
International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº7

- 14 -

* Corresponding author.

E-mail address: ekta.gandotra@gmail.com

DOI: 10.9781/ijimai.2021.09.003

Keywords

COVID-19, Mask
Classification,
MobileNetV2, OpenCV,
Transfer Learning.

Abstract

Coronavirus disease 2019 has had a pressing impact on people all around the world. Ceasing the spread of
this infectious disease is the urgent need of the hour. A vital method of protection against the virus is wearing
masks in public areas. Not merely wearing masks but wearing masks properly can ensure that the respiratory
droplets do not get transmitted to other people. In this paper, we have proposed a deep learning-based model,
which can be used to detect people who are not wearing their face masks properly. A convolutional neural
network model based on the concept of transfer learning is trained on a self-made dataset of images and
implemented with light-weighted neural network called MobileNetV2 for mobile architectures. OpenCV is
used with Caffe framework to detect faces in an input frame which are further forwarded to our trained
convolutional neural network for classification. The method has been implemented on various input images
and classification results have been obtained for the same. The experimental results show that the proposed
model achieves a testing accuracy and training accuracy of 93.58% and 92.27% respectively. Optimal results
with high confidence scores and correct classification have also been achieved when the proposed model was
tested on individual input images.

Detection of Improperly Worn Face Masks using
Deep Learning – A Preventive Measure Against the
Spread of COVID-19
Anubha Bhaik, Vaishnavi Singh, Ekta Gandotra*, Deepak Gupta

Department of Computer Science and Engineering, Jaypee University of Information Technology,
Waknaghat, Solan, HP (India)

Received 10 November 2020 | Accepted 24 June 2021 | Published 9 September 2021

I. Introduction

THE coronavirus disease 2019 (COVID-19) is an infectious disease
that can result in mild to severe illnesses in people infected by

it. It is transmitted mainly through respiratory droplets of saliva or
discharge from the nose when a person infected with coronavirus
coughs or sneezes. Thus, it is essential to practice a proper respiratory
protocol such as covering our face while sneezing or coughing [1].
The mucous membranes of the face should be covered properly with
protective equipment to protect oneself and others from the continual
transfer of the disease.

Face masks are being used by people all over the world now. In
many countries, it is now compulsory to wear a face mask when
stepping out of home. However, many people do not wear face masks
properly. They fidget with their masks and pull them under their
noses or completely off their faces to rest under their chins without
realizing that improperly wearing a mask leads to an increased risk
of contamination. Wearing a face mask limits the spread of the virus
from someone who knows or does not know they have an infection
or not. It also reminds others to continue the practice of physical
distancing [2]. Moreover, the presence of asymptomatic spreaders
of the COVID-19 virus means that wearing a face mask should be a

part of lessening the cases of COVID-19 [3]. Thus, the masks must
be worn properly covering the mouth and nose appropriately to
prevent respiratory droplets from spreading. A recent study [4] has
pointed out that surgical face masks can prevent the transmission
of coronavirus and influenza viruses from symptomatic people.
Another study [5] states that the reproductive rate of COVID-19 is
higher as compared to the SARS coronavirus, and thus it is essential
to wear masks properly as a measure to keep public health in mind.
Countries have been exiting the lockdown lately to reduce the effect
of the pandemic on the economy, but the coronavirus persists as an
inevitable danger in most of the countries. Since the outbreak of this
disease is not only the concern of a single country but of the entire
world. The stringent measures implemented by the government have
been effective in combating the spread of COVID-19 disease [6]. For
instance, China has been using mass surveillance to monitor people
and track the spread of coronavirus. Other nations are also deploying
technologies like video camera footage, credit card information, and
location tracking as they race against the outbreak. Surveillance of
activities of people can be effective as we can monitor whether people
are properly taking protective measures, and by not letting them enter
a public place if they are careless about protection. A recent study [7]
has established that face masks have been effective in the containment
of COVID-19 in South Korea. This study further states that in addition
to maintaining social distancing and sanitizing hands, properly
wearing appropriate masks has been efficacious in lessening severe
cases in South Korea. Another study [8] focuses on how the universal

Regular Issue

- 15 -

use of covering the face by even a simple cloth mask, if not a surgical
mask, can help in acting as a preventive measure.

With this study, we would contribute to public healthcare by
detection of people not wearing their masks properly at places where
the chances of getting infected are high. People present at places
where there are low chances of enforcing social distancing, can be
checked for wearing their masks properly, especially in severely
affected zones of countries. We intend to use mobile devices to check
whether someone is wearing their masks properly or not. The main
contributions of the paper are:

1. A dataset containing images of people wearing masks properly
and improperly.

2. A model for the detection and classification of faces wearing
masks properly and improperly.

3. Experiments to evaluate the performance of the proposed model
on a dataset using various evaluation metrics.

This paper is organized as follows: Section II discusses the
background and the work related to our study. Section III describes the
detailed methodology used for the proposed model. Further, Section
IV presents the analysis and visualization of the experimental results
followed by the conclusion in Section V.

II. Related Work

This section discusses the related research work behind the
proposed model for detecting improperly worn face masks.

A. Convolutional Neural Networks
Convolutional neural network (CNN) is a class of deep learning

models that largely deals with the analysis of visually descriptive
data. CNNs can extract important features from visual data without
human supervision with the help of various layers. Different layers
perform different kinds of transformations on the data. CNNs treat
data as spatial and can simplify the complexity of images to be better
understood and processed by the machine and hence are widely used
for pattern recognition. A classic CNN is composed of multiple layers
namely convolutional layers and pooling layers which are used for
the extraction of important features from input data. It also has some
layers in the end which take the output from the two mentioned
layers and help in classifying the data into labels. CNNs have wide
applications like face detection and recognition, classification of
malware applications [9], classification of X-ray images [10], etc.
Image classification is one of the most popular applications of CNN.
Sultana et al. [11] have done a study where they explained different
architectures of CNN used for image classification. Shinet et al. [12]
explored and evaluated different CNN architectures and discussed
when and why transfer learning from pre-trained ImageNet CNN
models can be valuable. Demir et al. [13] extracted distinctive face
features using CNN and used the Softmax classifier to classify faces in
the fully connected layer of CNN. In [14], the inception network has
been proposed for allowing the network to learn the best combination
of kernels, leading to an effective image classification method as well.
Wang et al. [15] proposed the residual attenuation network for image
classification achieving 0.6% top-1 accuracy improvement as compared
to ResNet-200. They focused on the depth of the network and used the
attention mask mechanism to take image classification to a new level.

B. Object Detection
Object detection is a computer vision approach used to identify

the objects present in images or videos. Many deep learning-based
frameworks for object detection have been proposed in the literature,
covering various aspects of its applications in the real world like facial
recognition, face detection, detection of obstacles for self-driving cars,

and more. A review on some object detection architectures has been
carried out by Zhao et al. [16]. Other fast techniques like You Only
Look Once (YOLO) [17] have also been proposed for object detection.

C. Face Detection
Face detection is a popular application of object detection that

is being widely used today. A comprehensive survey of various
techniques for facial detection in digital images is due to Kumar et
al. [18]. Sivaram et al. [19] proposed a technique that uses recurrent
neural networks (RNN) and deep neural networks (DNN) to take in
the shape of the face for accurate facial detection. A camera-based
PCA facial recognition system has been built by Khan et al. [20]
using programming on technologies like OpenCV, Haar Cascade,
and Python.

Face detection or recognition systems have been in demand for
several security-based applications too, like surveillance or tracking
of suspected people, access management, etc. Zhang et al. proposed
a framework for serving better surveillance functionality for ATMs.
The technique included tackling severely occluded faces by fusing the
features of faces like skin color and facial structure; it achieved 98.56%
accuracy on detection of face occlusion [23].

D. Face Mask Detection
Face mask detection has also been explored by researchers to tackle

the situation of COVID-19 for ensuring if people are wearing masks
or not. In [21], Meenpal et al. have studied facial mask detection using
semantic segmentation. They have proposed a binary face classifier
that can detect any face in the frame. Their method uses pre-trained
weights of VGG-16 architecture for feature extraction and the
experimental results give a mean pixel-level accuracy of 93.88% for
the segmented face masks. Besides, Jiang et al. [22] have proposed a
face mask detector that is able to detect face masks. They have tried
to distinguish between people wearing masks and people merely
covering their mouths with their hands.

This pandemic certainly demands the need for proper mask
detection for the security of the health of citizens. However, in the
aforementioned studies, the authors have not considered whether a
person is wearing a face mask properly. The algorithms proposed in
these studies only detect if the person is wearing a face mask or not. In
this paper, we have proposed a CNN-based model that addresses this
task of checking if the person is wearing the mask properly.

III. Proposed Methodology

This section describes the proposed methodology for the detection
of improperly worn masks. Fig. 1 shows the complete workflow of the
used methodology.

A dataset consisting of images of people wearing masks both
properly and improperly is created and used in this work. These images
were collected from the local, existing datasets, and the Internet. The
images were pre-processed to enhance their generalization during the
training of the CNN. Further, CNN is trained on the created dataset
for classification purpose. For visualization of results, OpenCV and
Caffe framework are used. The model creates a bounding box around a
person’s face in the input image classifying whether the mask worn is
proper or improper. Finally, the experimental results are analyzed and
visualized. The various steps of the proposed methodology are further
elaborated in the following sections.

A. Data Acquisition
The images of people wearing proper face masks are collected

from the images present in existing datasets [24] and various other
Internet sources. Since these datasets had fewer images of improperly

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº7

- 16 -

worn masks, we collected such images from the Internet and local lab.
Finally, our dataset consists of 500 images, equally distributed among
properly and improperly worn mask categories. Figs. 2 and 3 show the
sample images from the dataset of people with proper and improper
masks, respectively.

Fig. 2. Sample images of the dataset belonging to the class – proper mask.

Fig. 3. Sample images of the dataset belonging to class – improper mask.

B. Data Pre-processing
The dataset consists of images of different sizes, and thus, these

images are converted into a uniform size of 224 × 224 pixels. After the
application of RGB reshaping, a 224 × 224 × 3 image is given as input
to the proposed model. The class labels are one-hot encoded. These
pre-processed images and encoded labels are added to separate lists,
one for the pre-processed images and the other for the class labels.
Furthermore, data augmentation strategies like random rotation, shift,
shear, zoom and flip, are applied on the images for increasing the
generalization of data which help in improving the performance of
the model.

C. Proposed Model
This section describes the proposed model. The neural network

for classification is built and trained after setting the various hyper-
parameters and hidden layers. Thereafter, the trained classifier is
applied to input image for classification into ‘proper’ and ‘improper’.

1. Training the Neural Network
The problem for our proposed model is to learn the interpretation

of various features in images and classify them accordingly. CNNs
help in leveraging the spatial information in images. Fig.4 presents
a basic architecture of CNN which consists of the input images, the
layers of the network, and the corresponding output.

We have split our dataset into training set and testing set in such
a way that 80% data is used for the training purpose and 20% data is
used for the testing purpose. For achieving the optimum results on
our dataset, we use an aspect of deep learning called transfer learning.
Transfer learning is the act of transferring the knowledge previously
gained by one model on a specific task to a new similar task that will
benefit from some or all the layers of the previously built model. To
aid the use of our model on mobile devices, we used MobileNetV2
as the base model. It has less computation cost and is an efficient
mobile-oriented model for transfer learning [25]. Additionally, it is
an effective feature extractor used for object detection that improves
the performance of our detection. The pre-trained weights for the
ImageNet [26] dataset have been used as the backbone.

Unlike the typical convolution, MobileNetV2 utilizes an advanced
version of convolutional operation called the depth-wise separable
convolution which leads to a lesser number of computations and
transformations on the images than the conventional convolution. It
gets applied to images in two parts [27]. The first part is the depth-
wise convolution used to perform the filtering stage and the second
part is pointwise convolution for the combining stage. It is a light-

Collected 500 images with proper and improper
masks from existing datasets and local lab

D
at

a
A

cq
ui

si
ti

on
Evaluate performance through training

loss and accuracy curver, and ROC curve

Apply the trained CNN classifier on any
input imageR

es
ul

t
A

na
ly

si
s

Pr
op

os
ed

 M
od

el

Identify the region of interest (ROI) using
Ca�e framework

Set hyper-parameters, base layer and head layer

Import pre-trained MobileNetV2 model

Read the image using OpenCV

Train neural network

D
at

a
Pr

e-
Pr

oc
es

si
ng

Data labelling using one-hot encoding

Resize input images into 224x224x3 pixels

Data augmentation

Fig. 1. Workflow of the methodology used.

Regular Issue

- 17 -

weight model with low-latency which provides comparable accuracy
to other heavy and complicated models. Since the size of our dataset is
small and its affinity to ImageNet is not that high, we fine-tune the top
layers of MobileNetV2 for our work. The head layers of the pre-trained
MobileNetV2 CNN architecture are unfrozen while importing it and
are replaced with new custom layers. The weights for the input to
this pre-trained MobileNetV2 architecture are set by default. All base
layers (we call these as BaseModel) below the head of the MobileNetV2
architecture are frozen to prevent their weights from getting updated
during backpropagation. The first layer in the network is a fully
convolutional layer with input size 224 × 224 × 3.

The fundamental building block of MobileNetV2 architecture
is a bottleneck depth-separable convolution with residuals, so the
input layer is followed by residual bottleneck layers [27]. Each block
of the model consists of 3 convolutional layers as shown in Fig.5.
First is a 2D convolutional layer (expansion layer) which performs
1 × 1 convolution for expansion of the number of channels in the data,
then batch normalization and ReLU6 non-linearity are applied, which
limits the maximum value of activation to 6. The default expansion
factor is taken as 6 in the expansion layers. The second is a depth-
wise convolution layer, again with batch normalization and ReLU6
non-linearity. Some of the convolutional layers have a stride of 2 for
achieving spatial down-sampling since there are no conventional
pooling layers, other layers are kept at a stride of 1. The third layer
known as a pointwise convolutional layer (projection layer) performs
linear convolution to reduce the dimensionality of input (also known
as a bottleneck layer) and again accompanied by batch normalization
[27]. The first block of the model is different as it comprises 3 × 3
convolution with 32 channels rather than the default 1 × 1 convolution
which happens in the expansion layer.

The last five custom layers (we call these as HeadModel) which
produce output for the model include the average pooling 2D layer
with pool size 7 × 7, reducing the dimensionality by acquiring average
values from each region of the image. This layer precedes a flatten
layer that reshapes the pooled feature map to a single column vector.

The simple feature vector is now put into a dense layer of 128 units of
size accompanied by ReLU activation by using (1).

 (1)

A dropout layer is applied on this dense layer to prevent the model
from overfitting, with a threshold value of 0.5. Then a final dense layer
is applied with Softmax non-linear activation by using (2) to provide
two output values, i.e., probabilities of the image belonging to the
proper and improper mask groups, respectively.

 (2)

where x is a vector of the inputs in the form of images to the output
layer and i indexes the output unit such that i − 1, 2, 3, ... f. The detailed
summary of our proposed model consisting of the MobileNetV2
model (BaseModel) and the custom layers (HeadModel) is provided
in Appendix A.

We use Adam optimizer for the optimization of the CNN and binary
cross-entropy as loss function as shown in (3). This loss function is
used in a binary classification problem.

 (3)

Here, y is the label (which has been one-hot encoded) and p(y) is the
predicted probability of one of the labels.

The initial learning rate is set to 0.0001. A learning rate decay
schedule (represented by (4)) is created which helps in increasing the
model accuracy and descend into areas of lower loss. Table I shows
hyperparameters used in our CNN Model.

 (4)

Where α and α0 represent the learning rate and initial learning rate
respectively, and

decay = α0/total number of epochs

Input Image Convolutional
Layer

Pooling
Layer

Fully Connected
Layers

Output

Proper Mask

Imporper Mask

ClassificationFeature Learning

Fig. 4. Elementary CNN architecture for image classification.

Input
Tensor

Expansion Layer
Conv 1X1,

ReLU6

Depth-wise Layer
Dwise 3X3,

ReLU6

Projection Layer
Conv 1X1,

Linear

Output
Tensor

Filter
Features

Compress
Data

Fig. 5. Basic architecture of a block in MobileNetV2.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº7

- 18 -

TABLE I. Hyperparameters Used in Our CNN Model

Parameter Name Value

Kernel Size 3 x 3

Activation Function ReLU6 (BaseModel), ReLU (HeadModel)

Average Pooling 7 x 7 (HeadModel)

Optimizer Adam

Loss Function Binary cross entropy

Dropout 0.5

Epochs 50

Batch Size 32

Initial Learning Rate 0.0001

Fully Connected
(Activation Function)

Softmax

2. Detection of Region of Interest (ROI)
After training the CNN, we have used a deep learning framework,

Caffe, along with an open-source computer vision library (OpenCV)
for face detection using static input images. For extracting the region
of interest (ROI) in the image, the DNN module of OpenCV is used with
Caffe. The network model which is stored in Caffe framework format
(with the learned network) and a file containing the text description of
the network architecture is read using OpenCV DNN module. The file
with the Caffe framework format has been provided by the OpenCV
for face detection [28], [29] and contains the weights for the actual
layers. The Caffe model is based on the Single Shot MultiBox Detector
(SSD) framework which uses ResNet as a base network for facial
recognition [30].

The trained model is used on various static input images to detect
whether the person is wearing the mask properly over his nose. An
input image is first uploaded and pre-processed using OpenCV DNN
module. The spatial dimensions of the input image are extracted and
converted into a 4D Binary Large OBject (BLOB) which is further used
to perform functions like scaling, mean subtraction, and resizing on
the input image. The scale factor is set to 1.0. After normalizing the
input image to create a BLOB, it is passed through the DNN to obtain
face detections. The detections obtained are further checked for the
probability or confidence which is used to classify the input image as
proper or improper. The threshold confidence (or probability) is kept at
0.5 to filter all the weak detections. Further, OpenCV is used to extract
the region of interest (ROI) of the face which helps in displaying the
bounding box. The extracted face ROI is converted from BGR to RGB
ordering of channels and the image size is set to 224 × 224 pixels to pass
it through the trained model. Finally, this pre-processed input image
is passed through the trained model to determine if the mask is worn
correctly or not. This can finally be visualized by a bounding box labelled
with the class score in the image. The class score is the probability that
the image contains a face with a proper or an improper mask.

3. Algorithm
The proposed algorithm (as shown in Algorithm I) is based on

transfer learning and facial detection using OpenCV. θ is the initial
learning rate which is used to update weights during the training phase.
It has a value that is often in the range of 0.0 to 1.0. β denotes batch size
which refers to the number of training images that are used in a single
iteration. ϕ represents epochs which define the total number of times
the model will iterate over the training images. The values of these
three hyper-parameters (θ, β and ϕ) can be tuned based on Steps 3-5
in a hit and trial way to achieve better accuracy results. The updated
output weights (ω) are stored in a .h5 file which are used further to get
predictions on other random input images. δ gives the number of face

detections that are obtained on our static input image. α is used to filter
out all the weak face detections in our input image and is known as the
confidence (or probability) for detection of facial features.

The algorithm advances by using the architecture of MobileNetV2
as the base layers (refer to Step 4) and the addition of custom head
layers (refer to Step5). A for loop is applied in the range of the total
number of defined epochs which updates the weights of only the
custom layers through forward and back propagation (refer to Steps
8-10). The input static image is uploaded, and features extracted for
facial detection (refer to Steps 11-13). Another for loop is applied to
detect the region of interest in the input image and plot a bounding
box with the indicative predicted probability as a label (refer to Steps
13-16). Finally, the trained model is applied to the input image only if
facial features are detected (refer to Step 17).

Algorithm I. Algorithm for Detection of People Wearing Proper and
Improper Face Masks

Input: Images of size h×w×d; where h→height of image,w→width
of image,d→number of channels in the RGB image.
 θ → initial learning rate
 β → number of samples of images trained in one iteration
 ϕ → number of epochs
 δ → number of face detections on input image
 α → numeric constant to filter out weak detections
Output: classified output image with probability of prediction
Begin:
1. Split the input images randomly into training set (σ1) and testing

set (σ2) using 80% data for the training set and the remaining 20%
for the test set.

2. Construct the image generator for augmentation of images.
3. Initialize the CNN parameters θ, βand ϕ.
4. Determine the base layers of CNN architecture, i.e., MobileNetV2.
5. Set the head layers, CNNaveragepooling2D, CNNflatten, CNNdense, CNNdropout

6. Set the last layer (at the end of the fully connected layers) that
contains labels for classification.

7. Train the CNN to compute ω.
 for every ϕ:

8. Select a mini batch of size β from σ1.
9. Forward propagation and compute loss (binary cross-entropy)

via θ.
10. Back propagation only on the head layers, update ω with

Adam optimizer.
 end
11. Upload static input image and convert it into a 4-D Binary

Large OBject (BLOB).
12. Initialize α (confidence).
13. Set the Caffe framework for obtaining face detections.
14. Pass BLOB image through the network to obtain face

detections on the input image.
 for every δ :

15. Extract probability (confidence) associated with
the detection.

16. Filter weak detections by comparison with α
17. Extract face ROI in the input image, add bounding

box and labels on face.
 end
18. Apply the trained model to the image only if a face is

detected.
End.

Regular Issue

- 19 -

IV. Evaluation

This section describes the evaluation parameters and the outcomes
of the proposed solution. The experimental results are further analyzed
and visualized using the performance evaluation metrics.

A. Performance Parameters
The description of various evaluation parameters is given as follows:

• Confusion Matrix: A confusion matrix is an n-way matrix where
the n is the number of classes for the classification purpose. It is
based on four important parameters: True Positive (TP), True
Negative (TN), False Positive (FP), and False Negative (FN). The
following parameters are calculated using the confusion matrix:

Accuracy: It is calculated by using (5).

 (5)

Precision: It is another evaluation metric that tells how many
predictions are actually correct out of all the correct predictions.
It is given by (6).

 (6)

Recall: defined as the number of positive predictions made by the
model out of the total actual positive classes. It is calculated by (7).

 (7)

F1-score: It is calculated by using precision and recall as shown
in (8).

 (8)

Sensitivity: It measures how correctly we have detected the
positive classes. It is calculated by using (9).

 (9)

Specificity: It measures how exact or accurate is the assignment to
the positive class. It is calculated by using (10).

 (10)

• Learning Curves: A learning curve is a plot for the graphical
visualization of the model performance while it is training on
the dataset. It is a plot of the accuracy/loss versus the number of
epochs. It shows how the accuracy/loss of the model changes
during its training phase with the increase in the number of epochs.

• Receiver Operating Characteristics: The ROC represents a plot
between the true positive rate (TPR) and false negative rate (FNR),
and is a trade-off between the specificity and sensitivity [31]. AUC
uses the ROC curve and is calculated by using the trapezoidal
method, i.e., dividing the area into a number of sections with equal
width. Here, the trapezoid (T) refers to integration of points (a,
b) from a functional form which is divided into n equal pieces.
The addition of the area of each section of the trapezium formed
when the upper end is replaced by a chord and the sum of these
approximations provides the final AUC value. The trapezoidal
formula is indicated as an integral of the function , and the
points of integration (a, b) are labelled as {x0, x1 ,…, xn}; where {x0 =
a, xn = b, xr = x0 + r (b - a)/n} as given in [32].

B. Evaluation Results
In our evaluation, we noted the model performance in terms of

accuracy, precision, recall, F-score, sensitivity, specificity, and area
under curve (AUC) of receiver operating characteristics (ROC). The

training history of the model is also plotted for a credible analysis
of the loss and accuracy of the training set and the validation set.
Confusion matrix is calculated on the test set as shown in Table II.

TABLE II. Confusion Matrix Obtained on Test Data

Predicted Classes
Proper Improper

Actual Classes
Proper TP = 47 FN = 3
Improper FP = 4 TN = 55

By calculating the overall accuracy of the proposed model by using
the confusion matrix on the testing data, we have attained an overall
accuracy of 93.58%. We have achieved a precision and recall of 92.15%
and 94% respectively. Further, we have achieved F-1 score of 93.10. A
sensitivity of 94% has been calculated. This means that out of 50 total
people who are wearing the masks properly, 47 have been detected
wearing the mask properly from the test set.

We have achieved a specificity of 93.22%. This implies that out
of 59 people who are wearing the masks improperly, we are able to
correctly predict the person wearing an improper mask with an error
rate of only 6.78%. These evaluation parameters are calculated from
the confusion matrix as indicated in Table III.

TABLE III. Summary Table of Computed Metrics Using the Confusion
Matrix

Evaluation Metric Value (in %)
1. Accuracy 93.58
2. Precision 92.15
3. Recall 94.00
4. F-1 score 93.10
5. Sensitivity 94.00
6. Specificity 93.22

The model has been trained for 50 epochs, with an initial learning
rate of 0.0001. After the proposed model is trained on the training set
data, we observed the training accuracy as 92.27% and the validation
accuracy is 93.58% as shown in Fig. 6. The validation set data is used to
provide an unbiased evaluation and tune the hyper-parameters of the
model, while the model is fit on the training set data. It further helps in
determining the error rate in the model by holding out a subset of the
data from the fitting process and evaluation of the loss of the model at
the end of each epoch. The high training accuracy can be considered
as a good measure to assess our classification model. Fig. 7 depicts
learning curves which gives the values of training and validation loss
as 0.1693 and 0.1595, respectively.

Training Accuracy

A
cc

ur
ac

y

Epoch #

0.5

0 10

train_acc

val_acc

20 30 40 50

0.6

0.7

0.8

0.9

Fig. 6. Learning curves for evaluation of Accuracy.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº7

- 20 -

Training Loss
Lo

ss

Epoch #

0.5

0.4

0.3

0.2

0.1
0 10

train_loss

val_loss

20 30 40 50

0.6

0.7

0.8

0.9

Fig. 7. Learning curves for evaluation of Loss.

Table IV depicts the relevant results obtained from the training
curves to determine and compare the loss and accuracy of the training
and validation data, respectively. Fig. 8 shows the plotted AUC of ROC
curve of the proposed model which is above the threshold level and is
calculated as 0.9361.

TABLE IV. Inference of Accuracy and Loss From Obtained Curves and
Their Training Vs Validation Comparison

Accuracy/Loss Value (in %)

1. Training Accuracy 92.27

2. Validation Accuracy 93.58

3. Training Loss 0.1693

4. Validation Loss 0.1595

ROC curve for mask detection classifier

Tr
ue

 P
os

it
iv

e
R

at
e

False Positive Rate

0.4

0.2

0.0
0.0 0.2 .04 0.6 0.8 1.0

0.6

0.8

1.0

Fig. 8. ROC curve for test data.

The images that were not used in training are provided as input
to the proposed model to predict whether they are wearing the mask
properly. Fig. 9 depicts that the proposed model is able to categorize
faces into two classes: proper and improper, with high confidence
scores. Clockwise from top left, confidence scores are 99.06%
(Improper), 96.23% (Proper), 59.90% (Improper), 74.18% (Proper), and
99.81% (Proper).

We have not compared our results to any existing work since these do
not focus on whether the person is wearing a face mask properly or not.

IMPROPER: 99.06%

IMPROPER: 59.90%

PROPER: 96.23%

PROPER: 99.81%

PROPER: 74.18%

Fig. 9. A sample of results showing successful classification achieved by the
model on input images.

V. Conclusion

The COVID-19 disease is the greatest challenge that the world
has faced since World War II. To prevent its rapid spread, face masks
must be worn properly by people over their noses. People at crowded
places, hospitals, offices, and working spaces can be checked for
improperly worn masks to ensure safety. Application of the proposed
model can serve as a preventive measure in the COVID- 19 crisis
and benefit in safekeeping the health of society. The government
can also leverage the model to mobile devices or any device with
low computational power for the detection of improperly worn face
masks at public places.

Some research work had been done in detecting masks worn and
not worn. However, our model specifically focused on classifying the
mask worn by a person into two classes: proper and improper. This
will be much significant in the various stages of unlocking all over
the world as it will contribute to public safety and healthcare. The
architecture of the model consists of the light weighted MobileNetV2
neural network as the backbone which overcomes computational
issues as it can be used efficiently on devices with low computational
power. Transfer learning has been adopted to use weights that have
been used for a similar task like face detection and already trained on
a very large dataset. Furthermore, OpenCV with the Caffe framework
has been used to detect facial features on experimental input images
and used on the pre-trained model with our dataset, to produce
classification results with indicative results, such as labels and a
bounding box. We are able to attain a testing accuracy of 93.58% and
an AUC measure of 0.936.

Appendix

The appendix summarizes the complete structure of the proposed
model. It includes information about the layers and their order in
the model, the output shape of each layer and the information about
the parameters (weights). The number of parameters in each layer
and the total number of parameters in the model are obtained by
using the model summary. A total of 2,422,210 parameters (164,226
trainable parameters and 2,257,984 non-trainable parameters) is
present in our model.

Regular Issue

- 21 -

Layer(type) Output Shape Param #

input_1 (InputLayer) [(None, 224, 224, 3) 0

Conv1_pad (ZeroPadding2D) (None, 225, 225, 3) 0

Conv1 (Conv2D) (None, 112, 112, 32) 864

bn_Conv1 (BatchNormalization) (None, 112, 112, 32) 128

Conv1_relu (ReLU) (None, 112, 112, 32) 0

expanded_conv_depthwise (DepthwiseConvolution) (None, 112, 112, 32) 288

expanded_conv_depthwise_BN (BatchNormalization) (None, 112, 112, 32) 128

expanded_conv_depthwise_relu (ReLU) (None, 112, 112, 32) 0

expanded_conv_project (Conv2D) (None, 112, 112, 16) 512

expanded_conv_project_BN (BatchNormalization) (None, 112, 112, 16) 64

block_1_expand (Conv2D) (None, 112, 112, 96) 1536

block_1_expand_BN (BatchNormalization) (None, 112, 112, 96) 384

block_1_expand_relu (ReLU) (None, 112, 112, 96) 0

block_1_pad (ZeroPadding2D) (None, 113, 113, 96) 0

block_1_depthwise (DepthwiseConvolution) (None, 56, 56, 96) 864

block_1_depthwise_BN (BatchNorm (None, 56, 56, 96) 384

block_1_depthwise_relu (ReLU) (None, 56, 56, 96) 0

block_1_project (Conv2D) (None, 56, 56, 24) 2304

block_1_project_BN (BatchNormalization) (None, 56, 56, 24) 96

block_2_expand (Conv2D) (None, 56, 56, 144) 3456

block_2_expand_BN (BatchNormalization) (None, 56, 56, 144) 576

block_2_expand_relu (ReLU) (None, 56, 56, 144) 0

block_2_depthwise (DepthwiseConvolution) (None, 56, 56, 144) 3456

block_2_depthwise_BN (BatchNormalization) (None, 56, 56, 144) 96

block_2_depthwise_relu (ReLU) (None, 56, 56, 144) 0

block_2_project (Conv2D) (None, 56, 56, 24) 3456

block_2_project_BN (BatchNormalization) (None, 56, 56, 24) 576

block_2_add (Add) (None, 56, 56, 24) 0

block_3_expand (ne, 56, 56, 144) 0

block_3_expand_BN (BatchNormalization) (None, 56, 56, 144) 1296

block_3_expand_relu (ReLU) (None, 56, 56, 144) 576

block_3_pad (ZeroPadding2D) (None, 57, 57, 144) 0

block_3_depthwise (DepthwiseConvolution) (None, 28, 28, 144) 4608

block_3_depthwise_BN (BatchNormalization) (None, 28, 28, 144) 128

block_3_depthwise_relu (ReLU) (None, 28, 28, 144) 6144

block_3_project (Conv2D) (None, 28, 28, 32) 768

block_3_project_BN (BatchNormalization) (None, 28, 28, 32) 0

block_4_expand (Conv2D) (None, 28, 28, 192) 1728

block_4_expand_BN (BatchNormalization) (None, 28, 28, 192) 768

block_4_expand_relu (ReLU) (None, 28, 28, 192) 0

block_4_depthwise (DepthwiseConvolution) (None, 28, 28, 192) 6144

block_4_depthwise_BN (BatchNormalization) (None, 28, 28, 192) 768

block_4_depthwise_relu (ReLU) (None, 28, 28, 192) 0

block_4_project (Conv2D) (None, 28, 28, 32) 1728

block_4_project_BN (BatchNormalization) (None, 28, 28, 32) 768

block_4_add (Add) (None, 28, 28, 32) 0

block_5_expand (Conv2D) (None, 28, 28, 192) 6144

block_5_expand_BN (BatchNormalization) (None, 28, 28, 192) 128

block_5_expand_relu (ReLU) (None, 28, 28, 192) 0

block_5_depthwise (DepthwiseConvolution) (None, 28, 28, 192) 6144

block_5_depthwise_BN (BatchNormalization) (None, 28, 28, 192) 128

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº7

- 22 -

Layer(type) Output Shape Param #

block_5_depthwise_relu (ReLU) (None, 28, 28, 192) 0

block_5_project (Conv2D) (None, 28, 28, 32) 6144

block_5_project_BN (BatchNormalization) (None, 28, 28, 32) 768

block_5_add (Add) (None, 28, 28, 32) 0

block_6_expand (Conv2D) (None, 28, 28, 192) 0

block_6_expand_BN (BatchNormalization) (None, 28, 28, 192) 1728

block_6_expand_relu (ReLU) (None, 28, 28, 192) 768

block_6_pad (ZeroPadding2D) (None, 29, 29, 192) 0

block_6_depthwise (DepthwiseConvolution) (None, 14, 14, 192) 12288

block_6_depthwise_BN (BatchNormalization) (None, 14, 14, 192) 256

block_6_depthwise_relu (ReLU) (None, 14, 14, 192) 24576

block_6_project (Conv2D) (None, 14, 14, 64) 1536

block_6_project_BN (BatchNormalization) (None, 14, 14, 64) 0

block_7_expand (Conv2D) (None, 14, 14, 384) 24576

block_7_expand_BN (BatchNormalization) (None, 14, 14, 384) 1536

block_7_expand_relu (ReLU) (None, 14, 14, 384) 0

block_7_depthwise (DepthwiseConvolution) (None, 14, 14, 384) 3456

block_7_depthwise_BN (BatchNormalization) (None, 14, 14, 384) 1536

block_7_depthwise_relu (ReLU) (None, 14, 14, 384) 0

block_7_project (Conv2D) (None, 14, 14, 64) 24576

block_7_project_BN (BatchNormalization) (None, 14, 14, 64) 256

block_7_add (Add) (None, 14, 14, 64) 0

block_8_expand (Conv2D) (None, 14, 14, 384) 24536

block_8_expand_BN (BatchNormalization) (None, 14, 14, 384) 1536

block_8_expand_relu (ReLU) (None, 14, 14, 384) 0

block_8_depthwise (DepthwiseConvolution) (None, 14, 14, 384) 3456

block_8_depthwise_BN (BatchNormalization) (None, 14, 14, 384) 1536

block_8_depthwise_relu (ReLU) (None, 14, 14, 384) 0

block_8_project (Conv2D) (None, 14, 14, 64) 24576

block_8_project_BN (BatchNormalization) (None, 14, 14, 64) 256

block_8_add (Add) (None, 14, 14, 64) 0

block_9_expand (Conv2D) (None, 14, 14, 384) 24576

block_9_expand_BN (BatchNormalization) (None, 14, 14, 384) 1536

block_9_expand_relu (ReLU) (None, 14, 14, 384) 0

block_9_depthwise (DepthwiseConvolution) (None, 14, 14, 384) 3456

block_9_depthwise_BN (BatchNormalization) (None, 14, 14, 384) 1536

block_9_depthwise_relu (ReLU) (None, 14, 14, 384) 0

block_9_project (Conv2D) (None, 14, 14, 64) 24576

block_9_project_BN (BatchNormalization) (None, 14, 14, 64) 256

block_9_add (Add) (None, 14, 14, 64) 0

block_10_expand (Conv2D) (None, 14, 14, 384) 24576

block_10_expand_BN (BatchNormalization) (None, 14, 14, 384) 1536

block_10_expand_relu (ReLU) (None, 14, 14, 384) 0

block_5_expand_BN (BatchNormalization) (None, 28, 28, 192) 128

block_5_expand_relu (ReLU) (None, 28, 28, 192) 0

block_5_depthwise (DepthwiseConvolution) (None, 28, 28, 192) 6144

block_5_depthwise_BN (BatchNormalization) (None, 28, 28, 192) 128

block_5_depthwise_relu (ReLU) (None, 28, 28, 192) 0

block_5_project (Conv2D) (None, 28, 28, 32) 6144

block_5_project_BN (BatchNormalization) (None, 28, 28, 32) 768

block_5_add (Add) (None, 28, 28, 32) 0

Regular Issue

- 23 -

Layer(type) Output Shape Param #

block_6_expand (Conv2D) (None, 28, 28, 192) 0

block_6_expand_BN (BatchNormalization) (None, 28, 28, 192) 1728

block_6_expand_relu (ReLU) (None, 28, 28, 192) 768

block_6_pad (ZeroPadding2D) (None, 29, 29, 192) 0

block_6_depthwise (DepthwiseConvolution) (None, 14, 14, 192) 12288

block_6_depthwise_BN (BatchNormalization) (None, 14, 14, 192) 256

block_6_depthwise_relu (ReLU) (None, 14, 14, 192) 24576

block_6_project (Conv2D) (None, 14, 14, 64) 1536

block_6_project_BN (BatchNormalization) (None, 14, 14, 64) 0

block_7_expand (Conv2D) (None, 14, 14, 384) 24576

block_7_expand_BN (BatchNormalization) (None, 14, 14, 384) 1536

block_7_expand_relu (ReLU) (None, 14, 14, 384) 0

block_7_depthwise (DepthwiseConvolution) (None, 14, 14, 384) 3456

block_7_depthwise_BN (BatchNormalization) (None, 14, 14, 384) 1536

block_7_depthwise_relu (ReLU) (None, 14, 14, 384) 0

block_7_project (Conv2D) (None, 14, 14, 64) 24576

block_7_project_BN (BatchNormalization) (None, 14, 14, 64) 256

block_7_add (Add) (None, 14, 14, 64) 0

block_8_expand (Conv2D) (None, 14, 14, 384) 24536

block_8_expand_BN (BatchNormalization) (None, 14, 14, 384) 1536

block_8_expand_relu (ReLU) (None, 14, 14, 384) 0

block_8_depthwise (DepthwiseConvolution) (None, 14, 14, 384) 3456

block_8_depthwise_BN (BatchNormalization) (None, 14, 14, 384) 1536

block_8_depthwise_relu (ReLU) (None, 14, 14, 384) 0

block_8_project (Conv2D) (None, 14, 14, 64) 24576

block_8_project_BN (BatchNormalization) (None, 14, 14, 64) 256

block_8_add (Add) (None, 14, 14, 64) 0

block_9_expand (Conv2D) (None, 14, 14, 384) 24576

block_9_expand_BN (BatchNormalization) (None, 14, 14, 384) 1536

block_9_expand_relu (ReLU) (None, 14, 14, 384) 0

block_9_depthwise (DepthwiseConvolution) (None, 14, 14, 384) 3456

block_9_depthwise_BN (BatchNormalization) (None, 14, 14, 384) 1536

block_9_depthwise_relu (ReLU) (None, 14, 14, 384) 0

block_9_project (Conv2D) (None, 14, 14, 64) 24576

block_9_project_BN (BatchNormalization) (None, 14, 14, 64) 256

block_9_add (Add) (None, 14, 14, 64) 0

block_10_expand (Conv2D) (None, 14, 14, 384) 24576

block_10_expand_BN (BatchNormalization) (None, 14, 14, 384) 1536

block_10_expand_relu (ReLU) (None, 14, 14, 384) 0

block_15_project (Conv2D) (None, 7, 7, 160) 153600

block_15_project_BN (BatchNormalization) (None, 7, 7, 160) 640

block_15_add (Add) (None, 7, 7, 160) 0

block_16_expand (Conv2D) (None, 7, 7, 960) 153600

block_16_expand_BN (BatchNormalization) (None, 7, 7, 960) 3840

block_16_expand_relu (ReLU) (None, 7, 7, 960) 0

block_16_depthwise (DepthwiseConvolution) (None, 7, 7, 960) 8640

block_16_depthwise_BN (BatchNormalization) (None, 7, 7, 960) 3840

block_16_depthwise_relu (ReLU) (None, 7, 7, 960) 0

block_16_project (Conv2D) (None, 7, 7, 320) 307200

block_16_project_BN(BatchNormalization) (None, 7, 7, 320) 1280

Conv_1 (Conv2D) (None, 7, 7, 1280) 409600

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº7

- 24 -

References

[1] V. C.-Ch. Cheng et al., “The role of community-wide wearing of face
mask for control of coronavirus disease 2019 (COVID-19) epidemic due
to SARS-CoV-2,” Journal of Infection, vol. 81, no. 1, pp. 107–114, 2020, doi:
10.1016/j.jinf.2020.04.024.

[2] A. N. Desai and D. M. Aronoff, “Masks and Coronavirus Disease 2019
(COVID-19),” JAMA, vol. 323, no. 20, p. 2103, May 2020, doi: 10.1001/
jama.2020.6437.

[3] C. Kenyon, “The prominence of asymptomatic superspreaders in
transmission mean universal face masking should be part of COVID-19
de-escalation strategies,” International Journal of Infectious Diseases, vol.
97, pp. 21–22, 2020.

[4] N. H. L. Leung et al., “Respiratory virus shedding in exhaled breath and
efficacy of face masks,” Nature Medicine, vol. 26, no. 5, pp. 676–680, 2020,
doi: 10.1038/s41591-020-0843-2.

[5] Y. Liu, A. A. Gayle, A. Wilder-Smith, and J. Rocklöv, “The reproductive
number of COVID-19 is higher compared to SARS coronavirus,” Journal
of Travel Medicine, vol. 27, no. 2, Feb. 2020, doi: 10.1093/jtm/taaa021.

[6] M. P. Fang, Yaqing, Yiting Nie, “Transmission dynamics of the COVID‐19
outbreak and effectiveness of government interventions: A data‐driven
analysis,” Journal of medical virology, vol. 92, no. 6, pp. 645–659, 2020, doi:
10.1002/jmv.25750.

[7] E. S. K. Lim, Soo, Ho Il Yoon, Kyoung-Ho Song and H. Bin Kim, “Face
Masks and Containment of Coronavirus Disease 2019 (COVID-19):
Experience from South Korea,” The Journal of Hospital Infection, 2020,
doi: 10.1016/j.jhin.2020.06.017.

[8] S. Esposito, N. Principi, C. C. Leung, and G. B. Migliori, “Universal use of
face masks for success against COVID-19: evidence and implications for
prevention policies,” European Respiratory Journal, p. 2001260, Jan. 2020,
doi: 10.1183/13993003.01260-2020.

[9] M. Dhalaria and E. Gandotra, “Convolutional Neural Network for
Classification of Android Applications Represented as Grayscale Images,”
International Journal of Innovative Technology and Exploring Engineering,
vol. 8, no. 12S, pp. 2278–3075, 2019.

[10] H. Panwar, P. K. Gupta, M. K. Siddiqui, R. Morales-Menendez, and V.
Singh, “Application of deep learning for fast detection of COVID-19 in
X-Rays using nCOVnet,” Chaos, Solitons & Fractals, vol. 138, p. 109944,
2020, doi: 10.1016/j.chaos.2020.109944.

[11] F. Sultana, A. Sufian, and P. Dutta, “Advancements in Image
Classification using Convolutional Neural Network,” in 2018 Fourth
International Conference on Research in Computational Intelligence and
Communication Networks (ICRCICN), 2018, pp. 122–129, doi: 10.1109/
ICRCICN.2018.8718718.

[12] H. Shin et al., “Deep Convolutional Neural Networks for Computer-
Aided Detection: CNN Architectures, Dataset Characteristics and
Transfer Learning,” IEEE Transactions on Medical Imaging, vol. 35, no. 5,
pp. 1285–1298, 2016, doi: 10.1109/TMI.2016.2528162

[13] M. Coşkun, A. Uçar, Ö. Yildirim, and Y. Demir, “Face recognition based
on convolutional neural network,” in 2017 International Conference on
Modern Electrical and Energy Systems (MEES), 2017, pp. 376–379, doi:
10.1109/MEES.2017.8248937.

[14] Szegedy et al., “Going deeper with convolutions,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9.

[15] Wang et al., “Residual attention network for image classification,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 3156–3164.

[16] Z. Zhao, P. Zheng, S. Xu, and X. Wu, “Object Detection With Deep
Learning: A Review,” IEEE Transaction on neural networks and
learning systems, vol. 30, no. 11, pp. 3212–3232, 2019, doi: 10.1109/
TNNLS.2018.2876865.

[17] Redmon, Joseph, S. Divvala, R. Girshik, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 779–788.

[18] A. Kumar, A. Kaur, and M. Kumar, “Face detection techniques: a review,”
Artificial Intelligence Review, Springer, vol. 52, no. 2, pp. 927–948, 2019,
doi: 10.1007/s10462-018-9650-2.

[19] A. S. M. and V. M. M. Sivaram, V. Porkodi, “Detection of Accurate Facial
Detection using Hybrid Deep Convolutional Recurrent Neural Network,”
ICTACT Journal of Soft Computing, vol. 9, no. 2, 2019, doi: 10.21917/
ijsc.2019.0256.

[20] M. Khan, S. Chakraborty, R. Astya, and S. Khepra, “Face Detection
and Recognition Using OpenCV,” in 2019 International Conference on
Computing, Communication, and Intelligent Systems (ICCCIS), 2019, pp.
116–119, doi: 10.1109/ICCCIS48478.2019.8974493.

[21] T. Meenpal, A. Balakrishnan, and A. Verma, “Facial Mask Detection
using Semantic Segmentation,” in 2019 4th International Conference on
Computing, Communications and Security (ICCCS), 2019, pp. 1–5, doi:
10.1109/CCCS.2019.8888092.

[22] M. Jiang, X. Fan, and H. Yan, “RetinaMask: A Face Mask detector.” 2020,
[Online]. Available: http://arxiv.org/abs/2005.03950.

[23] T. Zhang, J. Li, W. Jia, J. Sun, and H. Yang, “Fast and robust occluded face
detection in ATM surveillance,” Pattern Recognition Letters, vol. 107, pp.
33–40, 2018, doi: 10.1016/j.patrec.2017.09.011.

[24] H. Baojin, “Real-World Masked Face Dataset, RMFD.” Real-World Masked
Face Dataset, RMFD.

[25] “Mobilenets: Efficient convolutional neural networks for mobile vision
applications,” 2017, [Online]. Available: https://arxiv.org/abs/1704.04861.

[26] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei, “ImageNet: A
large-scale hierarchical image database,” in 2009 IEEE Conference on
Computer Vision and Pattern Recognition, 2009, pp. 248–255, doi: 10.1109/
CVPR.2009.5206848.

[27] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. Chen,
“MobileNetV2: Inverted Residuals and Linear Bottlenecks,” in 2018 IEEE/
CVF Conference on Computer Vision and Pattern Recognition, 2018, pp.
4510–4520.

[28] “How to train a Face Detector,” https://github.com/opencv/opencv/
blob/4.0.0-beta/samples/dnn/face_detector/how_to_train_face_detector.
txt.

[29] “deploy.prototxt,” https://github.com/opencv/opencv/blob/4.0.0-beta/
samples/dnn/face_detector/deploy.prototxt.

[30] Y. Jia et al., “Caffe: Convolutional Architecture for Fast Feature
Embedding,” in Proceedings of the 22nd ACM International Conference on
Multimedia, 2014, pp. 675–678, doi: 10.1145/2647868.2654889.

[31] D. L. Streiner and J. Cairney, “What’s under the ROC? An Introduction
to Receiver Operating Characteristics Curves,” The Canadian
Journal of Psychiatry, vol. 52, no. 2, pp. 121–128, Feb. 2007, doi:
10.1177/070674370705200210.

Layer(type) Output Shape Param #

Conv_1_bn (BatchNormalization) (None, 7, 7, 1280) 5120

out_relu (ReLU) (None, 7, 7, 1280) 0

average_pooling2d_2 (AveragePooling) (None, 1, 1, 1280) 0

flatten (Flatten) (None, 1280) 0

dense_4 (Dense) (None, 128) 163968

dropout_2 (Dropout) (None, 128) 0

dense_5 (Dense) (None, 2) 258

 Total parameters: 2,422,210
 Trainable parameters: 164,226
 Non-trainable parameters: 2,257,984

Regular Issue

- 25 -

[32] Yeh and Shi-Tao, “Using trapezoidal rule for the area under a curve
calculation,” Proceedings of the 27th Annual SAS User Group International
2002.

Anubha Bhaik

Anubha Bhaik has recently completed her B.Tech in
Computer Science & Engineering from Jaypee University
of Information Technology, India. She will be pursuing her
Master’s in Computer Science at the University of Florida,
USA. Her interests lie in deep learning, computer vision
and data science. She is an experienced team lead with a
demonstrated record of contributing to the research industry.

Vaishnavi Singh

Vaishnavi Singh has recently completed her B.Tech in
Computer Science & Engineering from Jaypee University
of Information Technology, India. She enjoys figuring out
the different building blocks of the technical world and
rearranging them to discover new possibilities. She is
passionate about exploring and applying various fields of
computer science to develop adept solutions for the real-

world problems. Her interests lie in deep learning, computer vision, software
engineering and database systems. She has a significant history of contributions
to the research industry, whereas majority of her work is related to solving the
challenges of COVID-19.

Ekta Gandotra

Ekta Gandotra is currently working as Assistant Professor
in the Department of Computer Science & Engineering at
Jaypee University of Information Technology, Waknaghat
(India). She has completed her Ph.D. in Computer Science
and Engineering from PEC University of Technology,
Chandigarh (India). She has around 12 years of teaching
and research experience. Her research areas include

network & cybersecurity, malware threat profiling, cyber threat intelligence,
machine/deep learning, and big data analytics.

Deepak Gupta

Deepak Gupta is working as Assistant Professor
in the Department of Computer Science &
Engineering at Jaypee University of Information
Technology, Waknaghat (India). He has completed his
Ph.D. in Computer Science & Engineering from Thapar
Institute of Engineering and Technology (Deemed to
be University), Patiala (India). Prior to his foray into

academia, he worked in IT industry for a decade performing different roles in
software product development and program management. In all, he has more
than 20 years of rich experience in IT industry and academics. His research
interests include big data analytics, machine/deep learning, cybersecurity, and
programming languages.

