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ABSTRACT. In the present study, models were developed to determine the monthly and annual spatio-temporal 
variation of temperature, precipitation, and solar radiation based on topoclimatic analysis of Arica-Parinacota and 
Tarapacá in northern Chile. To construct the equations of the topoclimatic model, the data from meteorological 
stations and physiographic factors (latitude, longitude, altitude, and distance to bodies of water) obtained from a 
digital terrain model with a resolution of 90 m were compiled in a database. The equations of the topoclimatic 
model were generated by a stepwise regression with a backward selection technique. The equations for average 
monthly temperature, precipitation, and solar radiation were determined by linear combinations. The results were 
statistically significant with coefficients of determination greater than 90%, in addition to being greater than the 
existing climate databases for this area. 

 

Caracterización espacial de variables climáticas de Arica-Parinacota y Tarapacá, Chile 
mediante análisis topoclimático 

 
RESUMEN. En el presente estudio se desarrollaron modelos para determinar la variación espaciotemporal 
mensual y anual de temperatura, precipitación y radiación solar con base en el análisis topoclimático de Arica-
Parinacota y Tarapacá en el norte de Chile. Para construir las ecuaciones del modelo topoclimático, se compilaron 
en una base de datos la información de estaciones meteorológicas y factores fisiográficos (latitud, longitud, altitud 
y distancia a cuerpos de agua) obtenidos de un modelo digital del terreno con una resolución de 90 m. Las 
ecuaciones del modelo topoclimático se generaron mediante una regresión escalonada con una técnica de selección 
hacia atrás. Las ecuaciones para la temperatura media mensual, la precipitación y la radiación solar se determinaron 
mediante combinaciones lineales. Los resultados fueron estadísticamente significativos con coeficientes de 
determinación superiores al 90%, siendo más elevados que las bases de datos climáticas existentes para esta área. 
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1. Introduction 

Properly characterizing a territory based on its climatic characteristics are the basis of correct 
territorial planning more efficient for natural resources, agriculture, and hydrology. This could be 
enhanced with the implementation of a combination between geographic information systems (GIS) and 
models (Grunwald, 2009; Grunwald et al., 2011; Kaye et al., 2012; Burkhard and Maes, 2017). 

The computer programming has allowed develop algorithms for predict the spatial distribution 
of climate variables from data of weather stations (Hijmans et al., 2005; Hunter and Meentemeyer, 2005; 
Fredericksen, 2010; Harris et al., 2014). The topoclimatic analysis studies the relations between climatic 
and physiographic variables, which describe a climatic zone or area (Kaminski and Radosz, 2005). 
However, climate mapping is conditioned by the availability and quality of data from meteorological 
stations distributed spatially in a zone (Skirvin et al., 2003; Morales et al., 2006), instead non spatially 
distributed stations or discontinued data require to develop models that spatially represent the 
distribution climatic variables using GIS and environmental modeling, which helps to solve the 
problems caused by the lack of information in certain areas (Florinsky, 1998; Daly et al., 2008). 

The mapping of the Atacama Desert (Arica-Parinacota, Tarapacá, and Antofagasta) is scarce 
and imprecise for climatic variables (Hijmans et al., 2005; Luebert and Pliscoff, 2018), both with limited 
applications and inappropriate to climatic zoning with agronomic purposes. The high variability of some 
topographic variables and the combination of the marine influence and the Pacific Anticyclone that 
determine the arid conditions in the coast and inner zones (Garreaud et al., 2003), must be considered 
in the implementation of GIS analysis and modeling to determine the climate zoning (Hijmans et al., 
2005; Luebert and Pliscoff, 2018). 

The correct climatic characterization of the Atacama Desert needs complementary information, 
as worldwide databases. Different databases in the literature could be used such as CLIMOND (Kriticos 
et al., 2012), CHELSA (Karger et al., 2017), CSIRO (Gordon et al., 2010), WORLDCLIM (Fick and 
Hijmans, 2017), CR2MET (Boisier et al., 2018), CAMELS-CL (Alvarez-Garreton et al., 2018) and 
Pliscoff et al. (2014). 

Finally, the need for climatic information spatially distributed in the Arica-Parinacota and 
Tarapacá region for environmental management or decision-making, highlights the importance of 
generating climate mapping, independent of the spatial variability and insufficient station coverage. The 
main objective was to determine different climatic characterization zones using topoclimatic analysis 
models. Also show the spatial variation of monthly and annual mapping of precipitation, average 
temperature, and solar radiation.  

 

2. Materials and Methods 

2.1. Study area 

The study area (Fig. 1) is the regions of Arica-Parinacota and Tarapacá in the northern zone of 
Chile (17°30' to 21°38' S; 70º22' to 68°24' W), varying in altitude from 0 to 5200 meters of altitude, 
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with an arid to semi-arid climate influence on the coast by the Southeast Pacific Subtropical Anticyclone 
(SPSA), which generates high atmospheric stability, influenced by the Humboldt current that generates 
cold upwellings, causing a thermal inversion of up to 900 meters of altitude. In the pampas (large areas 
between valleys or ravines, from 300 to 1500 meters of altitude) there are arid conditions caused by the 
little penetration of clouds due to coastal thermal inversion, generating dry conditions and atmospheric 
transparency (Sarricolea and Romero, 2015). This cooling generates frequent clouds on the coast that 
advance inland only through the valleys ascending towards the foothills (up to 2000 meters of altitude). 
The highest mountains (over 3800 meters of altitude) represent a border that divides the eastern zone or 
Altiplano and the western zone from the foothills to the Pacific Ocean. 

In the Altiplano area the SPSA loses its influence allowing the incursions of tropical air masses 
in the summer, that transports clouds and precipitation between November and March (Garreaud et al., 
2003) when they advance towards the west, the air masses losses their influence reducing up to 30% of 
relative humidity in foothills. The mean annual precipitation ranges from 5 mm to 600 mm in the eastern 
part. The precipitation variability in the Altiplano is high between seasons (Romero et al., 2013) with 
alternation of wet and dry years strongly related to the Southern El Niño Southern Oscillation (ENSO) 
(Garreaud and Aceituno, 2001; Romero et al., 2013). In the Altiplano (18°-27°S) there is a semi-arid 
climate determined by altitude at 3700 m., influenced by wet subtropical air masses in summer and cold 
air masses from the west with low relative humidity in winter (30%) (Aceituno, 1996; Garreaud, 2011). 
Average temperatures in summer are slightly above 10°C, while in winter they are below 6°C (Morales 
et al., 2015). Solar radiation increases its value from the coast to the Altiplano. On the coast, due to the 
anticyclone influence, it has values between 16 to 18 MJ m-2 day-1. In the pampas at 1500 meters of 
altitude there are values from 21 to 23 MJ m-2 day-1. The values in the Altiplano exceed 23 MJ m-2 day- 1, 
however in summer cloudiness predominates with values close to 18 MJ m-2 day-1 as a daily average 
(Aceituno, 1996; Garreaud, 2011; Minvielle and Garreaud, 2011). 

 
Figure 1. The study area that comprehends the Arica-Parinacota and Tarapacá regions. 
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2.2. Physiographic information 

The climatic mapping needs a continuous database; thus, we only consider the meteorological 
stations with 10 or more years of continuous measurements from the following historical yearbooks 
sources: (Programa Desarollo Naciones Unidas (PNUD) and Gobierno de Chile, 1964; Luebert and 
Pliscoff, 2006; Matsuura and Willmott, 2009, 2012; Dirección General de Aguas, 2010; Dirección 
Meteorológica de Chile, 2018). The information source corresponds to data from government entities 
and scientific studies. Figure 2 show the spatial distribution of the meteorological stations used to obtain 
topoclimatic models for Temperature (28 stations), Precipitation (40 stations) and Solar Radiation (17 
stations). 

 

 
Figure 2. Data from the meteorological stations (a) Temperature, (b) precipitation (S1 black points with 9 
stations, S2 white points with 31 stations) and (c) solar radiation. Source: (Santibañez, 1982; Dirección 

General de Aguas (DGA), 2010; Dirección Meteorológica de Chile (DMC), 2018). 

 

The Spatial mapping used a digital terrain model (DTM) in a raster format, to obtain the 
following physiographic variables: latitude (LAT), longitude (LON), the distance to water bodies/salt 
flats (DW), and distance to the coast (DC). The DTM corresponds to The Shuttle Radar Topography 
Mission (SRTM), developed by the United States Geological Survey (Gesch et al., 2014), with a spatial 
resolution of 90 m of the pixel size. All climatic and spatial information was projected to Datum WGS84 
in geographic coordinates. The cartography was elaborated by the determination of topoclimatic 
equations using the IDRISI® program (Eastman, 2006) and the R statistical program (R Core Team, 
2020). 

 

2.3. Topoclimatic Modeling 

The modeling of the different climatic variables was realized by applying the mathematical 
model described in the equation (1). 

𝐹𝐹(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3, . . . . . , 𝑥𝑥𝑛𝑛) = � 𝑎𝑎𝑗𝑗𝑥𝑥𝑘𝑘1
𝑛𝑛1𝑥𝑥𝑘𝑘1

𝑛𝑛1 . . . . . . 𝑥𝑥𝑘𝑘𝑛𝑛
𝑛𝑛𝑚𝑚

𝑗𝑗,𝑘𝑘,𝑛𝑛,𝑚𝑚=0

 (1) 

where F (x1, x2,...xn) represents a climatological variable in any period, x is a descriptive variable 
(LAT º, LON º, DC (km), DW (km), and ALT (meters); finally, aj are the coefficients to be determined 
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(Morales, 1997; Canessa, 2006; Morales et al., 2006; Qiyao et al., 2007; Diaz et al., 2010; Cortez et al., 
2021). With the equations obtained, data matrices were calculated for each climatological variable in a 
binary matrix format on a monthly time scale. 

To estimate the monthly mean temperature (Tmonth, °C) and annual mean temperature (Tyear, 
°C), the equation (2) was adjusted using independent variables LAT, LON, ALT, DC, and DW, reducing 
it to the following expression. 

𝑇𝑇 =  �𝑏𝑏𝑖𝑖𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=0

 (2) 

where 𝑇𝑇 represents Tmonth or Tyear, 𝑥𝑥𝑖𝑖 corresponds to the predictor variables (LAT, LON, ALT, DC, 
and DW) and 𝑏𝑏𝑖𝑖 represents the coefficients of the multiple regression corresponding to each variable.  

The fit of a general model of precipitation spatial distribution to the study area was a complex 
process, because of the different nature of precipitation, for this reason, the study area was divided into 
two sectors. Sector 1 (S1) represents the zone between the coast and the 2000 meters of altitude with 9 
stations, while Sector 2 (S2) is the zone over 2000 meters that includes foothills, Altiplano, and high 
mountains with 31 stations. Between these two zones was the 10 millimeters isohyet, where the 
precipitation has an accelerated increase derived from convective precipitation in the Altiplano. 
(Sarricolea and Romero, 2015; Sarricolea et al., 2017). 

In each area, the spatial adjustment of the precipitation spatial models of the monthly mean 
(Pmonth, mm) was carried out following the methodology used by Canessa (2006). The Pmonth was 
estimated based on the mean annual precipitation (Pyear, mm), whose model was fitted spatially 
considering meteorological data and isohyets. To explain the spatial Pyear fitting the equation: 

𝑃𝑃𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑆𝑆1 =  �𝑏𝑏𝑖𝑖𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=0

 (3) 

𝑃𝑃𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑆𝑆2 =  𝑒𝑒(𝑏𝑏0𝑥𝑥0+𝑏𝑏1𝑥𝑥1+⋯+𝑏𝑏𝑛𝑛𝑥𝑥𝑛𝑛) (4) 

where x1, x2, and x3 are the physiographical variables obtained from DTM models. b0, b1, b2, and b3, are 
the multiple regression coefficients. Then, the partition coefficients of annual precipitation (crj) were 
calculated, between the precipitation of each month (Pmonth) is divided by Pyear, according to the 
equation (5).  

𝑐𝑐𝑟𝑟𝑗𝑗 =
𝑃𝑃𝑚𝑚𝑚𝑚𝑛𝑛𝑚𝑚ℎ𝑗𝑗

𝑃𝑃𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
 (5) 

The partition coefficients of Pmonth were fitted spatially according to the equation (5). Using 
the partition coefficients of monthly precipitation, it was possible to calculate the Pyear mapping. 
Additionally, the border between two zones (S1 and S2) of Pyear mapping was smoothed using a raster 
media filter (7x7).  

A spatial variability of the Solar Radiation model was adjusted to estimate the mean annual 
solar radiation (Ryear) using the variables LAT, LON, ALT, and DC. The mean monthly solar radiation 
(Rmonth) was calculated according to the global partition coefficient in this zone for a month using the 
annual mean solar radiation data from meteorological stations and Ryear spatial fitting. The month 
partition coefficients were based on month precipitation data that were homogeneous with variation 
coefficients less than 15%. 
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2.4. Climate databases 

The databases evaluated were: CLIMOND (Kriticos et al., 2012), CHELSA (Karger et al., 
2017), CSIRO (Gordon et al., 2010) WORLDCLIM (Hijmans et al., 2005; Fick and Hijmans, 2017), 
CR2MET (Boisier et al., 2018), CAMELS-CL (Alvarez-Garreton et al., 2018) and Pliscoff et al. (2014). 
All databases had wide coverage of the study area, and of the limits, that allows to obtain values without 
of the border effect. 

 

2.5. Statistical Analysis 

The analysis of the results was carried out by comparing the predicted values (Pi) with the 
observed values (Oi) of the different climatic databases evaluated. For this analysis, the statistics 
systematic error (BIAS), mean absolute error value (MAE), mean square error (RMSE), Pearson 
determination coefficient (r2), the agreement index (d) and the Akaike Information Criterion (AIC) were 
used (Table 1).  

 

Table 1. Statistical criteria use to evaluate the performance of the spatial distribution model. 

Index Equation Number 

Systematic Error 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =
1
𝑛𝑛
�(𝑂𝑂𝑖𝑖 − 𝑃𝑃𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 6 

Root means square 
error 𝑅𝑅𝑅𝑅𝐵𝐵𝑅𝑅 = �

1
𝑛𝑛
�(𝑂𝑂𝑖𝑖 − 𝑃𝑃𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 7 

Agreement index 𝑑𝑑 = 1 −
∑ (𝑂𝑂𝑖𝑖 − 𝑃𝑃𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

∑ (|𝑃𝑃𝑖𝑖 − 𝑂𝑂�| − |𝑂𝑂𝑖𝑖 − 𝑂𝑂�|)2𝑛𝑛
𝑖𝑖=1

 8 

Mean absolute error 
value 𝑅𝑅𝐵𝐵𝑅𝑅 = �

1
𝑛𝑛
�|𝑂𝑂𝑖𝑖 − 𝑃𝑃𝑖𝑖|
𝑛𝑛

𝑖𝑖=1

 9 

Pearson 
determination 
coefficient 

𝑟𝑟2 =

⎣
⎢
⎢
⎡ ∑ 𝑂𝑂𝑖𝑖𝑃𝑃𝑖𝑖𝑛𝑛

𝑖𝑖=1 − ∑ 𝑂𝑂𝑖𝑖𝑛𝑛
𝑖𝑖=1 ∙ ∑ 𝑃𝑃𝑖𝑖𝑛𝑛

𝑖𝑖=1
𝑛𝑛

�∑ 𝑂𝑂𝑖𝑖2𝑛𝑛
𝑖𝑖=1 −

(∑ 𝑂𝑂𝑖𝑖𝑛𝑛
𝑖𝑖=1 )2
𝑛𝑛 ∙ �∑ 𝑃𝑃𝑖𝑖2𝑛𝑛

𝑖𝑖=1 −
(∑ 𝑃𝑃𝑖𝑖𝑛𝑛

𝑖𝑖=1 )2
𝑛𝑛 ⎦

⎥
⎥
⎤
2

 10 

Akaike Information 
criterion 𝐵𝐵𝐵𝐵𝐴𝐴 = 2 ∙ 𝑘𝑘 − 𝑛𝑛 ∙ 𝐿𝐿𝑛𝑛(𝐿𝐿) 𝑜𝑜𝑟𝑟 𝐵𝐵𝐵𝐵𝐴𝐴 = 2 ∙ 𝑘𝑘 − 𝑛𝑛 ∙ 𝐿𝐿𝑛𝑛 �

∑ (𝑂𝑂𝑖𝑖 − 𝑃𝑃𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
� 11 

O: Observed data, P: Predicted data, 𝑂𝑂�: Observed Data Average, n: sample size, k is the number of independent 
variables used and L is the log-likelihood estimate. 

 

3. Results and discussion 

3.1. Temperature 

The models accounted for between 95 and 98% of the observed spatial variability in 
temperature. Table 2 shows the coefficients of the regression variables. We observed that the monthly 
coefficients for DC only show positive values, while DC2 and ALT2 had negative coefficients, while 
the other coefficients could be negative or positive depending on the month. It is important to mention 
the relation between the coefficients of DC and DC2 (b2 and b8, respectively) that results in change in 
the temperature behavior and coincides with a gradual decrease in Tmonth and Tyear when there is an 
increase in altitude towards the foothills between 2000 to 3500 m (Romero et al., 2013). The standard 
error was between 0.9 and 1.4ºC, with lower values in the summer months. Figure 3 shows the relation 
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between the estimated and the observed values, with a determination coefficient of 0.978 with Tyear 
and Tmonth. 

 

Table 2. The topoclimatical coefficients for the annual spatial distribution model of Temperature (Tyear)*, 
Precipitation (Pyear)* and Solar Radiation (Ryear)*. 

  Tyear Pyear S1 Pyear S2 Ryear 
b0 Intercept 17.71 -704716.0 1499.530 -52315.90 
b1 ALT   -0.017  
b2 DC 0.041 212.296 -1.740  
b3 LAT  - 1561.170 82.920  
b4 LON  - 19629.500 75.457 4245 ‧105 
b5 LAT2  -0.570 1.016 -202.883 ‧105 
b6 LON2  - 136.670 0.516  
b7 ALT2 -8.591 ‧10-7    
b8 DC2 -2.301 ‧10-4 -0.015 1.594 ‧10-4  
b9 LAT ‧ LON  - 21.903  121.072 
b10 LAT ‧ ALT  -2.614 ‧10-4  -1.987 ‧10-2 
b11 LAT ‧ DC  2.948 -0.002  
b12 LON ‧ ALT  7.522 ‧10-5 -2.384 ‧10-4  
b13 LON ‧ DC  2.948 -0.024 -0.496 
b14 ALT ‧ DC  5.930 ‧10-5   
b15 Ln |LAT|   825.424 -3.866 ‧10-3 
b16 Ln |ALT|   5.189  

S1: defined the zone between the coast and under the 2000 m of altitude and S2 is the zone above this 
altitude, including the foothills, Altiplano, and high mountains. 
* Statistically significant coefficient at 95% level. 

 

 
Figure 3. Observed values versus predicted of (a) Tmonth, Tyear, (b) Pmonth and Pyear.  

 

Figure 4 shows the spatial pattern of Tmonth and Tyear in January and July. Tyear station values 
located at more than 3000 meters of altitude were below 10°C, while coastal stations such as Arica and 
Iquique Tyear were above 17°C. The influence of sea surface temperature and Pacific atmospheric 
pressure was most evident in coastal station values. In Caquena (4400 meters of altitude) the Tyear 
values were close to 0°C. The coast of the Atacama Desert was influenced by the Humboldt Current. 
Figure 4 also shows a spatial pattern in north-south strips, with a decreasing gradient towards the Andes 
Mountain (Romero et al., 2013). This pattern highlights a warmer zone to the south of 20° latitude 
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(1100-1200 meters of altitude), which coincides with an oasis (Pica, Matilla, Esmeralda). Also, we can 
highlight a slight increase of Tmonth from the coast to the Coastal Range, which value was higher in 
July, according to the thermal inversion of the coast originating from the southeast Pacific anticyclone 
(Romero et al., 2013; Sarricolea and Romero, 2015). There was a pattern that increases the temperature 
values to the south as in the intermediate depression, whose greatest difference was recorded in July, 
according to the thermal inversion of the coast originated for the southeast Pacific anticyclone (Romero 
et al., 2013; Sarricolea and Romero, 2015). 

 

 

Figure 4. The spatial distribution of the Temperature (°C) estimated through the equation [6]: (a) Tyear, (b) 
Tmonth for January, and (c) Tmonth for July. 

 

The maximum temperatures were observed in January in the pampas and the minimum in July. 
The spatial pattern has a decrease in the north-south stripes. Maximum temperatures were strongly 
related to the seasonal variability of surface solar radiation, whose maximum values coincided with the 
start of the rainy season (Romero et al., 2013; Sarricolea and Romero, 2015). There were lower 
temperatures in July in the Altiplano due to a lower density of air and high solar radiation, which were 
associated with low relative humidity for almost the year. In summer this condition does not occur 
because there are convective storms that bring precipitation (Cereceda et al., 2002). 

Garreaud (2011) observed a closed thermal zone in the isotherm of 18ºC, located in the ravines, 
pampa of the south of 20º latitude. The area where it is below 5°C is less large than the area described 
by Aceituno (1996). This indicates that Tyear values were slightly lower and have a more geographical 
extent. Despite these differences attributable to the proposed method, the scale used in this study, we 
describe the trends of this area with great similarity in the coastal and foothills. It is important to mention 
that the validity of the adjusted model is only up to 4570 meters. The high mountains were not 
represented when in the process of the model fitting. In this sense, temperature values above 4570 meters 
of altitude may not adequately perceive the thermal behavior in this area (Garreaud, 2011). 

The coastal temperature had a homogeneous pattern with a strong oceanic influence and 
moderating influence of the Humboldt current, also was influenced by El Niño (ENSO) and anomalies 
related to sea surface temperature (SST). The amounts of SST anomalies and the increments of the 
coastal temperature decrease from the tropical zone to the south (Montecinos et al., 2003; Schulz et al., 
2012). The hottest and coldest years were often similar across seasons in this region. The warmest years 
coincide with the El Niño phenomenon (1983, 1992, 1997, 2006, and 2009), while the coldest years 
were following the La Niña phenomenon (1996, 1999, 2007, and 2010). At the coastal stations, with a 
more complete meteorological database, a decrease in the average temperature has been observed since 
1999 (Romero et al., 2013). 
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Table 3 analyses the performance of the models for Tmonth and Tyear against the observed 
values (the climate databases), it had a higher r2 and d, a lower MAE, RMSE, and AIC. The lowest 
value obtained from AIC is the criterion that allows us to say that it is the model that best fits all the 
previous ones for this area. However, the lowest bias or BIAS was obtained by WORLDCLIM2. 

 

Table 3. Statistical performance of the estimation of the annual (Tyear) and monthly (Tmonth) spatial 
distribution of temperature. 

Database 
Statistical Index 

BIAS MAE RMSE d r2 AIC 
CHELSA -1.100 2.284 2.916 0.845 0.910 1590.9 
CLIMOND 0.809 1.571 2.114 0.879 0.928 1395.2 
CR2MET 0.719 1.595 2.034 0.885 0.939 1341.4 
CSIRO 1.051 1.693 2.378 0.871 0.916 1459.1 
Pliscoff et al. (2014) 0.131 1.684 2.147 0.872 0.914 1450.6 
WORLDCLIM1 0.532 1.488 2.048 0.885 0.926 1395.1 
WORLDCLIM2 0.317 1.344 1.835 0.896 0.939 1322.8 
MODEL 0.382 1.077 1.354 0.918 0.968 1094.6 

 
 

3.2. Precipitation 

According to the methodology, two prediction models were generated to estimate the spatial 
distribution of Pyear, one for S1 defined under 2000 m of altitude and S2 above this altitude. According 
to Fig. 3, the two prediction models, and their coefficients were significant (r2 equal to 0.910 for S1 and 
0.996 for S2), although the number of stations present in sector S1 is lower than S2 (9 vs 31), there are 
also differences in precipitation values, with sector S1 being more stable than sector S2 The spatial 
pattern of the constructed database is represented in Figure 5. 

Regarding the Pyear pattern, it could be said that there are values higher than 300 mm in the 
province of Parinacota (S2) whose precipitation is concentrated mostly between December to March. 
The values of Pyear, Pmonth in S1 for January and July decrease from north to south with a high 
variability of precipitation. This interannual variability coincides with ENSO cycles (Sarricolea and 
Romero, 2015). In S1 the conditions of aridity with precipitations less than 10 mm., were present in the 
sector of the Pampa, and on the coast, aridity is accentuated towards the region of Antofagasta, where 
the Atacama Desert is located.  

 

 
Figure 5. Spatial distribution of the Precipitation (mm) in the study area: (a) Pyear, (b) Pmonth of January, 

and (c) Pmonth of July. 



Morales-Salinas et al. 

48 Cuadernos de Investigación Geográfica, 49 (1), 2023. pp. 39-53 

Table 4 shows the statistical performance of the spatial distribution estimation for Precipitation. 
When we compare the Pmonth of every month and Pyear d the model built concerning the climate 
databases, it is the one with the highest r2 and d, MAE, RMSE, and AIC lower. The lowest value obtained 
from AIC is the criterion that allows us to say that it is the model that best fits all the previous ones for 
this area. The second model that best represents precipitation is CHELSA. 

 

Table 4. Statistical performance of the estimation of the annual (Pyear) and monthly (Pmonth) spatial 
distribution of Precipitation. 

Database 
Statistical Index 

BIAS MAE RMSE d r2 AIC 
CHELSA 6.501 7.273 15.310 0.795 0.864 2957.0 
CLIMOND 1.705 3.922 7.564 0.901 0.930 3086.2 
CR2MET 0.956 4.118 8.636 0.897 0.907 3050.9 
CSIRO 1.710 3.999 7.466 0.900 0.932 3083.5 
Pliscoff et al. (2014) 2.089 4.407 9.513 0.885 0.894 3199.5 
WORLDCLIM1 1.690 3.841 7.267 0.904 0.936 3049.1 
WORLDCLIM2 1.400 3.908 7.294 0.902 0.935 3045.4 
MODEL 1.190 3.366 7.038 0.914 0.946 2770.1 

 

3.3. Solar Radiation 

The Rmonth model and its coefficients were significant, where the coefficient of determination 
was 97.5 and the standard error was 0.7 MJ m-2 day-1 (Fig. 6). Figure 7 show the Rmonth map obtained 
from the topoclimatic model. The independent variables and their coefficients are shown in Table 5. The 
LAT and LON were present in most of the calculated variables. The Figure 7 show a north-south pattern 
with values increasing towards to east up 19º parallel where this pattern is contracted towards the east. 
This behavior results in an east-west strip with values decreasing towards the north. The river courses 
have Ryear. 

 

Figure 6. Observed values versus predicted for Rmonth and Ryear. 
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Table 5. Statistical performance of the estimation of the annual (Ryear) and monthly (Rmonth) spatial 
distribution of Solar Radiation. 

Database Statistical Index 
BIAS MAE RMSE d r2 AIC 

CSIRO 3.514 3.663 4.129 0.520 0.752 878.93 

WORLDCLIM2 0.807 1.615 2.259 0.755 0.756 838.02 

MODEL -0.148 0.587 0.700 0.916 0.976 269.55 
 

 
Figure 7. Spatial distribution of the Solar Radiation (MJ m-2 day-1) in the study area: (a) Ryear, (b) Rmonth 

of January, and (c) Rmonth of July. 

 

Certain trends have been documented as the relationship between Ryear and cloudiness. The 
highest values of Ryear values were caused by the absence of cloudiness most of the year (Huber, 1977; 
Santibañez, 1982) and the Ryear decreased to the north from the south (Huber, 1977). By the other hand, 
Ryear mapping did not have significant changes regarding to relief shapes. The pattern of Ryear was 
smoother than Pyear and Tyear patterns. 

For the Ryear pattern, the topographic variables LAT, LON, and DC were most significative 
than ALT. This excludes relief factors such as slope or solar exposure that modify the spatial pattern of 
solar radiation (Sarricolea and Romero, 2015). The cloudiness increases during the rainfall season 
(December to March), while the maximum solar radiation values were reached during the spring-
summer season, where the Visviri station registered a maximum of 1000 W m-2 (Aceituno, 1996). 

Huber (1977) and Santibañez (1982) show similar behavior in isotherms (Tyear) and isohyets 
(Pyear). However, they show lower values at the coast, which is a zone with high cloudiness frequency, 
than in our study. The Ryear values were remarkably similar in the southern regions over 1200 meters 
of altitude. 

When we compare the estimation of Rmonth and Ryear with the climate databases, it is the one 
with the highest r2 and d, and an MAE, RMSE and AIC lower. The lowest value obtained from AIC is 
the criterion in which it allows us to say that it is the model that best fits of all the previous ones for this 
area. There were no major differences between the other two models evaluated. The scarcity of solar 
radiation information in the study area implies restriction to determinate bioclimatic indicators, such as 
the Evapotranspiration or the Aridity Index. 
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4. Conclusion 

Topoclimatic models allow describing the spatial variability of temperature, precipitation, and 
solar radiation in the regions of Arica-Parinacota and Tarapacá, depending on the relief and spatial 
coordinates (latitude and longitude). Altitude and distance to the coast were significant for estimating 
the spatial distribution of temperature, while for precipitation the most important variables were latitude 
and distance to the coast; finally, latitude, longitude, and distance to the coast were relevant to predict 
solar radiation. Both temperature and precipitation show clear variations across relief and 
geomorphological stripes, however, solar radiation has a pattern highly linked to spatial location. The 
main role of the Andes Mountain range in the delimitation of the zone of high annual rainfall stands out. 
The usefulness of the topoclimatic models based on the climatic variables allows a good interpolation 
and estimation of the spatial variability at monthly and/or annual means. The topoclimatic models 
developed had greater significance than other climate databases. This work facilitates its use in local 
environmental or agronomic studies. 
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