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Abstract
Aim of the study: Understanding the carbon budget and meteorological factor impacts of farmland ecosystems is 

helpful for scientific assessment of carbon budget and low-carbon agricultural production practices.
Area of study: The Songnen Plain, NE China, in 2019.
Material and methods: Based on eddy-related flux and soil heterotrophic respiration observations from a typical 

maize farmland ecosystem, using mathematical statistics and carbon balance equation methods, were analyzed.
Main results: Soil respiration rate (Rs) and composition were influenced and controlled by the synergistic effect of 

surface soil temperature (Ts) and water content (Wcs). Ts played a leading role, while Wcs played an important role. Ts 
and Wcs had the greatest influence on the heterotrophic respiration rate (Rh), followed by Rs and autotrophic respiration 
rate (Ra). Daily variations of net ecosystem productivity were correlated with daily mean air temperature, latent heat 
flux, and sensible heat flux. Annual carbon revenue was 1139.67 g C m-2, annual carbon expenditure was 456.14 g C 
m-2, and annual carbon budget was -683.53 g C m-2 in 2019. While considering that maize grain yield (-353.44 g C m-2) 
was moved out of the field at harvest, the net ecosystem carbon balance was -330.09 g C m-2; then it was carbon sink in 
2019. By fully utilizing climate resources and improving agricultural managements, carbon sink is increased in farmland 
ecosystems.

Research highlights: Soil respiration rate and composition were influenced and controlled by the synergistic effect of 
soil temperature and water content; the maize farmland ecosystem is carbon sink.

Additional key words: maize farmland ecosystem; soil respiration.
Abbreviations used: GHG (greenhouse gases); NECB (net ecosystem carbon balance); NEE (net ecosystem 

exchange); NPP (net ecosystem productivity); PFCs (perfluorocarbons); SOC (soil organic C). Parameters: Ra (soil 
autotrophic respiration); Rh (soil heterotrophic respiration); Rr (soil root respiration); Rs (soil respiration); Ts (soil 
temperature); Wcs (soil water content).
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Introduction

Addressing climate change has become a joint 
global effort, and agricultural mitigation and adaptation 
to climate change is one of the focal points of the 
international community and national governments. The 
farmland ecosystem is an important part of the carbon 
(C) cycle of the terrestrial ecosystem, it is not only an 
important source of CO2 emissions, but also an important 
carbon sink. The global farmland area is ~ 1.4×109 hm2, 
accounting for ~ 12% of the total land area, the organic C 
storage is 157 Pg C in 1 m deep soil of global farmland 
(Jobbágy & Jackson, 2000), with Asia having the highest 
soil C storage, accounting for approximately one-third 
of the global total soil C storage (Ren et al., 2020). The 
changes in farmland soil C pool are closely related to 
the high and stable yields of crops (Oldfield et al., 2019; 
Lal, 2020), and have a dual role in ensuring food security 
and mitigating climate change (Lal, 2004; Paustian et al., 
2016; Hunt et al., 2020), and the sustainability of farmland 
ecosystems is a prerequisite and important guarantee for 
the sustainable development of human society (Liu et al., 
2015). 

Direct CO2 emissions from agriculture, forestry 
and land use account for 24% of anthropogenic 
GHG (greenhouse gases) emissions, with agriculture 
contributing 10-12% (IPCC, 2014). Despite accounting 
for only about 10% of terrestrial ecosystem C stocks, 
agroecosystems, as the most active C pool (Zhao et al., 
2010), can be regulated by anthropogenic activities in 
the shortest possible time. Therefore, it has become 
a joint effort of researchers from various countries 
by conducting research on the C budget of farmland 
ecosystems, fully utilizing climate resources and 
optimizing field management measures to improve C 
sequestration capacity (Smith, 2013; Yang et al., 2022). 

Due to the complexity of C cycling processes, models 
are an important tool to study C cycling in agroecosystems. 
Since the mid-20th century, model development has gone 
through three stages: i) C balance model (Pilli et al., 
2013); ii) climate-vegetation relationship model (Fan et 
al., 2012); and iii) biogeochemical cycle model (Lü et 
al., 2022; Zhou et al., 2022; Wang & Zhang, 2023). The 
last one is a more comprehensive C budget model with 
a unified structural framework which describes internal 
processes between the vegetation and the environment. 
These mainstream models have been applied in China 
and have played an important role in describing the C 
budget mechanism of terrestrial ecosystems and the 
mutual feedback process with climate change, and in C 
budget assessment applications. Due to limitations of 
the models, atmospheric inversions, and remote sensing, 
there is uncertainty in estimating regional and global 
C cycle, water cycle, and energy exchange (Oechel 
et al., 2000; Baldocchi et al., 2001; Piao et al., 2022; 
Yang et al., 2022), the development of Eddy covariance 

techniques provides an accurate method for continuous 
and direct determination of material and energy exchange 
between the land surface and the atmosphere, facilitating 
the development of ecosystem matter and energy studies 
(Valentini et al., 2000; Piao et al., 2022), and has played 
an important role in climate change studies (Yao et al., 
2018; Baldocchi et al., 2001; Baldocchi, 2003; Zhao et 
al., 2021). In the Asian region, terrestrial ecosystems are 
important C sinks, the intensity of which is driven by 
climate factors, CO2 concentration, leaf area index, and 
N deposition conditions (Zhou et al., 2022); subtropical 
forest ecosystems in the 20°-40° NE Asian monsoon 
region are high C sink functional areas (Yu et al., 2020). 
There are still controversies about whether farmland 
ecosystems are C sources or C sinks, most studies believe 
that farmland ecosystems are C sinks (Ren et al., 2020; 
Zhao et al., 2021; Yang et al., 2022), and the C sinks of 
farmland ecosystems in coastal areas of China are obvious 
(Zhao & Qin, 2007). The effect of C sink of crop biomass 
is not obvious due to the short harvesting period of crops 
(Fang et al., 2007), or the aboveground biomass of crops 
can be used as silage feed to move out of farmland, and 
farmland ecosystems are C sources (Wall et al., 2020). In 
NE China, there are few research results on C sinks in the 
Liaohe Delta (Liang et al., 2012; Ye et al., 2022) and the 
Sanjiang Plain (Hao et al., 2007).

Songnen Plain is located in NE China, one of the three 
largest black soil regions in the world, with distinctive 
agricultural soil resources, high organic matter content 
and fertile soil; it is an important agricultural production 
area in China, where the total storage of organic C pool 
in farmland topsoil is 233.63 Tg C (Jiang et al., 2017), 
which plays an important role in C sequestration in China 
and the globe. However, due to the intensification of 
human interference for a long time, the organic C density 
of farmland soil has decreased (Jiang et al., 2017; Zhang 
et al., 2021), and its C storage changes have a significant 
impact on regional and global C balance.

Understanding the C budget changes in farmland 
ecosystems is the basis for increasing soil organic C 
(SOC) and C storage, but few research results have been 
reported on the Songnen Plain in China. Therefore, this 
work selected a typical maize （Zea mays L.）farming 
ecosystem in this region as the research object, where 
based on eddy-related, soil heterotrophic respiration, and 
meteorological and biological elements observations, the 
C budget dynamics of maize farmland ecosystem and 
the influence of meteorological factors were explored. 
It may be profit to increase the C sequestration capacity 
of farmland ecosystem, curb the loss of SOC and C 
pool, and enhance the contribution of Songnen Plain to 
C sequestration in China by making full use of climate 
resources and optimizing agricultural management 
measures. It is beneficial to promote low-C agricultural 
development goals of C sequestration, emission reduction, 
and production increase.
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Material and methods

Overview of the test site
The test site was located in the Agricultural 

Meteorological Experiment Station (45°36’ N, 126°49’ E) in 
Acheng District, Harbin City, the hinterland of the Songnen 
Plain, China. It belongs to the cold-temperate continental 
monsoon climate zone, with a cold and dry climate in winter, 
warm and humid in summer, concentrated precipitation, 
rain, and heat in the same season, an annual average air 
temperature of 4.6℃, annual average precipitation of 529.5 
mm, being the summer precipitation 65.8% of the total 
annual precipitation. The land in the test site is flat, and the 
soil is black calcium soil cultivated for many years with 
uniform and representative ground strength. In 0-30 cm, the 
contents are: average soil organic matter, 20.80 g kg-1; total 
N, 0.144%; total phosphorus (P), 0.045%; total potassium 
(K2O), 2.15%; and pH 5.35.

The test site and the surrounding farmland were not 
irrigated, mainly rainfed, and cultivated with a 30-cm tillage 
layer. In the non-growing season, there was no crop under 
the farmland and the surface was covered with bare soil; the 
crop growing season was one season. The planting varieties, 
farm management practices and fertilizer application were 
consistent with the surrounding farmland. Maize trial material 
in 2019 was the early to medium maturing spring variety 
‘Hongshuo 298’, the main planted variety in Harbin, and 
the sowing method was mechanical start-up direct seeding. 
The sowing density of maize was 56,767 plants hm-2 and 
the fertilizer was diammonium phosphate with compound 
fertilizer (1:2), with a fertilizer application rate of 525 kg 
hm-2. Maize growing periods in 2019 were representative 
without agro-meteorological disasters. Dates for sowing, 
emergence, three-leaf, seven-leaf, jointing, staminate, filling 
and mature maize in the 2019 trial site were May 5, May 28, 
June 3, June 16, July 1, July 27, August 6, and September 
22, respectively. The maize grain yield in 2019 was 1276.18 
g m-2 according to the composition factors of maize yield in 
the field. The content of carbohydrate (C6H10O5)n in maize 
grains after harvest was 66.16%, which was detected by 
China Qingdao Kechuang Quality Inspection Co., Ltd.

Experimental design

Observation of soil respiration

Soil respiration refers to all metabolic processes by which 
undisturbed soil releases CO2 to the atmosphere and consists 
of four main components: root respiration, soil microbial 
respiration, soil animal respiration, and chemical oxidation 
of C-containing materials (Micks et al., 2004). Depending 
on the source of respiratory substrates, soil respiration can 
be further divided into soil autotrophic respiration (Ra) and 
soil heterotrophic respiration (Rh) (Zhu & Cheng, 2013). 

Autotrophic respiration is soil root respiration (Rr), requiring 
substrates from the accumulation of photosynthetic C by 
plants; the heterotrophic respiration consumes substrates 
of soil sequestered C, but is usually neglected because the 
contribution of soil animal respiration and chemical oxidation 
of C-containing materials to total soil respiration is very small 
(O’Leary, 1988). Therefore, in this study, soil respiration 
rates (Rs) were calculated in unplanted maize areas set aside 
in the test area as the equivalent environmental Rh rate; the Ra 
was the difference between the Rs in the maize planted area 
and the Rh in the maize unplanted area: Ra = Rs – Rh.

Soil heterotrophic respiration rates were calculated 
in February to December 2019 at the Agricultural 
Meteorological Experiment Station test site. One set of 
soil respiration measuring instruments (RR-7330) was 
installed in the area reserved for unplanted maize to 
observe Rh rate dynamics during the maize growing and 
non-growing periods. During the maize growing season 
between May and September in 2019, the other 2 sets of 
RR-7330 were fixedly installed between two maize plants 
on the ridge of the maize test area 5-m apart to calculate the 
Rs dynamics during the maize reproduction period. Weeds 
and foreign matter were cleared from inside and outside 
the observation cylinders of the soil respiration instrument 
in the farm field during the observation period to avoid soil 
respiration observations being affected.

The soil respiration chamber in agricultural fields was 
automatically closed every hour to measure the change in 
CO2 concentration, the pressure inside the gas chamber, and 
the temperature inside the gas chamber within 150 s at the 
soil surface, which was used as the basis for calculating Rs 
(μmol m-2 s-1) and heterotrophic respiration rate, following 
the equation:

 
 

(1)

where ΔC is the difference in CO2 concentration at the inlet 
and outlet of the respiration chamber, μmol mol-1; V is the 
volume of the gas path, m3; A is the covered soil surface 
area, m2; P0 and P are the standard and actual atmospheric 
pressure, kPa, respectively; T and T0 are the gas temperature 
and temperature at standard conditions, ºK, respectively.

Farmland carbon budget and related observations

Carbon budget and related observations for 2019 in 
the maize ecosystem of the Songnen Plain, China, were 
obtained from the Harbin Agrometeorological Experiment 
Station test site. The flux observation tower used an open-
path Eddy covariance system (OPEC), which consisted of a 
data collector (CR5000), an ultrasonic anemometer (CSAT3, 
Campbell Scientiflic Inc., USA), and CO2 and H2O analyzer 
(LI-7500A, LI-COR Inc., USA). With an observation height 
of 4.0 m and a data sampling frequency of 10 Hz, the system 
operates with online fluxes calculated by the vorticity 
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correlation principle and stores 30 min of CO2 fluxes (Fc), 
latent heat fluxes (LE) with sensible heat fluxes (Hs) and 10 
Hz time series data. The observations were made with the CR-
9200 microclimate gradient automatic monitoring system 
(Campbell Scientiflic Inc., USA) at a height of 4.0 m. The 
meteorological gradient observations included wind speed, 
wind direction, air temperature and humidity, 4-component 
radiation, soil water content and soil temperature at 5-100 
cm below ground level. Meteorological data were recorded 
every 2 s and averaged over 30 min.

Data quality control

Data quality control of the Rs mainly includes: (1) during 
the observation process, insects often enter the respiratory 
chamber extraction holes, and occasionally the instrument 
fails during the observation process, so the corresponding 
data need to be excluded; (2) analysis by Jiang et al. (2014) 
showed that the highest values of Rs in maize cropland in 
China were 10.36 μmol CO2 m-2 s-1; therefore, the original 
observation data need to be excluded when the observation 
value is too large (> 20.0) or too small (< 0.0); (3) according 
to the PauTa criterion (3σ), when the absolute value of the 
difference between the observed value and the mean value 
exceeds 3 times the standard deviation, which is considered 
an abnormal value, must be excluded; (4) the data with a 
sudden and unreasonable jump in the time series of daily 
observations should also be excluded. For missing data, 
linear interpolation was used for ≤ 2 h; for > 2 h, a fitted 
model of the relationship between Rs and soil temperature 
and water content was used for interpolation.

Quality control of the C budget (Fc) data mainly includes: 
(1) observation data that correct the effect of changing 
atmospheric hydrothermal conditions using the Webb, 
Pearman and Leuning (WPL) method, and the quadratic 
coordinate rotation to eliminate the possible influence 
formed by the uneven terrain or sensor non-vertical; (2) 
precipitation data during the same period; (3) data with 
excessive observation value (> 100.0) in the original flux 
data; (4) to eliminate the data with obvious anomalies in 
the flux time series using the difference method, taking the 
sensitivity value z as 4.0; (5) the flux data corresponding 
to the nighttime friction velocity below the friction velocity 
threshold (taken as 0.1 m s-1). The missing data were 
interpolated by REddyProc (7.0.6) software using the look-
up tables method (LUT).

Research methods

Soil respiration in relation to soil temperature and water 
content and temperature sensitivity of soil respiration

Rs is usually exponentially correlated with soil 
temperature (Lloyd & Taylor, 1994; Gaumontguay et al., 
2006) and can be expressed as an exponential equation  Rs 

= aebTs where Ts is the soil surface temperature (°C), and a 
and b are fitting coefficients. Using the coefficients b, the 
sensitivity coefficient Q10 of soil respiration to soil surface 
temperature can be derived, i.e. Q10 = e10b. The value of   
Q10 reflects the strength of the sensitivity of soil respiration 
to soil surface temperature. The model can be used to fit 
the relationship between Rs and soil temperature and the 
temperature sensitivity coefficient of soil respiration.

Rs is usually quadratically-related to soil water content 
(Mielnick & William, 2000; Wu et al., 2018) and can be 
expressed as a quadratic equation, i.e. Rs = cWcs

2 + dWcs 

+ f, where Wcs is the soil water content, and c, d, and f are 
regression coefficients. The quadratic curve relationship 
can be used to fit the relationship between Rs and soil water 
content.

The relationship between Rs and soil temperature and 
soil water content is expressed as a non-linear relationship 
equation, i.e. Rs = aebTs (cWcs

2 + dWcs + f). Accordingly, the 
nonlinear relation equations of Rs, Rh and Ra were fitted.

Calculation of carbon budget

Under natural conditions, the basic process of C cycling 
in terrestrial ecosystems is: organic C is formed from 
atmospheric CO2 fixed by photosynthesis, soil organic 
matter is formed in the soil after plant roots and above-
ground vegetation die off, and SOC is decomposed by 
microorganisms, releasing CO2 back into the atmosphere. 
Net primary productivity (NPP) of terrestrial ecosystems, 
i.e. C fixed by photosynthesis (GPP, gross primary 
productivity) minus C emitted by plant respiration (Ra), 
and net ecosystem C exchange (NEE), i.e. C gained or lost 
by the ecosystem as a whole. The equation for estimating 
NPP can be expressed as:

                 NEE = Rh – (GPP – Ra) = Rh – NPP               (2)

                                  NPP =Rh – NEE                            (3)

Net ecosystem carbon balance (NECB) is used to 
represent changes in SOC content (Wall et al., 2020). In 
agricultural production, when maize grains are harvested 
and removed, maize stalks are crushed by agricultural 
machines and left in the field, therefore, NECB calculation 
formula is:

                             NECB = NEE – HR                            (4)

where HR is the C content (g C m-2) of maize grains removed 
from the farmland after harvest. HR can be calculated as 
follows:

                              HR = Y×B×Bc                                  (5)

where Y is maize grain yield (g m-2); B is the content (%) 
of carbohydrates (C6H10O5)n in maize grains; Bc is the 
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content of C in carbohydrate, which can be calculated by 
its molecular weight (C6H10O5)n, and Bc = 41.86%.

Data processing

The processing of experimental data, statistics, analysis, 
and graphs were conducted through Excel 2007 and SPSS 
20.0.

Results 

Soil respiration rate

During the growing period of maize, Rs, Ra and Rh were 
affected by the synergistic effects of soil surface (5-20 cm) 
temperature and water content, and all of them passed the 
extremely significant statistical test (p＜0.001) (Table 
1). Among them, Rh was the most affected, accounting 
for 41.0-55.2% of the variation, what indicates that the 
decomposition of organic C in soil was mainly affected and 
controlled by meteorological factors such as temperature 
and water content. Instead, Ra was the least affected, 
accounting for 18.0-18.9% of the variation, what indicates 
that Ra was not only affected by soil temperature and water 
content, but also possibly by biological factors such as crop 
root biomass, number and activity of root microorganisms, 
and photosynthetic capacity. Under the action of Rh and 
Ra, soil temperature and water content can explain 40.1-
40.7% of Rs variation, indicating that Rs variation was 
obviously affected by soil temperature, water content and 
biological factors. According to statistics, the proportion 

of autotrophic respiration in soil respiration during the 
growth period of maize were fluctuated between 46.8% 
and 66.9%, the average proportion was 54.9%.

The influence of soil temperature and water content 
on soil respiration was further analyzed. The statistical 
analysis showed that Ts of soil surface layer (5-20 cm) was 
able to explain 36.0-50.7% of the Rh variation; Wcs was 
14.0-20.4% of the  variation, with Wcs_20cm explaining the 
variation of Rh best. Ts was 40.8-49.1% of the Rs variation, 
Wcs was 8.6-12.0% of the Rs variation. Ts was 14.6-17.5% 
of the Ra variation, Wcs was 3.6-5.5% of the Ra variation. 
The results showed that soil temperature played a leading 
role in the synergistic effect of soil temperature and water 
content on soil respiration in the study area, while soil 
water content played an important role.

In the annual variation of soil heterotrophic respiration 
rate, the heterotrophic respiration rate of agricultural soils 
showed a single-peaked curve. The high Rh value stage was 
in mid July to early August, i.e., the same period of time 
for staminate stage and filling stage, with a peak (on July 
20) of 3.75 g C m-2 d-1 (Fig. 1), which was consistent with 
the distribution of local air temperature and precipitation. 
In spring, as air temperature and ground temperature 
increase, the Rh gradually increases; July-August with high 
air temperature and ground temperature, more rainfall, 
and wet soil, the Rh is high; and in autumn as air and 
ground temperatures decrease, the Rh gradually decreases. 
According to the conversion 1 g C m-2 d-1 = 1/1.0368 μmol 
CO2 m-2 s-1 (Jiang et al., 2014), the amount of C released 
from farmland through heterotrophic respiration in the 
year and crop growing field (May 1 to September 30) 
was 456.14 g C m-2 and 304.94 g C m-2, respectively. The 
amount of heterotrophic respiration of the crop growing 

Table 1. Coefficient of fitting soil respiration rate (Rs), auto respiration rate (Ra) and soil 
heterotrophic respiration (Rh) rate of soil surface temperature (Ts) and water content (Wcs) and 
its coefficient of determination for maize in 2019 (n=2532).

Soil depth a b c d f R2 Sig.
Rs

5 cm 0.836 0.037 0.003 -0.002 0.967 0.407 **
10 cm 3.287 0.046 0.000 0.022 0.022 0.401 **
20 cm -0.947 0.035 0.009 -0.430 2.854 0.403 **

Ra

5 cm 1.215 0.038 0.002 -0.061 1.214 0.185 **
10 cm 1.948 0.060 0.003 -0.149 1.942 0.189 **

20 cm 5.170 0.050 0.010 -0.438 5.154 0.180 **

Rh

5 cm -2.107 0.034 0.004 -0.214 2.096 0.463 **

10 cm -0.014 0.049 -0.103 -0.073 0.010 0.410 **

20 cm 5.400 0.044 -0.011 0.487 -5.362 0.552 **

Rs = Ra = Rh = aebTs (cWcs
2 + dWcs + f). * and ** represent highly significant correlations p<0.01 and p<0.001, 

respectively.
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field accounted for 66.85% of the annual heterotrophic 
respiration.

Net primary productivity (NPP)

The NPP of maize in the growing field (May to 
September) showed a unimodal curve (Fig. 2). After the 
seven-leaf stage of maize, the NPP increased rapidly. In 
July, the maize grows vigorously and the NPP was in a 
high value stage. The peak was at the beginning of the 
filling stage, 19.20 g C m-2 d-1. There were 19 days of 
continuous rain from August 6 to August 28, the maize 
photosynthesis was affected and the maize C sequestration 
capacity was weakened, the NPP value was lower during 
this period than in July, and the NPP gradually weakened 
after September. The NPP of maize during the growing 
field was 1113.51 g C m-2.

Net ecosystem carbon exchange (NEE)

In 2019, the seasonal variation of NEE in farmland 
showed a “V” shaped distribution, with a weak C source 
(125.04 g C m-2) during the non-growing season due to 

the absence of crop photosynthesis to fix atmospheric 
CO2 and mainly soil emissions of CO2 to the atmosphere, 
as well as cold weather and weak soil microbial activity 
during this time. During the maize growing season, with 
the development of the maize reproductive process, 
although the amount of soil emissions CO2 increased, the 
photosynthetic capacity and C sequestration during the 
growth of maize strengthened, far exceeding the amount of 
soil emissions CO2 and showing a strong C sink (-808.57 g 
C m-2), where the NEE peaked in early August (-15.81 g C 
m-2 d-1), weakened due to the influence of continuous rains 
in mid and late August, with a gradual weakening of NEE 
after September (Fig. 3). Agroecosystem NEE in 2019 was 
-683.53 g C m-2, showing a strong C sink.

Influence of meteorological factors on C budget 
of farmland

Influence of meteorological factors on C revenues

Agroecosystems fix atmospheric CO2 through crop 
photosynthesis and expel a portion of CO2 through 
autotrophic respiration during crop growth, resulting in 
NPP (C income) of the ecosystem. During the crop growing 

Figure 1. Seasonal variation of soil heterotrophic respiration (Rh) rate in maize 
farmland ecosystem (2019).

Figure 2. Net primary productivity (NPP) dynamics of crop growing season in 
maize farmland ecosystem (2019).
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season, the daily variation of NPP was significantly 
positively correlated (p<0.01) with the average daily 
air temperature (Ta) and the average daily latent heat 
flux (LE), and negatively correlated (p<0.01) with the 
average daily sensible heat flux (Hs) (Table 2), indicating 
that with the increase of air temperature during crop 
growth, photosynthesis enhanced, crop evapotranspiration 
enhanced (latent heat flux enhanced) and sensible heat flux 
weakened. Agroecosystem C income (NPP) was enhanced, 
especially during the peak crop season in July to August, 
when soil moisture was abundant and most of the energy 
obtained by crops was used for latent heat fluxes. The 
synergistic effect of Ta, LE, and Hs explained 56.06% of the 
variation in NPP (NPP = 0.6411Ta + 0.0345LE - 0.0574HS 

- 5.5390, R2 = 0.5606).

Impact of meteorological factors on carbon expenditure

Agroecosystem C expenditure is mainly a process 
of CO2 excretion through soil respiration (autotrophic 
and heterotrophic respiration), Ra occurs during the crop 
growing season for crop respiration consumption, which 
has been deducted in the ecosystem NPP calculation, and 
only soil heterotrophic respiration is discussed in this 
study. Soil heterotrophic respiration rates were mainly 
influenced and controlled by soil temperature and water 
content factors, in the synergistic effect of the two factors, 
soil temperature plays a leading role and soil water content 
plays an important role. In the non-crop growing season, 
soil temperature, Rh and C expenditure were lower; in 
the crop growing season, soil temperature, Rh and C 
expenditure were higher. Rh was quadratically related 

to soil water content, and there was a threshold value 
of soil water content above which the Rh rate tended to 
decrease and C expenditure decreased as soil water content 
increased. In this study, the quadratic curve between the 
Rh rate and water content was derived and the soil water 
content thresholds were 24.8%, 26.1%, and 23.8% at 5, 10 
and 20 cm depths, respectively, which were lower than the 
field water holding capacity (30.1%, 30.1%, and 26.1%).

Discussion

Carbon revenues

Agroecosystem C income is mainly the process of crop 
fixation of CO2 by photosynthesis and consumption of CO2 
by autotrophic respiration during the crop growing season, 
resulting in NPP of the ecosystem. 2010 NPP of the crop 
growing season in the southern Songnen Plain of China was 
674.00-832.00 g C m-2 (Wang et al., 2016), and in this study, 
typical maize farmland ecosystem in 2019 crop growing 
season NPP was 1113.51 g C m-2, and was higher than the 
former and C income increased because: (i) the former did 
not clearly divide the crop species, while the crop species in 
this study was the high-yielding crop maize, and (ii) due to 
the update of crop varieties and improvement of cultivation 
technology, NPP grew faster in recent years and NPP was 
higher than the level 9 years ago. In addition, there was also 
weak C sequestration in agroecosystems during the non-
crop growing season due to the presence of sparse plants, 
mainly in mid-late April and early-mid October, and the 

Table 2. Correlative coefficient of crop growing season between NPP and meteorological 
factors in 2019.

Correlative coefficient Ta (°C) P (mm) Rn (W/m2) LE (W/m2) Hs (W/m2)
NPP (g C m-2 d-1) 0.66** 0.12 0.08 0.47** -0.47**

* and ** represent significant and highly significant correlations p<0.01 and p<0.001, respectively

Figure 3. Net ecosystem carbon exchange (NEE) dynamics of one year in maize 
farmland ecosystem (2019).
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amount of C sequestered by agroecosystems during the non-
crop growing season in 2019 was 26.16 g C m-2. Thus, the 
C revenue of maize agroecosystems in the Songnen Plain of 
China in 2019 was 1139.67 g C m-2.

The C income of farmland ecosystems is influenced 
by natural factors and agricultural management measures. 
Among them, natural factors include soil type, solar 
radiation, precipitation, air temperature, wind speed, 
saturated water vapor pressure, etc., different natural 
conditions cause differences in crop planting structure and 
planting type. Management measures include irrigation, 
fertilization, and arable farmland area, which directly or 
indirectly affect the C income of farmland ecosystems. 
Songnen Plain is an important maize planting region 
in China, precipitation and heat resources are in the 
same season. Under the background of climate change, 
agricultural heat resources in this region have been greatly 
improved, which is conducive to expanding the planting 
proportion of high-quality, high-yield, medium and late 
maturing maize varieties. Through reasonable fertilization 
management, both maize yield and C income of farmland 
ecosystem can be increased.

Carbon expenditure

In Rh for C expenditure in maize agroecosystems, the 
annual C release through Rh in dry fields of the Sanjiang 
Plain in NE China was 285.00 g C m-2 in 2004 (Hao et 
al., 2007), and in this study, the annual C release through 
Rh in typical maize agroecosystems of the Songnen Plain 
was 456.14 g C m-2 in 2019, of which the proportion of 
autotrophic respiration in soil respiration during the 
growth season of maize was 54.9%, which was similar to 
the results of Han et al. (2007) (54.5%). The crop growing 
season heterotrophic respiration accounted for 66.85% 
of the annual heterotrophic respiration, and the annual C 
release from Rh in the Songnen Plain was higher than that in 
the Sanjiang Plain, which was attributed to the differences 
in soil texture, soil temperature, soil water content and 
other conditions between the two regions.

The C expenditure of maize farmland ecosystem is 
also affected by agricultural management measures such 
as tillage methods, stalks returning, fertilization (Wang et 
al., 2022). No tillage, less tillage and other tillage methods 
can reduce the Rs and reduce CO2 emissions from maize 
farmland (Fu et al., 2018); the Rs is also increased with the 
increase of fertilization amount (Mao et al., 2019), stalks 
are crushed and returned to the farmland, soil C emissions 
is significantly increased, but SOC pool and crop yield are 
increased (He et al., 2016). In this experiment, the tillage 
method is shallow tillage and crushed stalks returning to the 
farmland, it is beneficial to increasing SOC and increasing 
crop yield. However, based on the perspective of low-C 
sustainable agricultural development, the agricultural 
management practices (no tillage, less tillage, reduced 

fertilization, and crushed stalks returning to the farmland) 
can reduce C expenditure of the farmland ecosystem and 
increase SOC storage.

In addition, GHG emissions from agricultural 
ecosystems also include CH4, N2O, perfluorocarbons 
(PFCs), etc. (Montzka et al., 2011). However, due to 
observation conditions, the contributions of CH4, N2O, 
PFCs, etc. to C and N expenditures were not analyzed. 
Further research is needed on the related issues.

Carbon budget

NEE depends on C budget. Most researchers consider 
maize agroecosystems as possible C sinks. Continuous 
observations based on eddy correlation techniques found 
that maize farmland ecosystems in the north-central region 
of the USA (Hollinger et al., 2005) were C sinks in 1997, 
1999, and 2001, with C budgets of -733.40 g C m-2, -880.40 
g C m-2, and -702.40 g C m-2 during the growing season. In 
Nebraska, USA, the C budget of maize farmland ecosystems 
under irrigated and non-irrigated conditions during the 
growing season was about -700.00 g C m-2 (Verma et al., 
2005). The average C budget of maize farmland ecosystems 
in Jinzhou, South NE China, in 2005 and 2008-2011 was 
-529.52 g C m-2 (Han et al., 2009; Liang et al., 2012; Ye et 
al., 2022), showing strong C sinks. In this study, the 2019 
growing season C budget of typical maize ecosystems 
in the Songnen Plain of China was -808.57 g C m-2, the 
non-growing season C budget was 125.04 g C m-2, and the 
2019 C budget was -683.53 g C m-2. However, in current 
agricultural production, one approach is to remove the 
aboveground biomass of maize from the farmland as silage 
feed (Wall et al., 2020), the other one is that maize stalks are 
crushed by agricultural machines and left in the farmland 
when maize grains are harvested and removed, and the 
latter approach is adopted in the Songnen Plain. Therefore, 
while considering that maize grain yield (-353.44 g C m-2) 
was moved out of the farmland at harvest, the NECB was 
-330.09 g C m-2, then the maize agroecosystem showed a C 
sink in 2019. However, the research results are lower than 
those of the United States (Hollinger et al., 2005; Verma et 
al., 2005) and Jinzhou in South Northeast China (Han et 
al., 2009; Liang et al., 2012; Ye et al., 2022) in observed 
maize farmland ecosystem, because the effect of maize 
grains moved out of farmland after harvest on NECB was 
not considered.

Conclusion
Soil respiration rate and composition were influenced 

and controlled by the synergistic effect of surface soil 
temperature and water content. Soil temperature played a 
leading role, while soil water content played an important 
role, of which the heterotrophic respiration rate was 
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influenced greatest, followed by soil respiration rate and 
autotrophic respiration rate. Daily variations of the net 
ecosystem productivity were positively correlated with 
daily mean air temperature, latent heat flux, and negatively 
correlated with sensible heat flux. Annual carbon revenue 
was 1139.67 g C m-2, annual carbon expenditure was 456.14 
g C m-2, and annual carbon budget was -683.53 g C m-2 in 
2019. While considering that maize grain yield (-353.44 
g C m-2) was moved out of the field at harvest, the net 
ecosystem carbon balance was -330.09 g C m-2, then was 
carbon sink in 2019. By fully utilizing climate resources 
and improving agricultural managements, carbon sinks can 
be increased in farmland ecosystems.

In this study, the influence of biological factors on soil 
respiration rate was not considered, and soil respiration 
assessment has certain limitations. In the future, this aspect 
research should be developed to adapt the needs of soil 
carbon budget assessment.
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