2014). 
These groups are characterized by a limited ability to 
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with appressoria penetration and coiled hyphae with a 
high frequency of vesicle and arbuscules. Arum-type 
colonization is more commonly found in crop plants 
while Paris-type is more common in plants from natural 
ecosystems (Matekwor Ahulu et al., 2005), although 
several studies (Dickson, 2004; Yamato, 2004) have 
found that AMF morphological structures appear to be 
dependent on individual plant species, the fungal species 
involved, and environmental conditions (e.g. salinity, 
drought). Additionally, these fungal symbionts have been 
reported to be functionally distinct (Jumpponen, 2001). 
In our study, the simultaneous occurrence of DSF and 
AMF were observed which is consistent with the findings 
of Muthukumar et al. (2006) and Zhao et al. (2016), 
in tropical ecosystems. Also, Rodríguez-Morelos et al. 
(2014) recorded a percentage of mahogany root length 
colonization by DSF between 6.09% (trees) and 5.5% 
(seedlings). However, despite the mix colonization, we do 
not know the functions in Meliaceae. Further investigations 
need to be done towards the identity of the fungi and to 
carry out an experimental assay to test their functions, 
and to consider implementation in mahogany seedling 
production. More recently, 55 endophytic fungi (Class 
2 endophytes according to Rodriguez et al., 2009) were 
isolated from a S. macrophylla plantation and identified by 
the rDNA ITS1 region (Maulana et al., 2018) elucidating a 
high DSF diversity associated with mahogany roots.

Remarkably, inoculation of tropical tree seedlings with 
AMF can improve tree growth and viability, but efficiency 
may depend on plant and AMF genotype (Schüßler et al., 
2016). Particularly, a differential effect of AMF inoculation 
on mahogany was noticed lately (Holste & Kobe, 2017; 
Rajan et al., 2020). Furthermore, dual colonization by AMF 
and DSF may aid plants in surviving in highly stressed 
environments (Della Monica et al., 2015; Zhao et al., 2016). 

Conclusions
The roots of S. macrophylla display a mixed 

colonization pattern, with both AMF and DSF. Percentage 
of root length colonization was significant higher in AMF 
than DSF. Among the AMF, there was a predominance of 
the Paris-type colonization in the roots, while the presence 
of septate hyphae characterized the DSF; AMF and DSF 
were colonized. Through metabarcoding, 14 virtual 
taxa (VT) belonging mainly to the genus Glomus and 
Diversispora were obtained, VTX00186 being the most 
abundant. However, information on the diversity and the 
effect of the dual colonization by AMF and DSF on tropical 
trees remains unknown. Studies of dual colonization by 
AMF and DSF would deserve more attention due to the 
little knowledge about the diversity and potential of these 
fungi in association with tropical plants. Studies related to 
the production of fungal inoculum for the production of 
tropical plant species are necessary. Despite its paramount 

importance, currently, there is only limited use of these 
fungi in reforestation programs on a large scale.
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