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Abstract

The semantic paradoxes show that semantic theories that internalize their semantic concepts, 
such as truth and validity, cannot validate all classical logic. That is, it is necessary to weaken 
some connective of the object language, taken as the guilty of the paradoxes, or give up some 
property of the consequence relation of the logical theory. Both strategies may distance us 
from classical logic, the logic commonly used in our current mathematical theories. So, a 
desirable solution to semantic paradoxes cannot distance us from classical logic. This paper 
analyzes two interesting proposals that aim to maintain classical logic as most as possible. 
The first strategy, the Barrio & Pailos & Szmuc-approach (2017) (BPS-approach), proposes 
the paraconsistent logic MSC that contains in its object language a connective capable of 
recovering classical inference whenever the sentences at issue are consistent. So, they show 
that it is possible to build a semantic theory over this logic that is immune to the semantic 
paradoxes. The second approach is based on the hierarchy STω of non-transitive systems 
STn, proposed by Pailos (2020a). This hierarchy recovers classical metainferences as many as 
possible in higher levels of the hierarchy. We argue in favor of the second approach by arguing 
that the first strategy must adopt weak self-referential procedures to avoid the paradoxes.
Keywords: semantic paradoxes, recovery operators, paraconsistent logics, substructural 
logics, classical logic.

Resumen

Las paradojas semánticas muestran que las teorías semánticas que internalizan sus propios 
conceptos semánticos, como la verdad y la validez, no pueden validar toda la lógica clásica. 
Es decir, es necesario debilitar algún conectivo del lenguaje objeto, tomado como culpable 
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de las paradojas, o renunciar a alguna propiedad de la relación de consecuencia de la teoría 
lógica. Ambas estrategias pueden alejarnos de la lógica clásica, que es la lógica comúnmente 
utilizada en nuestras teorías matemáticas actuales. Por tanto, una solución deseable a las 
paradojas semánticas no debería alejarnos de la lógica clásica. En este trabajo analizamos 
dos propuestas interesantes que pretenden mantener la lógica clásica al máximo posible. La 
primera estrategia, Barrio & Pailos & Szmuc-approach (2017) (BPS-approach), propone 
la lógica paraconsistente MSC que contiene en su lenguaje objeto un conectivo capaz de 
recuperar la inferencia clásica siempre que las oraciones en cuestión sean consistentes. Así, 
muestran que es posible construir una teoría semántica sobre esta lógica que sea inmune 
a las paradojas semánticas. El segundo enfoque se basa en la jerarquia STω de sistemas no 
transitivos STn, propuesta por Pailos (2020a). Esta jerarquía recupera tantas metainferencias 
clásicas como sea posible en los niveles superiores de la jerarquía. Argumentamos a favor del 
segundo enfoque, argumentando que la primera estrategia tiene que adoptar procedimientos 
autorreferenciales débiles para evitar las paradojas.
Palabras clave: paradojas semánticas, operadores de recuperación, lógicas paraconsistentes; 
lógicas subestructurales; lógica clásica.

1. Introduction

The semantic paradoxes impose a limit in the project of formulating a semantic theory 
T capable of expressing its own semantic concepts. First, by Tarski’s undefinability theorem 
(Tarski, 1956; 1933), it is impossible to introduce the truth predicate that states “[A] is true 
if and only if A”, where [A] is the name of A, in the object language of semantic theories T 
based on classical logic that are able to express their own syntax, due to the inconsistency 
caused by Truth paradox. Second, as Beall & Murzi (2013), these theories are not capable 
to express their on validity predicate that states “there is a valid derivation of [B] from [A]” 
due to the inconsistency caused by Curry paradox. These impossibilities results are due to the 
expressive capability of T of formulating self-referential statements.

As it is widely known, many solutions to these paradoxes propose to weaken the base 
logic L of T by weakening the deductive behaviour of the logical connectives (Kripke, 
1976; Goodship, 1996; Priest, 2006; Field, 2008; Barrio et al., 2017; Pailos, 2020b) or by 
weakening the deductive properties of the deductive relation of L (Ripley, 2013; Zardini, 
2013; Meadows, 2014; Weber, 2014; French, 2016; Murzi and Rossi, 2021). Each solution 
blocks these paradoxes in a specific way.

On the other hand, in blocking these inconsistency results, many of these solutions pay a 
high cost. By dropping one or more properties of classical logic, these non-classical solutions 
fail to validate many inferences that are usually performed in the current scientific practice. 
This preocupation with the recapture of classical inferences is not new in the literature. 
Indeed, the forefather of paraconsistency Da Costa (1974) introduced his hierarchy of 
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paraconsistent systems that are able to recover classical inferences with the aid of classicality 
connectives. Although his works on paraconsistency did not have the preocupation with 
semantic paradoxes, it shows that the preocupation with classical recapture is not a novelty. 
Priest (2006) introduces the minimally inconsistent logic mLP in order to recover classical 
inferences when there is no paradoxical sentence involved.

The classical recapture was vastly explored in recente years. Da Costa’s original idea deeply 
influenced the Logics of Formal Inconsistency (Carnielli et al. 2007; Carnielli et al., 2016). 
The Logics of Formal Inconsistency (henceforth, LFIs) are a family of paraconsistent systems 
that recovery classical inferences once some consistency assumptions are made. These logics 
have classicality connectives that makes possible the recovery of classical inferences. This 
interesting idea was widely discussed and applied to distinct contexts. Antunes (2020) and 
Tajer (2020) show that these logics have sufficient expressive power to accommodate Priest’s 
recapture proposal as well as Beall’s shrieking method (Beall, 2013).

However, this recovery strategy does not work well in the context of semantic paradoxes. 
As Barrio et al. (2017) proves, many theories of truth that have the expressive strenght of LFIs 
are trivial. So it is also necessary to weaken the self-referential procedures of these semantic 
theories with the aid of weak biconditionals. But, as Rosenblatt (2021) argues, this movement 
is ad hoc, because there is no clear justification of why it is necessary to weaken the self-
referential procedures. Moreover, as Picollo (2020) shows, these classicality connectives fail in 
recovering the validity of instances of the induction axioms in some non-classical theories of 
truth. Then, as these criticisms shows, the introduction of recovery operators face significant 
difficulties in the context of semantic theories. 

In this paper, we argue that the semantic theory STTω, introduced by Pailos (2020a) and 
explored in Barrio et al. (2021), offers an adequate approach to a semantic theory of truth, 
and can be non-trivially extended with a validity predicate. STTω is comprised by an infinite 
hierarchy of non-transitive systems that allows to recover the classical metainferences we lose 
at each step of the hierarchy. This paper is organized as follows. In the Section 2, we present 
the paradoxes of truth and validity. We also discuss the problems concerning the deductive 
weakeness of the non-classical solutions to these paradoxes. In Section the 3, we present 
Barrio et al. (2017)’s proposal, which proposes to introduce a consistency connective in 
paraconsistent theories of truth in order to recover classical inferences whenever the sentences 
involved are not paradoxical. We also present some criticisms that this approach faces. In the 
Section 4, we present the hierarchy of strict tolerant logics, introduced by Pailos (2020a), that 
can be a basis to a non-trivial theory of truth. In the Subsection 4.1, we discuss the advantages 
of this approach, some criticisms that this proposal faces, and we respond these criticisms. In 
the Section 5, we close the discussion with a few remarks.
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2. Paradoxes of truth and validity

Tarski’s undefinability theorem shows that no theory T based on classical logic and that 
has expressive power to talk about its own syntax can have a truth predicate Tr that satisfies 
the following schema:

(Schema-Tr)  Tr([A]) ↔ A.
Where [A] is the name of A. The reason for such impossibility is that these theories have 

sufficient deductive power to prove Diagonalization lemma, which allow them self-referential 
statments and, among them, the sentence that state its own falsity:

(Liar sentence)  λ ↔ ~Tr([λ]).
Let |=T be the consequence relation of T. The (Liar sentence) generate the inconsistency 

known as truth paradox, whose derivation is given as follows:
1. |=T λ ↔ ~Tr([λ])   (Liar sentence) 
2. |=T λ ↔ Tr([λ])   (Schema-Tr)
3. |=T Tr([λ]) ↔ ~Tr([λ])  Transitivity of ↔1, 2
4. |=T Tr([λ]) ∧ ~Tr([λ])  Elimination of ↔, 3
5. |=T (Tr([λ]) ∧ ~Tr([λ])) → ⊥ Explosion
6. |=T ⊥    Modus Ponens 4, 5

It is also possible to formulate the sentence that says an absurdity follows from its own 
truth:

(Curry sentence)  c ↔ (Tr([c]) → ⊥)
The (Curry sentence) generate the Curry paradox, whose derivation is given as follows:

1. |=T c ↔ (Tr([c]) → ⊥)  (Curry sentence)
2. |=T c ↔ Tr([c])   (Schema-Tr)
3. |=T Tr([c]) ↔ (Tr([c]) → ⊥) Transitivity of ↔ 1, 2
4. |=T Tr([c]) → (Tr([c]) → ⊥) Elimination of ↔ 3
5. |=T Tr([c]) → ⊥   Contraction 4
6. |=T (Tr([c]) → ⊥) → c  Elimination of ↔ 1
7. |=T c    Modus Ponens 5, 6
8. |=T c → Tr([c])   Elimination of ↔  2
9. |=T Tr([c])    Modus Ponens 7, 8
10. |=T ⊥    Modus Ponens 5, 9
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So, no theory based on classical logic that has expressive power to talk about its own 
syntax can have such a truth predicate Tr. As we know, Tarski original solution appeal to a 
transfinite hierarchy of metalanguages where the truth predicate relative to the language L is 
only definable in its metalanguage. 

On the other hand, the basic idea of non-classical solutions to both paradoxes is to 
maintain the truth predicate in the object language L of T by changing the underlying logic 
L. So, as Beall & Murzi (2013) observe, the solutions that serve to block the truth paradox 
by weakening the negation, dropping Explosion (in symbols A, ~A |= B) or Excluded Middle 
(|= A ∨ ~A), are not sufficient. It is also necessary to weaken the connective →. So, most 
paraconsistent logics – i.e. logics that drop Explosion- and paracomplete logics – i.e., logics 
that drop Excluded Middle- are not adequate to give a uniform solution to both paradoxes. 
Among the paraconsistent solutions to truth paradoxes, we find Goodship (1996), Priest 
(2006), Barrio et al. (2017) and Pailos (2020). Among the paracomplete ones, we find Kripke 
(1976) and Field, 2008.1

The situation become even worse when one wants to internalize other logical concepts 
into the object language of the logic. For example, consider the binary validity predicate Val, 
that internalizes the following relation between sentences: there is a valid derivation of B from 
A. This predicate is supposed to satisfy the following rules:

(Validity Proof ) Given a valid derivation of B from A, infer Val([A],[B]).
(Validity Detachment) From A and Val([A],[B]) infer B.

The rule (Validity Proof ), henceforth (VP), says that the valid inferences of T are also valid 
with respect of the predicate Val. The rule (Validity Detachment) says that truth is preserved 
under Modus Ponens. According to Beall & Murzi, this predicate, when introduced in the 
object language of T, has catastrophic effects. The main reason is that its derivation uses 
mainly the structural rules of the consequence relation |=T of T, such as:

(Reflexivity) Γ, A |=T A;
(Contraction) If Γ, A, A |=T B, then Γ, A |=T B.
(Cut) If Γ |=T B and ∆, B |=T C, then Γ, ∆ |=T C.

Given that the T has expressive power to generate self-referential statements, it is possible 
to formulate the following statement:

(Validity Curry)  c ↔ Val([c],[⊥])

1 This list is not meant to be exhaustive. We refer the reader to Barrio (2014) for a good presentation of the 
non-classical solutions to truth paradoxes.



Semantic Closure and Classicality
Edson Bezerra

RHV, 2023, No 22, 85-103

 CC BY-NC-ND

90

The sentence (Validity Curry) generates the validity paradox, a.k.a. v-Curry, whose 
derivation is given as follows:

1. |=T c ↔ Val([c],[ ⊥])  (Validity Curry)
2.  c |=T c    (Reflexivity)
3. |=T c → Val([c],[ ⊥])  Elimination of ↔,1
4.  c |=T Val([c],[ ⊥])   Modus Ponens 2, 3
5.  c,c |=T ⊥    (VD) 2, 4 
6.  c |=T ⊥    (Contraction) 5
7. |=T Val([c],[ ⊥])   (VP) 6
8. |=T  Val([c],[ ⊥]) → c  Elimination of ↔,1
9. |=T c    Modus Ponens 7, 8
10. |=T ⊥    (VD) 7,9

Although (Transitivity) was not explicitly used in the derivation, it is hidden in a 
formulation of the rule (VD), which can be formulated in the following two ways:

(VD1) A, Val([A],[B]) |=T B.
(VD2) |=T A and |=T Val([A],[B]) imply |=T B.

The rule (VD2) is used in the derivation of v-Curry. As we will show now, this rule can be 
proven from (VD1) and (Transitivity).

1. |=T A    Hypothesis
2. |=T Val([A],[B])   Hypothesis
3. A, Val([A],[B]) |=T B  (VD1)
4. Val([A],[B]) |=T B   (Transitivity) 1, 3
5. |=T B    (Transitivity) 2, 4

The distinction between (VD1) and (VD2) is important, because the non-classical 
solutions that dispense the property (Transitivity) cannot introduce the rule (VD2) given it 
pressupposes (Transitivity). 

As the derivation of v-Curry shows, restrictions on the connectives may not be sufficient, 
given that the above derivation mainly uses the rules of the predicate Val as well as the 
properties of |=T. Some non-classical solutions proceed by dispensing one or more properties 
of |=T . These solutions are called substructural solutions. For example, French (2016), Murzi 
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& Rossi (2017) propose theories of validity and truth that dispense (Reflexivity); Zardini 
(2013) and Weber (2014) propose theories that dispense (Contraction); and Ripley (2013) 
and Barrio et al. (2016) propose theories that dispense (Transitivity).

Although v-Curry mainly uses the properties of the consequence relation of T, it is possible 
to present theories of validity and truth that keep all these properties of |=T intact. For 
example, Pailos (2020b) proposes a paraconsistent theory of validity and truth that respects 
the three properties of |=T . But, in order to avoid v-Curry, he adopts a weaker self-referential 
procedure in his theory.

As widely discussed in the literature about semantic paradoxes, many non-classical 
solutions fail in delivering a theory that is strong enough to validate some inferences that 
are usually performed in our inferential practice. For example, if a semantic theory fails in 
validating the rule of Modus Ponens, one is entitled to say that this theory fail in delivering a 
good theory of reasoning about these semantic concepts. The same could be said with respect 
to a theory that does not have any valid formula. So, the closeness to the classical reasoning 
is still a good way for adopting a non-classical solution to paradoxes. In what follows, we will 
discuss two possible approaches to classicality. One of them is proposed by Barrio, Pailos and 
Szmuc (2017), the BPS approach, and the other is the hierarchy of non-transitive systems 
proposed by Pailos (2020a) and Barrio et al. (2021). Although both approaches have their 
merits and own internal problems, we will argue in favour of the latter approach.

Athough the validity paradoxes play an important role in the debate, we will focus on the 
theories of truth. The main reason is that our discussion is more focused on the classicality 
of the theories, and that solutions below are also able to block the validities paradoxes when 
properly extended.

3. Classicality and paradoxes

As we discussed in the latter Section, many non-classical solutions sacrifice their deductive 
power in order to introduce semantic notions in their object language. So, it is desirable that 
some method of classical recapture should be available whenever problematic sentences such 
as (Liar sentence) are not involved. In the literature about classical recapture, we find many 
strategies such as Priest’s logic mLP (Priest, 2006) Beall’s shrieking method (Beall, 2013). 
Both strategies show that it is possible to recover classical inferences whenever we are facing 
neither sentences that are both true and false nor sentences that are neither true nor false. 
On the other hand, as Antunes (2020) and Tajer (2020) argue, the strategy of introducing 
recovery operators in the object language is able to reproduce these strategies in a more elegant 
way.

The strategy of introducing recovery operators in the object language of formal theories is 
not new in the literature. Indeed, Da Costa (1974) introduced these operators that separate 
the well-behaved sentences from the sentences that are not. This idea was widely explored by 
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the founders of the Logics of Formal Inconsistency (LFIs) (Carnielli et al., 2007; Carnielli et al., 
2016). LFIs are paraconsistent logics that, although they do not validate the inference A, ~A 
|= B, they have a consistency connective o such that:

(i) oA, A |=/ B  (|=/ means that the relation |= does not hold)
(ii) oA, ~A |=/ B
(iii) oA, A, ~A |= B

This last condition is called gentle principle of explosion. Intuitively, it says that if A is 
consistent and both A and ~A are true, then anything follows. LFIs comprise a wide family of 
paraconsistent logics that have o as primitive or that is capable to define o by means of other 
primitive connectives of the language. Although we will focus on these logics, its is important 
to mention the existence of the Logics of Formal Undeterminedness (LFUs) (Marcos, 2005). 
LFUs are logics that, although they do not validate |= A ∨ ~A, they have a determinedness 
connective ♠ such that:

♠A |= A  ~A
BPS propose a semantic theory of truth based on a LFI. The logical system they propose 

is called MSC (Matrix Logic for Semantic Closure). This logic has the language LMSC = {Var, ~, 
o, ∧, ∨, →MSC, ↔MSC}. Its set of formulas ForMSC is generated as usual. The semantic structure 
is the matrix MMSC = ({1, ½,0}, ~, o, ∧, ∨ , →MSC, ↔MSC, {1, ½}), where {1, ½,0} is the set of 
truth values, {1, ½} is the set of designated values, ~, o, ∧, ∨, →MSC, ↔MSC are operations that 
have the following truth-tables:
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Let v: ForMSC → {1, ½,0} be a valuation and SEMMSC be the set of all valuations v. We 
say that v is a model of A ∈ ForMSC if v(A) ∈ {1, ½,0}. A is a tautology if every valuation v is a 
model of A. A is a semantic consequence of a set of formulas Γ (Γ |=MSC A) if and only if: if v is 
a model of every γ of Γ, then v is also a model of A.

Given the truth tables of the negation and the consistency connective, it is easy to see that 
MSC is a LFI. As the following proposition shows, one can easily show that →MSC does not 
validate Modus Ponens.

Proposition A: A, A →MSC B |=/ B.
Proof. Let v ∈ SEMMSC be a valuation such that v(A) = ½ and v(B) = 0. By the semantic 

definition of →MSC, v(A →MSC B) = ½. Then, A, A →MSC B |=/ B. This concludes the proof. 
Q.E.D.

As said before, MSC is a LFI. With the aid of the connective o it is possible to recover 
classical inferences. This is possible due to Derivability Adjustment Theorem (DAT). According 
to this Theorem, classical inferences hold if the formulas involved are consistent. One of the 
first formulation of this result in the literature is given by Da Costa (1974) for his systems 
Cω. There are many versions of this result in the literature. For example, Carnielli et al. 
(2020) provide a wide investigation of these connectives in the field of LFIs and LFUs, and 
Ciuni & Carrara (2020) investigate these connectives in many-valued logics.2 Let CPL be the 
classical propositional logic. The following Theorem is a version of DAT for MSC. Its proof 
follows from Ciuni & Carrara’s results:

Theorem B. For every subset Γ of ForMSC and for every A of ForMSC,
Γ |=CPL A if and only if {op1, ..., opn} Γ |=MSC A,

where {p1, ..., pn} (n ∈ N) is the set of propositional variables that occur in Γ ∪ {A}.
Thus, Theorem B allows to recover classical inferences whenever the sentences at issue 

are not the problematic ones, such as (Liar sentence) and (Curry sentence). Now, consider 
a semantic theory of truth TMSC whose logical basis is MSC. TMSC is supposed to be strong 
enough to provide names [A] for its sentences A. In this theory, the truth predicate is 
semantically characterized as:

v(A) = v(Tr([A]))
Unfortunately, the strong expressiveness of TMSC is a problem. As Tajer (2020) observes, 

recovery operators and self-reference do not match well. The main reason is the formulation 
of the following sentence:

(Stronger liar)  A ↔ (oA ∧ ~Tr([A]))

2 We also refer the reader to Corbalán (2012)’s master dissertation for a deep study of these connectives. 
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As BPS observe, the presence of (Stronger liar) makes many semantic theories trivial. In 
order to avoid triviality, they adopt a weak self-referential principle for TMSC, which stated as 
follows:

Weak Self-Referential Principle (WSRP). Let T be a theory that has a name forming device 
[.]. If for every formula ψ(x), with x as the only free variable in ψ(x), there is a sentence φ such 
that the formula φ ↔ ψ([φ]) is true in T, then we say that T adopts WSRP.

In the case of TMSC, the biconditional of WSRP is ↔MSC. By the semantic conditions of 
this connective, if we assign ½ to the left-hand side formula, the whole biconditional will 
receive ½, disregarding the truth-value of the right-hand side formula.  So, the non triviality 
of TMSC is guaranteed when TMSC is extended with WSRP, where the biconditional in question 
is ↔MSC. As BPS observe, the adoption of any stronger self-referential principle leads TMSC to 
triviality. For example, if we allow a self-referential principle be stated in terms of ‘=’ instead 
of the biconditional ↔MSC, TMSC becomes trivial.

However, BPS’ approach face some objections. Rosenblatt (2021) argues that BPS’ 
proposal is ad hoc. As he argues, it is possible to extend the language of TMSC with primitive 
recursive functions that make it possible to prove a stronger self-referential principle. But, 
as we said before, this makes TMSC trivial. If non-triviality is the only reason to introduce 
WSRP instead of any stronger self-referential principle, BPS’s proposal is philosophically 
unsatisfactory. 

Another criticism comes from Picollo (2020), who argues that theories of truth based on 
LFIs fail in validating important arithmetical axioms, such as the induction axiom. In her 
work, she focuses on the truth theory based on the logic LPo, that has the same truth-tables 
of conjunction, negation and consistency connective as MSC. Its implication connective 
also fails to validate Modus Ponens. So, the connective o fails in its basic aim: recovering the 
validity of classical inferences. As she argues, our modifications in the logical theories may 
affect the way we do mathematics. 

Since LFIs fail in capturing classical inferences in the contexts of stronger theories of 
truth, the ones that extend theories T in the arithmetical language, one might say that BPS 
approach has a narrow scope. In what follows, we argue that the theory of truth based on 
the metainferential logic STω does better at recovering classical inferences. As we will see, 
the logical base ST has many merits, by sharing the same set of tautologies and inferences as 
classical logic, differing on the level of metainferences (i.e., inferences between inferences). 
But, as Pailos (2020a), Barrio et al. (2020) and Barrio et al. (2021) shows, the metainferences 
that ST fails to validate are recovered in the logic ST1, thus creating the hierarchy STω where 
the logics in the higher steps recover the metainferences of the logics of the lower levels. We 
also respond some objections made against the hierarchy STω.
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4. The theory of truth STT
ω

In this Section we introduce the theory of truth STTω. First, we will introduce some basic 
definitions. We also respond some possible criticism against STTω. We will present now 
the Strict Tolerant Logic (ST) (Cobreros et al., 2012; Ripley, 2012, 2013). The logic ST is 
characterized by the matrix MST = ({1, ½,0}, ~, ∧, ∨, {1}, {1, ½}), where {1, ½,0} is the set of 
truth-values, ~, ∧, ∨ are operations that share the same truth tables as the truth tables of the 
logic MSC, {1} is the set of strict truth, and {1, ½} is the set of tolerant truth. 

Let v: ForST → {1, ½, 0} be a valuation and SEMST be the set of all valuations v. We say 
that v is a model of A ∈ ForST if v(A) ∈ {1, ½, 0}. A is a tautology if every valuation v is a model 
of A. A is a semantic consequence of a set of formulas Γ (Γ |=ST A) if and only if:

if v(γ) = 1, for every γ ∈ Γ, then v(A) ∈ {1, ½}
Given the definition of |=ST, one can show that it is non-transitive. Suppose that Γ = ∆ = 

∅, v(A) = 1, v(B) = ½ and v(C) = 0 for every v of SEMST. By definition of |=ST, A |=ST B and 
B |=ST C, but A |=/ST C. For being cut-free, this logic can be a non-trivial basis for semantic 
theories of truth.

From the truth tables of ~, ∧, ∨, one may define the semantic structure MTS = ({1, ½, 
0}, ~, ∧, ∨, {1, ½}, {1}) for the Tolerant Strict Logic (TS) (French, 2016). This logic will be 
important for our objectives in this Section. Let v: ForTS → {1, ½, 0} be a valuation and 
SEMTS be the set of all valuations v. We say that v is a model of A ∈ ForTS if v(A) = 1. A is a 
tautology if every valuation v is a model of A. A is a semantic consequence of a set of formulas 
Γ (Γ |=TS A) if and only if:

if v(γ) ∈ {1, ½}, for every γ ∈ Γ, then v(A) = 1.
The logic TS is non-reflexive. Let v: ForTS → {1, ½,0} be a valuation of SEMTS such that 

v(A) = ½. By definition of |=TS, it is clear that A |=/TS A. This logic can also be used as a basis 
for a semantic theory of truth giventhat it blocks the rule of reflexivity.

In (Ripley, 2013), Ripley propose a theory of truth, which we call here STT, that is 
obtained by extending the language of ST with the predicate Tr as well as names for the 
sentences of ST. Given that ST is cut-free, STT is immune to the paradoxes of truth and 
validity. An interesting advantage of ST over the others non-classical solutions is its closeness 
to classical logic. As Ripley shows, ST has the same tautologies and valid inferences as classical 
logic. However, Ripley’s proposal faces some criticisms. The main criticism his theory faces is 
that it is not closed under its own validities. For example, although ST validates explosion, it 
validates neither the metarule of explosion nor the metarule of modus ponens:

(Meta-explosion)  |= ST A and |=ST ~A imply |=ST B.
(Meta-modus ponens) |= ST A and |=ST A → B imply |=ST B.
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Because of such a failure, some truth-theorists claim that it is not possible to reason using 
this logic because it is not closed under its own valid inferences. But, there are proposals in 
the literature that shows that ST can be extended in such a way that classical metainferences 
(inferences between inferences) are always recovered. In the last few years, the Buenos 
Aires Logic group published a series of papers where they propose an infinite hierarchy of 
metainferential logics based on ST (Pailos, 2020a; Barrio et al., 2018; Barrio et al., 2019; 
Barrio et al., 2021). The intuition behind this interesting idea is the following: suppose that 
the metainference

(1) From Γ1 |= A1 ... Γn |= An we infer Γ |= A
is valid in classical logic, but not in ST. This metainference will be recovered in the 

next step of the hierarchy, which is ST1. The same reasoning applies to ST1: the classical 
metametainferences (inferences between metainferences) that are not valid in ST1 are 
recovered in ST2, and so on. This creates an infinite hierarchy of metainferences, and the 
system that reunites the logics STn (for n ∈ ω) is called STω. The resulting theory of truth is 
called STTω. Now we will present some basic definitions that are taken from Pailos (2020a).

Definition 4.1. An inference on LL is a pair (Γ, ∆), where Γ, ∆  ⊆ ForL (written Γ |= ∆). 
INF0(LL) is the set of all inferences on LL.3

Note that Definition 4.1 talks about inferences between inferences between sets of formulas 
whereas we have defined inferences between sets of formulas and a formula. Fortunately, we 
can restate our former definitions as follows:

Γ |= ∆ (in L) iff: if every γ of Γ is satisfied according to L, then so is some δ of ∆.
Definition 4.2. A metainference of (a finite) level n (for 1 ≤ n ≤  ω) is an ordered pair (Γ, 

∆), where Γ,∆  ⊆ INFn-1(LL) (written Γ |=n ∆). INF0(LL) is the set of all metainferences of 
level n-1 on LL.

Before we continue, let us introduce a notion from matrix semantics and a terminology. 
As the reader can note, the matrix of MSC has only one set of designated values, whereas 
the matrices for ST and TS have two sets. As Chemla et al. (2017) calls, these sets are called 
standards. A standard is a subset of the set of values of the matrix of L that determines what 
means for a valuation v of SEML to confirm or to refute an inference. So, the matrices for 
ST and TS have two different standards, one for the premises and one for the conclusions. 
Second, the valuations that respect the truth tables of negation, conjunction and disjunction 
above presented are called Strong Kleene valuations (for short, SK-valuations).

Definition 4.3. A metainference Γ |=n ∆ is valid in a logic L if and only if, for every v of 
SEML, if v satisfies every γ of Γ according to L, then v satisfies some δ of ∆ according to L. 

3 Here we will omit the subscript on the relation ‘|=’ whenever the context is clear.



Semantic Closure and Classicality
Edson Bezerra

RHV, 2023, No 22, 85-103

 CC BY-NC-ND

97

Definition 4.4. Let L1 and L2 be two logics characterized by SK-valuations. L is a mixed 
system if its consequence relation |=L is defined as follows: Γ |=n ∆ if and only if it is not the 
case that v satisfies all γ of Γ according to L1 and not satisfies any δ of ∆ according to L2.

Given the basis ST of the hierarchy STω, we will define the others STn that are mixed, in 
the sense of Definition 4.4. When n = 1, we have the mixed logic TSST, whose definition of 
consequence relation is stated as follows:

Definition 4.5. Γ |= ∆ is valid in a logic TSST if and only if, for every v of SEMTSST, if v 
satisfies every γ of Γ according to TS, then v satisfies some δ of ∆ according to ST.

As Definition 4.5 highlights, the logic TSST is defined in such a way that it preserves 
the original intuition of ST because its consequence relation is defined “from the strict to 
tolerant.” As we can see, in a valid metainference of TSST, the premises receive the value 1 and 
the conclusion or 1 or ½. As we said before, ST1 (= TSST) recovers the valid inferences of ST. 
The following example shows how this recovery happens. Consider again (Meta-explosion). 
This metainference is invalid in ST, because both |= ST A and |=ST ~A are satisfied by the value 
½. So, TSST recovers such a metainference as follows: according to Definition 4.5, both |= ST 
A and |=ST ~A should be satisfied by every v of SEMTS. Since no v of SEMTS gives 1 to A and 
~A simultaneously, (Meta-explosion) becomes valid in TSST.

On the other hand, the MetaMeta-explosion (Meta2-explosion) is not valid in TSST. That 
is, the following metametainference:

{Γ |=1 A, ∆, Γ |=1 ~A, ∆} |=1 { Γ |=1 B, ∆ },
Where Γ and ∆ are inferences of ST, is not valid in TSST. That is, TSST is not closed under 

its metametainferences. So, analogously, ST2 recovers the classical metametainferencs that 
TSST fails to validate. The same applies to ST2 with respect to the metametametainferences. 
So, Pailos (2020a) introduces an infinite hierarchy of metainferences where the logics that are 
on the higher levels recover the metainferences from the logics on the lower levels. In what 
follows, L1/L2 denotes a mixed system.  Consider the following definitions:

Definition 4.6. For any metainferential consequence relation L1/L2, #L1/L2# = L2/L1.
Definition 4.7. The first step of the hierarchy is the following:
(i) ST1 = TSST;
(ii) For every 2 ≤ n < ω, the consequence relation of STn is defined as follows:
Let Γ1, ..., Γk and ∆ be metainferences of level n-1. Γ1, ..., Γk |=n ∆ is valid if and only if 

every valuation v that satisfies Γ1, ..., Γk according to #STn-1#, also satisfies ∆ according to 
STn-1.

Now we present some collapse results between STn and classical logic.
Fact 4.8. For every level n (1 ≤ n < ω), a metainference Γ1, ..., Γk |=n ∆ is valid in classical 

logic if and only if it is valid in STn. 
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However, as Pailos (2020a) observes, STn is not closed under its metainferences of level n 
+ 1. For example, there will be instances of Cut, Meta-explosion, Meta-modus ponens in the 
level n + 1 that are not valid in STn. This is expressed by the following fact:

Fact 4.9. For every level n (1 ≤ n < ω), STn invalidates infinitely many classical metainferences 
of level n + 1. (And its metainferences of level n + 1 are properly included in the n + 1 classical 
metavalidities.)

In order to overcome this limitation, Pailos (2020a) defines STω as the union of the logics 
STn. 

Definition 4.10. A metainference of level n Γ |=n ∆ is satisfied in STω if and only if it is 
satisfied in some STn.

The logic STω makes it possible to recover every classical metainference. Every classical 
metainference that is lost in some STk is recovered in its successor STk+1. Then so it is recovered 
in STω.

Now, it is important to make some observation regarding the above construction. As 
Ferguson & Ramírez-Cámara (2022) observe, the objects of the inferences of the logics STn 
are not formulas, but metainferences.4 Second, each logic of this hierarchy is treated as an 
instance. Given that there is no language that take these metainferences as primitive objects, 
the metainferences are instances as well as each logic in this hierarchy. This is by no means a 
limitation of Barrio et al.’s construction. Indeed, it can be seen as an advantage, because this 
allows generalizations that can be applied to other logics.

In what concerns the truth predicate, Pailos extends the language LST with Tr, thus 
obtaining the theory STTω. As he defines, this theory is supposed to contain a name forming 
operator that provides names [A] for every sentence A. In the language of first-order logic, 
every sentence A has a distinguished name that is represented by an individual constant, that 
we can denote by cA to make our presentation simpler. So, the individual constant cA stands 
for [A] in the first order language of the theory STTω. Thus, in what concerns the first-
order models, the domain D of the interpretation contains those distiguished names that are 
represented by these individual constants.

Definition 4.11. A model v for STTω is a model for STω that satisfies the following 
restriction: v(A) = v(Tr([A])).

From this definition, it is clear that (Schema-Tr) is valid in STTω. In what concerns the 
semantic paradoxes, we have the following situation: since that each STk fails to validate the 
metarule of Cut in the level k + 1, the inconsistency caused by (Liar sentence) and (Curry 

4 Ferguson & Ramírez-Cámara (2022) propose a different approach to ST-hierarchy, by treating metainferences 
as objects in this hierarchy. That is, they define an extended language, call it L+, that contains terms for each 
metainference of STω. 
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sentence) is avoided in STTω. Pailos (2020a) proves that is non-trivial. That is, it has a model 
that satisfies all the sentences of its sentences. As proved in Barrio & Bezerra (2023) show, 
STTω can be non-trivially extended with a validity predicate.

4.1. STTω, classicality and objections

The semantic theory STTω is a good candidate for the philosophical project of providing 
a semantically closed language, i.e. a language that can talk about its own semantic concepts. 
Moreover, as we showed in Section 4, the logic STω recovers classical metainferences in its 
hierarchy because there is always a STn that recovers the classical metainferences at issue. 
But it raises the following question: is STω classical logic? The answer is no. The reason 
is the following: even if STω always recovers classical metainferences at some point STk in 
the hierarchy, it fails in validating metainferences of level k + 1. On the other hand, the 
metainferential hierarchy based in classical logic is classical at every metainferential level. 
Here we have the following passage taken from Barrio et al. (2020) (hierarchy of classical and 
paraconsistent logic):

Remarkably, such a criterion allows to provide an answer to our initial question: what 
identifies CL as such? It is, in fact, the inferences it validates at every inferential level 
that are crucial to its identity and which allow to tell it apart not only from closely 
related systems like ST, but also from systems that are even more similar to it—like 
TS/ST or any of the recursively defined systems appearing in our hierarchy, for that 
matter. What identifies CL are all its valid inferences of every inferential level, and each 
of those systems differ with it at some point. This clearly explains why ST is not CL, 
and neither is TS/ST or any of the systems of our hierarchy. Subsequently, this criterion 
makes it also easy to tell the difference between the systems in the hierarchy themselves. 
(Barrio et al., 2020, p. 114)

Although STω is not classical logic, it recovers classical metainferences as most as possible. 
In comparison to other non-classical solutions to semantic paradoxes, STTω is a remarkably 
strong system. For this reason, we claim that STTω is an adequate solution to semantic 
paradoxes, for being classical as far as possible.

However, cut-free solutions based on STTω faces objections in the literature. For example, 
Scambler (2020), Golan (2022) and Porter (2023) argue that STω is not a logic because it is 
not closed under its own metainferences. As we showed above, STn is not closed under the 
metainferences of level n + 1. For this reason, they claim that it is not possible to reason with 
STω because it does not allow to connect inferences in order to make another inferences. 
As argued pointed by Barrio & Bezerra (2023), this failure of closure is not specific to STω, 
but to all the logics characterized by SK-valuations. While ST fails to be closed under its 
metainferences, TS has no valid inferences and no tautologies, the logic LP (Asenjo, 1969; 
Priest, 1979) and K3 (Kleene, 1938) have mismatches between inferences and tautologies: 
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LP has the same tautologies as classical logic, but fails to validate modus ponens; K3 has no 
tautologies while it validates many classical inferences. That is, all non-classical solutions 
based on SK-valuation will present some kind of mismatch between its inferences, validities 
and metainferences.

Second, as we pointed before, the hierarchy STω shows the way how we perform inferences 
using this logic. As Barrio et al. (2021) explains, the whole hierarchy formalizes reasoning 
according to the standard from strict to tolerant. That is, the inferences formalized by this 
logic should be understood from the perspective of mixed logics. So, STω indeed connect 
metainferences when we read the premises, that are also metainferences, as strictly valid and 
the conclusion, another metainference, as tolerantly valid. It is according to this perspective 
that the inferences formalized by STω should be understood.

Ferguson & Ramírez-Cámara (2020) also raise some criticisms concerning the construction 
of the hierarchy STω. According to them, the hierarchy STω has a limited expressivity that, 
by its turn, does not allow to represent metainferences involving metainferences of distinct 
levels. So, they propose a language that considers metainferences as primitive objects as well 
as a new semantics for the hierarchy that is based on the conditional → of LP, that is definable 
as ~A ∨ B. 

In order to respond Ferguson & Ramírez-Cámara’s criticisms, we note the following: even 
if Barrio and his collaborators’ proposal do not take metainferences as primitive objects in 
the language, Ferguson & Ramírez-Cámara can be properly embedded in the hierarchy STω, 
as defined above. The reason is the following: Barrio et al. (2020) and Roffe & Pailos (2021) 
offer a procedure of translating metainferences into formulas. Intuitively, this procedure 
works as follows: an inference of the form

Γ |=0 ∆
is converted into a formula of the form:

(γ1 ∧...∧ γn) → (δ1 ∨...∨ δn)
where γ1 ... γn belong to Γ and δ1 ... δn belong to ∆. This procedure can be applied to 
metainferences of higher levels. In the case of ST, its conditional has the same truth-table as in 
LP. For this reason, we claim that Ferguson & Ramírez-Cámara’s proposal can be reproduced 
in the original STω as presented above. So, the construction of the hierarchy STω enjoys 
expressivity enough to reproduce metainfereces of distinct levels.

5. Conclusion

We argued that the theory STTω is an adequate non-classical theory of truth since it 
keeps classical reasoning intact as most as possible, and it is able to recover the classical 
metainferences with the aid of the logics in the hierarchy. Since the metarule of Cut of level 
n + 1 is not valid in STn, one cannot expect to reproduce stronger versions of liar and Curry 
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paradoxes in STω. As showed by Barrio & Bezerra (2023), STTω can be extended with a 
validity predicate that satisfies both (VP) and (VD) without trivializing the theory. So, the 
cut-free approach to semantic paradoxes is capable to block the paradoxical results mutilating 
classical logic the least possible.
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