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Abstract 
In the last years, the study of Fractional Optimal Control Problem (FOCP) configures a very interesting challenge due 

to numerical difficulties inherent in this type of investigation. Traditionally, this problem has been solved by 

considering three different approaches, namely, Direct and Indirect strategies and Hamilton–Jacobi–Bellman (HJB) 

equation. The first consists in solving the FOCP through the discretization of state and/or control variables. The 

resulting nonlinear optimization problem is solved by considering either classical or heuristic methods. On the other 

hand, the indirect approach consists in obtaining the necessary conditions, i.e., the original FOCP is converted into a 

two-point boundary value problem. The third strategy considers an extension of the well-known HJB equation for 

fractional order dynamic systems. In the present contribution, the solution of FOCP with specified final state variable 

is addressed by using the direct approach. For this purpose, the association involving the Orthogonal Collocation 

Method (OCM) and the Differential Evolution (DE) algorithm is investigated. In order to evaluate the proposed 

methodology, a classical mathematical problem and a two degree-of-freedom given by a spring-mass-damper system 

are considered. As expected, the results indicate that the variation of the fractional order implies different values for 

the original objective function. Furthermore, depending on the fractional order value, it may not be possible to find a 

solution that satisfies the boundary conditions for a given application. Finally, it is pointed out that the proposed 

methodology is considered as a promising strategy to solve FOCPs. 
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Resumen 
En los últimos años, el estudio del Problema de Control Óptimo Fraccionado (FOCP) configura un reto muy 

interesante debido a las dificultades numéricas inherentes a este tipo de investigación. Tradicionalmente, este 

problema se ha resuelto considerando tres enfoques diferentes, a saber, estrategias directas e indirectas y la ecuación 

de Hamilton-Jacobi-Bellman (HJB). La primera consiste en resolver el FOCP mediante la discretización de variables 

de estado y/o control. El problema de optimización no lineal resultante se resuelve considerando métodos clásicos o 

heurísticos. Por otro lado, el enfoque indirecto consiste en obtener las condiciones necesarias, es decir, el FOCP 

original se convierte en un problema de valores en la frontera de dos puntos. La tercera estrategia considera una 

extensión de la conocida ecuación HJB para sistemas dinámicos de orden fraccionario. En la presente contribución, la 

solución de FOCP con una variable de estado final especificada se aborda utilizando el enfoque directo. Para ello, se 

investiga la asociación entre el Método de Colocación Ortogonal (OCM) y el algoritmo de Evolución Diferencial 

(DE). Para evaluar la metodología propuesta se considera un problema matemático clásico y dos grados de libertad 

dados por un sistema resorte-masa-amortiguador. Como era de esperar, los resultados indican que la variación del 

orden fraccionario implica valores diferentes para la función objetivo original. Además, dependiendo del valor del 

orden fraccionario, puede que no sea posible encontrar una solución que satisfaga las condiciones de contorno para 

una aplicación determinada. Finalmente, se señala que la metodología propuesta se considera como una estrategia 

promisoria para solucionar los FOCP. 

 

 

I. INTRODUCTION 
 

Fractional Optimal Control Problem (FOCP) configures a 

great challenge in sciences and engineering as due to 

nonlinearities inherent to algebraic-differential models, 

existence of equality and inequality constraints, boundary 

conditions and fractional order [1, 2, 3]. Although the 

fractional order in FOCP represents an additional difficulty, 

it also makes possible the physical interpretation of the 

system through fractional differential concepts, i.e., it is 

possible to evaluate the influence of the fractional order on 

the behavior of the system [4]. Thus, the FOCP is a 

generalization of traditional Optimal Control Problem 

(OCP) and has been under development for several years 

[5]. However, it is important to mention that the fractional 

optimal control theory is a rather new topic [6]. 

To solve the FOCP, three kind of strategies can be used: 

Direct, Indirect and the Hamilton-Jacobi-Bellman Equation. 

The first consists in transforming the original problem into 

an equivalent one through the discretization of state and/or 

https://asmedigitalcollection.asme.org/computationalnonlinear/article/14/1/011005/400488/Fractional-Order-Version-of-the-Hamilton-Jacobi?searchresult=1
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control variables. The nonlinear optimization problem can 

be solved considering classical, heuristic or hybrid methods. 

The indirect approach consists in obtaining the necessary 

conditions of optimality. In this case, the original FOCP is 

converted into a two-point boundary value problem. Finally, 

the third approach describes the necessary and sufficient 

condition for optimality of a OCP given as a nonlinear 

partial differential equation. In this case, a more complex 

problem should be solved considering this last approach. 

As examples of these strategies, we can refer to the use 

of Caputo derivative and Legendre orthonormal 

polynomials [6]. Biswas and Sen [1] proposed and solved 

FOCP with specified boundary conditions. For this aim, the 

authors presented the necessary conditions of optimality. 

Similar strategy was considered by Toledo-Hernandez et al. 

[7] for the solution of two FOCP in chemical engineering. 

In this case, the authors associated the Euler–Lagrange 

optimality conditions and Caputo derivative to evaluate the 

influence of the fractional orders on the optimal results. 

Sweilam and Al-Ajami [8] solved FOCP by using Legendre 

Spectral-Collocation Method and Caputo sense. Alinezhad 

and Allahviranloo [9] developed a numerical approach 

based on fuzzy logic and Caputo sense. Effati et al. [10] 

proposed a new numerical scheme to solve multi-delay 

fractional order optimal control problems considering the 

Grunwald–Letnikov sense. Nemati et al. [11] solved FOCP 

considering the Caputo sense and the Riemann–Liouville 

integral operator. Li and Zhou [12] evaluated the fractional 

spectral collocation discretization governed by a space-

fractional diffusion equation. Soleiman et al. [8] solved 

Delay Fractional Optimal Control Problem (DFOCP) 

considering the association involving Caputo sense and 

Padé approximation. Similarly, Bahaa [13] solved a DFOCP 

by using an analytical scheme for variable order fractional 

optimal control. Hassani and Avazzadeh [14] developed a 

new operational matrix of variable order fractional 

derivatives to solve FOCP by using the Lagrange multiplier 

optimization technique. Razminia et al. [15] proposed the 

extension of the classical HJB to the fractional context. 

More recently, Lima et al. [3] proposed a Multi-objective 

Optimization Stochastic Fractal Search to solve FOCP in 

chemical engineering problems. 

As mentioned earlier, FOCP with constraints are 

inherently more complex and difficult to resolve. In the 

present contribution, the Orthogonal Collocation Method 

(OCM) is associated with the Differential Evolution (DE) 

algorithm to solve FOCP with specified final state variable. 

For this aim, the influence of the fractional order is 

evaluated by considering two case studies: a classical 

mathematical problem and a two degree-of-freedom system 

given by a spring-mass-damper model. 

This work is organized as follows. Section II presents 

some definitions related with fractional integrals and 

derivatives. Section III revisits general aspects regarding 

the FOCP. Section IV is dedicated to a brief review of 

the OCM strategy and its extension to solve the FOCP. 

Section V briefly describes the DE algorithm. Sections 

VI and VII discuss the methodology and two case 

studies, respectively. Finally, the conclusions are outlined 

in the last section. 

II. DEFINITIONS 
 

This section presents some definitions required to 

approximate the operator dμf(t)/dtμ, where μ is a fractional 

order in fractional differential equations [16, 17, 18, 19, 20, 

21, 22]. 

 

A. Riemann–Liouville Fractional Integral  

 

Being f a generic function and Iμf(t) the representation of the 

Riemann–Liouville type fractional integral of order μ (μ> 

0), the fractional integral valid in the domain (0,∞) →  is 

defined by: 
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where Γ denotes the Gamma function. 

 

B. Riemann–Liouville Fractional Derivative 

 

Being f a generic function and Dμf(t) the approximation of 

Riemann–Liouville type fractional derivative of order μ (μ> 

0), the derivative valid in the domain (0,∞) →  is defined 

by: 
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where n=[μ]+1 and [μ] is an operator that represents the 

integer part of μ. 

 

C. Caputo Fractional Derivative 

 

The Caputo type fractional derivative (Dμf(t)) of order μ (μ> 

0) of a generic function f in the domain (0,∞) →  is 

defined by: 
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where n=[μ]+1 and [μ] is an operator that represents the 

integer part of μ. 

 

D. Shifted Grunwald Fractional Derivative 

 

The Shifted Grunwald fractional derivative (Dμf(t)) of order 

μ (1 <μ< 2) applied to a generic function f in the domain 

(0,∞) →  is defined by: 
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where M is the number of discretization points and h = (tf -

t0)/M is the integration step (t0 and tf represent the initial and 

final times, respectively). 
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III. FRACTIONAL OPTIMAL CONTROL 

PROBLEM  
 

Consider the following FOCP [1]: 

 

0

min ( , , ) ( ( ), ) ( , ( ), ( )) 

ft

f fJ x u T S x t t V t x t u t dt    (5) 

where J is the performance index (objective function), x and 

u are the state and control variables, respectively, t is the 

time (tf is the final time), S and V are arbitrary continuous 

function. For this problem, the goal is to find an optimal 

control profile u to minimize the integral given in Eq. (5), 

subjected to the dynamic system: 
 

 ( ) ( , ( ), ( ))tD x t f t x t u t   (6) 
 

where f is an arbitrary continuous function with the 

following boundary conditions: 
 

 x(a)=xa and x(b)=xb
 

(7) 
 

where xa and xb are fixed real numbers and μ is the fractional 

order.  

If (x,u,t) is a minimizer for Eqs. (5)–(7), then there exists 

an adjoint state λ for which the triple (x, u, t) satisfies the 

optimality conditions [1]: 
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for all t belonging to [0, tf], and the Hamiltonian H is 

defined by: 
 

( , ( ), ( )) ( ) ( , ( ), ( ))H V t x t u t t f t x t u t   (11) 
 

Under some additional assumptions on the functional V 

and the right-hand side f, i.e., the convexity of V and the 

linearity of f in x and u, the optimality conditions given by 

Eq. (8)–(10) are also sufficient [1]. 

Finally, it is worth mentioning that the practical 

application of necessary conditions depends on the kind of 

fractional derivative considered. 

 

 
IV. SOLUTION OF THE FRACTIONAL OPTI-

MAL CONTROL PROBLEM 
 

Obviously, to solve the FOCP it is necessary to integrate the 

system of fractional differential equations. For this aim, the 

Orthogonal Collocation Method (OCM) extended for the 

fractional context is employed. The original OCM strategy 

consists of two steps [23], as follows: i) selecting the 

Number of Collocation Points - NCP (the discretization 

points), and ii) choosing a function to approximate the 

profile of the dependent variable. 

To find the collocation points, an orthogonal function is 

obtained by considering the following recursive relation 

[23,24]: 

 

      ( , )

1 2( )i i i i iX X X X           (12) 
 

where Γi-1, Γi-2, ψ, and η are coefficients defined for each 

type of polynomial approximation. 

The collocation points are the roots of the orthogonal 

polynomial of degree NCP and weight W(X) together with 

the following Galerkin condition [23]:  
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Multiplying Eq. (12) by Γi-2, the following relation is 

determined: 
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Multiplying Eq. (12) by Γi-1, the parameter ψ can be 

obtained as given by Eq. (15). 
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The values of ψ and η can be estimated as a function of 

Γi-2, Γi-1, W(X) and η1. Thus, the proposed approximation 

(  ( , )

NCP X  ) can be evaluated [23, 24]. 

After obtaining the collocation points, it is necessary to 

represent the approximation function. For this goal, the 

Lagrange Polynomial (LP) methodology is considered. The 

choice of this kind of function is due to the reduction of the 

computational cost associated with the numerical 

approximation of the derivatives, as compared with other 

existing approximations [23, 24]. Consider the set of data 

points (X1, Y1), (X2, Y2), …, (XNCP+1, YNCP+1) and an 

interpolation formula passing through these points (an NCP-

th degree interpolation polynomial), as follows: 
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where li(X) is the Lagrange interpolation polynomial defined 

as: 
 

 1

1

( )
NCP

j

i

j i j

X X
l X

X X









  (17) 

 

In this approximation function, if the subscript i is equal 

to j, li(X) is equal to 1. Otherwise, li(X) is equal to 0. The 

first derivative for a specific root Xj can be expressed as:  
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    (18) 

 

If the original problem has one independent variable, the 

polynomial approximations defined as: 
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where is a function that depends on time t. If this 

approximation is replaced in the original model, the 

differential equation is converted into an algebraic equation 

(residual equation). This residual equation is evaluated by 

considering each i-th root (collocation points). The algebraic 

system is solved by using a particular methodology, i.e., the 

Newton Method (NM) for nonlinear equations or LU 

Decomposition for linear equations. It is important to 

mention that the original model must satisfy both the 

boundary conditions and the collocation points. 

The presented methodology was proposed to solve 

systems of differential equations with integer order. 

However, the OCM can be easily extended to the 

fractional context, i.e., by considering a system of 

fractional differential equations and a particular 

definition (see section II), the term that contains the 

fractional derivative is replaced and the original 

fractional differential equation is converted into an 

algebraic equation that depends on the fractional order. 

 

 

V. DIFFERENTIAL EVOLUTION ALGORITHM 

 
The DE algorithm is a heuristic optimization strategy based 

on combinations involving individuals belonging to a 

population of potential candidates to the solution of the 

problem [25]. The corresponding classical optimization 

algorithm can be summarized according to the following 

steps: 

 

• Initially, a population is randomly generated with NP 

feasible solutions, i.e., the design variable vector 

satisfies the limits established by the user. 

• In general, an individual (X1) is randomly selected in 

the population to be replaced. Two other individuals (X2 

and X3) are randomly selected from the population to 

perform the vector subtraction. 

• The result of the subtraction operation between X2 and 

X3 is weighed by a parameter, namely the perturbation 

rate (F). Then, (F×(X2-X3)) is added to the individual 

(X1). Therefore, the new (potential) candidate(X) is 

given by: X = X1+F×(X2-X3). It is worth mentioning that 

other schemes to generate potential candidates can also 

be used [25]. 

• If the resulting vector (X) has a better value in terms of 

the objective function, it can replace the previously 

chosen candidate. This operation happens if a random 

number generated is less than the crossover probability 

(CR), which is also defined by the user. Otherwise, the 

previously chosen candidate survives in the next 

generation. This procedure is repeated until NP 

completes the candidates (formed by new and current 

individuals). 

• To finalize the algorithm, a stopping criterion is 

defined by the user (generally the maximum number of 

generations). 

 

 

 

VI. METHODOLOGY 
 

The methodology of this work consists first in defining 

the variables of the FOCP and an approximation for the 

fractional derivative. In the present contribution the 

Caputo derivative is considered. It is important to 

mention that the use of the Caputo derivative is due to the 

memory effect by means of a convolution between the 

integer order derivative and a power of time [26]. Then, 

the DE algorithm is initialized to generate potential 

candidates (design variables) regarding the solution of 

the optimization problem. For each candidate, a system 

of equations is obtained by applying the OCM. This 

system is solved and the objective function J is 

calculated. The stopping criterion for the evolutionary 

process in each algorithm is the maximum number of 

generations. Each case study was run ten times in order 

to obtain average values presented in tables using the 

Matlab® software in a computer Desktop Intel Core i7-

4770 with 8GB Memory. 

 

 

VII. RESULTS AND DISCUSSION 

A. Fixed Final State Problem 

This first example consider a time invariant fixed final 

state FOCP proposed and solved by Biswasand Sen [1]. 

Mathematically, this is formulated as: 
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where J is the performance index (objective function), x 

and u are the state and control variables and t is the time. 

In this application, the state variable is defined in two 

boundary conditions. To solve this problem, Biswasand 

Sen [1] developed the general transversility condition 

associated with the Grünwald–Letnikov definition to 

represent the fractional derivative. 

Table I present the results obtained considering the 

proposed methodology (DE associated with OCM) 

considering different values for the fractional order (α=[0.8 

0.9 1.0 1.1 1.2]) and different values for the number of 

collocation points (NCP=[2 3 4 5]) for the mathematical 

FOCP. For this purpose, the DE parameters used during 

the optimization procedure are [25]: 25 individuals, the 

perturbation rate, and probability crossover are equal to 

0.8, respectively, and 500 generations (the total 

computational cost is equal to 25+25×500 objective 

function evaluations). In addition, to apply the DE 

algorithm, the following design space is considered: 0 ≤ 

tsi ≤ 1 (i=1, ..., NCP-1) and -10 ≤ uj ≤ 0 (j=1, ..., NCP). 

These values were chosen from Biswasand Sen (2011). 
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TABLE I. Results obtained considering different values for 

α and NCP for the proposed FOCP. 

α NCP=2 NCP=3 NCP=4 NCP=5 

0.8 0.292284 0.291887 0.291758 0.291758 

0.9 0.292814 0.291915 0.291861 0.291861 

1.0 0.301424 0.296754 0.295951 0.295951 

1.1 0.327434 0.317433 0.303477 0.303477 

1.2 0.333043 0.327430 0.313870 0.313870 

 

In this table, in relation to results reported by Biswasand 

Sen [1] considering α equal to unity (J=0.295858), we 

can observe that, for NCP greater than 3, a good 

approximation for the solution was obtained. This result 

demonstrates the good performance of the proposed 

methodology. In addition, if the value of NCP increases, 

the accuracy increases as well, as expected. In practice, 

the NCP means the dimension of the algebraic system to 

be solved, i.e., NCP equal to 5 leads to a system with 5 

algebraic equations, which implies a system with a 

smaller dimension as compared to traditional techniques 

to discretize systems of differential equations during the 

solutions of optimal control problems. In terms of 

processing time for the solution of the FOCP considering 

the DE parameters, this processing time was 

approximately 63 seconds, in average. 

Figure 1(a) presents the objective function 

considering different values for the fractional order ([0.8 

0.81 0.82 ... 1.19 1.2]). In this figure, it is possible to 

observe J varying with α in a quadratic way, where the 

profile is decreasing for α < 0.85 and increasing for α > 

0.85. Thus, for this mathematical application, we can 

conclude that, depending on the fractional order the value of 

the objective function can either increase or decrease. Figure 

1(b) shows the value of the state variable at the final time 

(tf). For each value of the order fractional, the proposed 

methodology was able to find the specified final state 

variable, i.e., an optimal solution was found. Figures 1(c) 

and 1(d) present the control and state variable profiles 

considering α equal to [0.8 1.0 1.2], respectively. For all 

cases analyzed, the control and state variables profiles 

assume a quadratic behavior, except for α equal to 1.2 for 

the state variable for which a linear profile is observed, 

approximately. These results are in agreement with the 

profiles obtained by Biswas and Sen [1]. 
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(a) Objective function. 
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(b) State variable at final time. 
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(c) Control variable. 
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(d) State variable. 

 

FIGURE 1. Influence of the fractional order in relation to the 

objective function, boundary condition at tf, state variable and 

control variable. 

B. Two Degree-of-Freedom Spring-Mass-Damper System 

 

The second application considers a classical optimal 

control problem from mechanical engineering, as given 

by the dynamics of a spring-mass-damping system with 

two degrees of freedom under external forces (see Fig. 2) 

[27]. The response of the system is represented by the 

displacements x1 and x2 at time t. Both masses m1 and m2 

are connected with springs with stiffness constants k1, k2 
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and k3, respectively. The damping factors are given by c1, 

c2 and c3, respectively. Two external forces u1 and u2 are 

responsible for the external excitation. 
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FIGURE 2. Schematic representation of a two degree-of-freedom 

spring-mass-damper system (Adapted from Veeraklaew and 

Malisuwan [27]). 
 

 

The mathematical model that represents the dynamic 

behavior of the system is described by two second order 

ordinary differential equations defined in terms of the 

accelerations of the masses m1 and m2 (
1x  and 

2x , 

respectively). To solve these equations an order reduction is 

performed, i.e., the following auxiliary variables are defined 

as:
1 1( ) ( )X t x t , 

2 1( ) ( )X t x t , 
3 2( ) ( )X t x t  and 

4 2( ) ( ).X t x t  After mathematical manipulation, a first 

order system of ordinary differential equations is obtained. 

In matrix form, one has [27, 28]: 
 

 X AX Bu   (23) 
 

where the matrices A and B are defined as: 
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where the boundary conditions are defined as: X(0)=[5 0 10 

0]T and X(2)=[0 0 0 0]T, respectively.  

The objective function (J) for this application is defined 

as [27]: 
 

 
 

2

1 2

0

min J u u dt   (26) 

 

This problem was originally solved by Veeraklaew and 

Malisuwan [27] by using the Simpson collocation 

technique associated with nonlinear programming 

algorithm. Rutquist and Edvall [28] also solved this 

problem considering a Matlab toolbox for nonlinear 

programming through the discretization of state and control 

variables. It is important to mention that in both cases the 

authors considered an integer order (α equal to unity). In the 

present contribution, the influence of the fractional order on 

physical profiles is evaluated. 

As mentioned by Rutquist and Edvall [28], this 

problem can be solved considering an on-off strategy for 

both control variables. Thus, for each control variable 

three control elements can be defined, as follows:  
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In this case, as the strategy for each control variable is 

defined, the design variables for this application are 

evaluated for tsi (i=1, 2, 3, 4). 

Table II shows the results obtained considering the 

proposed methodology considering α=[0.8 0.94 1.0 1.02 

1.2], NCP=5 and the following model parameters [27,28]: 

m1=m2=1 kg, c1=c3=1 Ns/m, c2=2 Ns/m, k1=k2=k3=3 N/m 

and final time equal to 2 s. The DE parameters used along 

the optimization procedure are the following [25]: 50 

individuals, perturbation rate and probability crossover 

are equal to 0.8, respectively, and 500 generations (the 

total computational cost is equal to 50+50×500 objective 

function evaluations). In addition, the following design 

space is considered: 0 ≤ tsi ≤ 2 s (i=1, 2, 3, 4).  

 

TABLE II. Results for different values of α for the two 

degree-of-freedom spring-mass-damper system. 
 α=0.8 α=0.94 α=1 α=1.02 α=1.2 

ts1 (s) 1.2000 0.7244 0.6319 0.6866  0.2000 

ts2 (s) 1.9459 1.5613 1.5280 1.5511 1.9131 

ts3 (s) 1.2000 1.1331 0.6270 0.3695 0.2000 

ts4 (s) 1.2010 1.5657 1.5622 1.6092 1.5883 

X1(2) (m) 0.7438 0.0002 -0.0004 0.0000 -1.0284 

X2(2)(m/s) 0.0807 -0.0008 0.0001 -0.0002 -0.0402 

X3(2) (m) 0.5153 -0.0003  -0.0010 0.0000 -2.0809 

X4(2) (m/s) -0.7782 -0.0001 -0.0004 0.0000 1.0395 

J (Ns) 7.1552 11.1932 16.4707 19.1052 29.8331 

 

In this table, the value of the objective function 

considering the fractional order equal to one is similar to the 

one reported by Veeraklaew and Malisuwan [27] and 

Rutquist and Edvall [28], i.e., J equal to 16.4853 Ns. As 

observed in Fig. 3(b), the boundary condition specified at 

final time is not satisfied for all α values considered, i.e., 

there is a solution for the problem only for a restricted range 

of fractional orders and close to unity (0.94 ≤ α ≤ 1.02). 

Thus, the influence of the order fractional with respect to 

the objective function can be analyzed only for the range 

0.94 ≤ α ≤ 1.02. In this case, we can observe that the 

increase on the value of the fractional order implies no 

increase on the objective function value, as observed in Fig. 

3(a) for 0.94 ≤ α ≤ 1.02. From the physical point of view, 
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for the fractional order smaller than 0.94 and greater than 

1.02 it was not possible to find control strategies for the 

dynamics associated with the problem. In addition, for the 

first control variable, the values of ts1 and ts2 are identical for 

α equal to 0.94 and 1.02 and for the second control variable 

the amplitude (ts3-ts4) decreases with the increase of the 

fractional order value. In average, for the solution of the 

FOCP considering the DE parameters the processing time 

was approximately 95 seconds. 

0.825 0.900 0.975 1.050 1.125 1.200
5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

 Converged

 Not Converged

J 
(N

s)

a (-)
 

(a) Objective function. 

0.800.85 0.90 0.95 1.001.05 1.10 1.15 1.20
-2.45

-2.10

-1.75

-1.40

-1.05

-0.70

-0.35

0.00

0.35

0.70

1.05

 X1   X2

 X3   X4

X
i=

1
,3

 (
2

) 
(m

),
 X

j=
2
,4

 (
2

) 
(m

/s
)

a (-)

Converged

 
(b) State variables at final time. 

 

FIGURE 3. Influence of the order fractional on the objective 

function and specified final state variables for the two degree-of-

freedom spring-mass-damper system. 

 

Figure 4 presents the control and state variables considering 

the fractional order equal to [0.94 1.0 1.02] and NCP equal 

to 5. In Figs. 4(a) and 4(b), for each α value considered, to 

find the specified state variable at final time, both control 

variables u1 and u2 present similar behavior and are in 

agreement with the control strategy described by Eqs. (27) 

and (28). This result was expected since these variables 

represent the applied forces on the masses during the 

operation the mechanical system. Figures 4(c) and 4(e) 

present the displacement and Figs. 4(d) and 4(f) depict the 

velocity of each mass as a function of time. In these figures 

we can observe that all specified state variables at final time 

are fully satisfied. In addition, as the values of the fractional 

order are close to those that lead to convergence to the 

optimal solution ([0.94 1.0 1.02]), both profiles are similar. 
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(a) First control variable. 
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(b) Second control variable. 
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(c) First state variable. 
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(d) Second state variable. 
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(e) Third state variable. 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

-11
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0

 a=0.94

 a=1.0

 a=1.02

X
4
(t

) 
(m

/s
)

t (s)
 

(f) Fourth state variable. 
 

FIGURE 4. Control and state variables considering α = [0.94 1.0 

1.02] for the two degree-of-freedom spring-mass-damper system. 

 

 
VIII. CONCLUSION 
 

In this contribution, the Fractional Optimal Control 

Problem (FOCP) with specified final state variables was 

studied. For this aim, the proposed methodology consists 

in the association involving both the Orthogonal 

Collocation Method (OCM) in the fractional context and 

the classical Differential Evolution (DE) algorithm. The 

OCM was used to represent the state and control profiles 

and the DE was performed to find the events and/or 

control variable profile. In general, the obtained results 

considering two classical FOCP (a mathematical FOCP 

and a spring-mass-damper system) demonstrated that the 

proposed strategy was able to obtain good approximation 

for the solution considering different values for the 

fractional order. 

In order to evaluate the influence of the fractional 

order, each FOCP was solved for different values of this 

parameter. The obtained results for each application 

indicate that the variation of the fractional order can lead 

to different profiles and, consequently, different values 

for the objective function. However, depending on the 

values of the fractional order, the specified final state 

variable is not satisfied, i.e., an optimal solution was not 

found, as observed for the spring-mass-damper problem. 

For this case study, for the fractional order smaller than 0.94 

and greater than 1.02 it was not possible to find control 

strategies for the dynamics associated to the physical 

problem proposed. 

Finally, it is worth mentioning that the OCM strategy 

requires only NCP equations for each simulation. Thus, the 

accuracy of the method associated with the size of the 

system to be solved appears as the main advantage of the 

methodology conveyed. Further research work will be 

focused on the inclusion of reliability and robustness to 

solve the resulting inverse problems. Different case 

studies will be evaluated. 
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