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Abstract 

In the present work we discuss how to address the solution of electrostatic problems, in professional cycle of undergraduate 

course in science or engineering, using Green's functions and the Poisson's equation. For this, it is considered the structural 

role that mathematics, especially Green's function, has in physical thought presented in the method of images. By using 

this procedure and discussing the historical construction of Green's problem, it was possible to verify its relationship with 

the method of images as an interdisciplinary approach that is not developed in didactic physics textbooks. The possibility 

of analyzing Green's function as the result of two tasks, namely, the reduction of a continuous charge distribution to the 

one due to a point charge and the solution of the problem as the superposition of potentials due to sets of point charges 

continuously distributed represented by the integration of the Green's function over the electric charge density, is our 

account for teaching implication that shows, at the same time, epistemological ruptures and continuities to teaching-learning 

processes. 

 
Keywords: Interdisciplinarity, Green’s functions, Method of images. 

 

Resumen 
En el presente trabajo discutimos cómo abordar la solución de problemas electrostáticos, en ciclos profesionales de 

licenciatura en ciencias o ingeniería, utilizando las funciones de Green y la ecuación de Poisson. Para ello, se considera el 

papel estructural que tiene la matemática, en especial la función de Green, en el pensamiento físico presentado en el método 

de las imágenes. Al utilizar este procedimiento y discutir la construcción histórica del problema de Green, fue posible 

verificar su relación con el método de las imágenes como un enfoque interdisciplinario que no se desarrolla en los libros 

de texto de física didáctica. Se representa la posibilidad de analizar la función de Green como resultado de dos tareas, a 

saber, la reducción de una distribución de carga continua a la debida a una carga puntual y la solución del problema como 

la superposición de potenciales debido a conjuntos de cargas puntuales distribuidas de forma continua. por la integración 

de la función de Green sobre la densidad de carga eléctrica, es nuestra explicación de la implicación docente que muestra, 

al mismo tiempo, rupturas epistemológicas y continuidades en los procesos de enseñanza-aprendizaje.  

 

Palabras clave: Interdisciplinariedad, funciones de Green, Método de las imágenes. 

 

 

I. INTRODUCTION  
 

One of the usual learning tasks on electrostatics consists in 

obtaining the electric field (or potential) generated by a charge 

distribution in certain region of the space. It is possible to 

solve this problem by direct integration over the charge 

distribution or tackling the Poisson's equation subjected to a 

set of boundary conditions imposed on the field.  

Solving non-homogeneous differential equations using 

Green's Functions is one of the most powerful forms of 

describing the solution for a problem of this kind.  However, 

a great number of classical books on electrodynamics do not 

explore Poisson's Equation solutions using this method. 

Instead, the common approach uses the method of images, a 

very interesting way to solve the problem, once it requires a 

deep physical interpretation.  

The method of images can be used when we are trying to 

obtain the electrostatic field generated by charge distributions 

near a conductive surface.  This procedure takes into account 

the symmetry of the problem by adding an image charge 

outside the region of interest. From this new arrangement, it's 

possible to reconstruct the same boundary conditions of the 

initial problem without these image charges.  

However, it seems at first that this procedure is barely or 

not related to the resolution of Poisson's (or Laplace) equation. 

The method of images, on the contrary, is completely 

compatible with the more general procedure of solving 

Poisson's equation via Green's functions. The former is a 

practical and conceptually elegant mathematical tool, even 

though it is not general as it is the latter. In addition, it assumes 

the existence of virtual image charges in regions where the 
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solution is not valid, what seems somewhat artificial for 

introducing in teaching and learning processes.  

Pantoja and Moreira [1] developed a classification of tasks 

on electrostatics in which are presented four primary classes 

of situations addressed to: i) calculation of electrostatic fields; 

ii) symbolic representation of the electrostatic field; iii) 

analogical representation of the electrostatic field; iv) 

description of electrostatic interactions.  

All these primary classes include four or five secondary 

classes of situations whose classification is based on the 

objects, variables and undetermined quantities or qualities 

presented by the problem. According to authors in case (i) 

there are five classes of situations. Among them the most 

complicated/complex is the one related to calculation of 

electrostatic fields (or potentials) due to unknown charge 

distributions, which include, for instance, conductors in 

electrostatic equilibrium.  

Their arguments rely upon two main epistemological 

reasons related to the necessary thought operations for 

mastering these problems: advanced mathematical techniques 

for problem-solving and conceptual deepness demanded for 

physical interpretation of charge redistribution. 

The relation among these concepts has been barely 

explored in physics education research and, moreover, the 

calculations made by the methods of images are often 

restricted to the case of point charges, with exception to Reitz, 

Milford and Christy [2] that include the problem of linear 

images, cases in which it is possible to calculate the potential 

due to very large, electrically charged, wires placed in regions 

containing conductors. 

Although Machado [3] and Jackson [4] solve the problem 

of a discharged and grounded sphere in front of a point charge 

through the method of Green's function, more complicated 

situations involving electric charge distributions are rarely 

discussed using this procedure. The epistemological remarks 

are also absent from discussions concerning this problem in 

these two textbooks.  

For instance, Panofsky and Phillips [5] approach the 

general problem of Green's function by discussing general, 

mathematical and physical features, however they do not 

elaborate the discussion for specific problems. In this work we 

present a discussion on how to approach electrostatics in the 

professional cycle of undergraduate course in science or 

engineering, from the point of view of solving Green's 

functions for Poisson's equation, can be articulated to the 

method of images in an interdisciplinary approach. Our 

framework considers the structural role that Mathematics 

(Green's functions) have in Physical thought (method of 

images). 

Physics education research points to a similar direction of 

disconnection between mathematics and physics in teaching 

and dependency on clear articulation for effective learning. 

Sokolowski et al. [6] sustain our interpretation that textbooks 

distort scientific and mathematical concepts and emphasize 

algorithms in problem solving and orient it to use formulas, 

especially when mathematics and physics are related. 

Sanchez-Matamoros et al. [7] indicate that the development of 

the scheme associated to the concept of derivate is attached to 

students’ capacity of relating constitutive elements of the 

concept during resolution of physics problems. In the same 

vein, Artigue et al. [8] argue that the concept of differential is 

fragmented in students’ cognitive structures and appears as a 

mere algebraic object in mathematics, while in physics it is 

often understood as a fictitious object meaning something 

“very small”. 

In the context of modelling, Izsák [9] states, on the other 

hand, that students do have and use criteria for define if an 

algebraic expression is better than another one. He goes 

further indicating that these criteria regulate problem solving 

and that building knowledge for modelling processes which 

involve algebra requires the students to coordinate such 

principles for algebraic representations with various types of 

knowledge, which includes the physical ones. Cui [10] 

highlights that students may know mathematics, but they 

often have hindrances in applying it in other contexts as, for 

example, defining integration limits or choosing adequate 

operations for solving problems. There is also evidence that 

concepts related to calculus, like the one of differential, are 

not well understood by professors and teachers [11]. 

As a possible interpretation for this dissociation between 

physics and mathematics, Uhden et al. [12] assume that 

problem-solving strategies mapped on physics and 

mathematics education research as rote manipulation 

strategies (plug and chug, por example) and sustain, like 

Karam and Pietrocola [13] and Pietrocola [14] that the role of 

mathematics in physics is deeper and more complex than it 

looks, namely, the one of technical tool. These authors argue 

that in history of science, physics and mathematics were 

interrelated in a manner that mathematics structures physical 

thoughts. Karam and Pietrocola [13] sustain that elaborated 

epistemological views considering this role can lead students 

from the technical abilities, associated with knowing how to 

manipulate, to mastering structural abilities, related to 

knowing how to interpretate the modelling processes 

incorporating mathematics. We chose this approach to discuss 

this problem. 

The structure of this paper is presented as follows. Section 

2 presents a brief discussion about the structural role of 

mathematics in physical thought. In Section 3, we present the 

problem of Green's functions from a historical point of view 

and the complete mathematical formulation of the solution of 

the Poisson's equation, considering three-dimensional and 

two-dimensional cases.  Section 4 presents a set of 

electrostatic problems, whose solution was obtained by 

Green's function, to verify the relation with method of images. 

Final remarks are made in the Section 5. 

 

 

II. MATHEMATICS STRUCTURES PHYSICAL 

THOUGHT 
 

The relation between Mathematics and Physics is not just 

historical, but also epistemological. The junction among 

Physics, Astronomy and Mathematics in the Copernican 

Revolution fully stresses this fact. Expressing physical ideas 

in mathematical terms, on the other hand, is much more than 

a predictive tool, because it involves structuring physical 

thought in function of mathematic enunciations. It is not 

necessary to defend the role of Mathematics in Physics, 

because it is blatantly obvious. However, it is fundamental to 

discuss which role of Mathematics is developed in teaching 

and learning these disciplines. 
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Karam [15] and Rebello et al. [16] state that the results of 

studies on transference from Mathematics to Physics are 

strikingly clear about the hindrances faced by the students in 

this task, once using the former in the latter involves more 

than a simple correspondence relation between two distinct 

conceptual domains. In other words, that means this 

association is very different from the rote use of formulas. 

Thus, approaching the role of Mathematics in Physics 

requires differentiating its technical role (tool-like) and its 

structural role (reason-like). The first one can be assumed 

when it is used in the second one. In table 1 some 

characteristics of the technical dimension concerning the role 

of mathematics are pointed (extracted from Karam [15]). 

 
TABLE 1.Technical dimension concerning the role of mathematics 

in physics showing how mathematics is understood as a tool for mere 

calculation. 

Technical dimension 

1) Blind use an equation to solve quantitative problems.  

2) Focus on mechanic or algorithmic manipulations. 

3) Utilization of arguments of authority. 

4) Rote memorization of equations and rules. 

5) Fragmented knowledge. 

6) Identification of superficial similarities between 

equations. 

7) Mathematics conceived as calculation tool. 

8) Mathematics seen as language used to represent and 

communicate. 

 

Therefore, Karam [15] states that the technical role of 

Mathematics is associated with calculations developed in a 

disconnected way from physical problems (e.g., plug-and-

chug procedures), while its counterpart, the structural one, is 

related to the use of Mathematics to reason about the physical 

world, that is, to establish reference to it. Although the first is 

important for mastering the second one, the technical domain 

is not sufficient to lead students to the structural level [15]. 

The author highlights it is impossible to detach conceptual 

understanding and mathematical structures use, and points 

some important characteristics of this feature, which we 

present in the table 2. 

This analysis allows us to comprehend the thesis that both 

textbooks and traditional instruction emphasize the technical 

role of mathematics is supported by physics education 

research. The distortion of scientific and mathematics 

concepts in textbooks [6] seem to occur, in an epistemological 

frame, when the structural dimension is simply cast aside. 

Algorithmic problem-solving may also avoid students to 

develop relations among constitutive elements of the 

mathematical and physical concepts [7] once conceptual 

reflection is not valued in this context. This can result in 

students split cognitive structures [8], and difficulties for 

transference, even though students know how to deal with 

mathematics’ technical role [10]. Professors and teachers 

should have a solid understanding on epistemological issues 

relative scientific concepts [11] so that their classes and 

students would not be restricted to comprehend the relation 

among physics and mathematics solely with the technical 

point of view [12, 13, 14].  

 

TABLE 2. Structural dimension concerning the role of mathematics 

in physics showing how mathematics is understood as a structure for 

reasoning. 

Structural dimension 

1) Derive an equation from physical principles using 

logical reasoning. 

2) Focus on physical interpretations or consequences. 

3) Justify the use of specific mathematical structures to 

model physical phenomena. 

4) Structured knowledge: connect apparently different 

physical assumptions through logic. 

5) Recognition of profound analogies and common 

mathematical structures behind different physical 

phenomena. 

6) Mathematics conceived as reasoning instrument. 

7) Mathematics seen as essential to define physical 

concepts and structure physical thought. 

 

We then seek to discuss the structural role of Green's function 

in Physics by explaining its relationship with the Method of 

Images. It is possible to do it by modelling and 

comprehending problems containing known and unknown 

charge distributions. 

In summary, the main difference between the two 

perspectives underlies the fact that the technical view uses 

mathematics merely as a tool to solve physics problems, while 

the structure view uses it to model physics problems and to 

relate the objects, variables, and undetermined quantities to 

find a meaningful solution to it, that is, to structure 

quantitative thinking processes. In the introduction we pointed 

that the technical dimension is usually emphasized in 

textbooks. Here, we try to follow a different path. 

 

 

III. GREENS’ FUNCTIONS AND POISSON’S 

EQUATION  

 
In this section, the problem of Green's function is presented 

from a historical point of view and the apparent contradiction 

in the fact that differential operators applied in Green's 

Functions are expressed in terms of the Dirac Delta "function" 

[17] is discussed.  

 

A. Brief history of Green's Functions 

 

How could Green be alive between XVIII and XIX centuries 

to write his formulation in XX century notation? The reason 

is: he did not do that.  

George Green was born on July 14th, 1793, Nottingham, 

England and died on May 31st, 1841, in the same town. It was 

one of the biggest exponents in Mathematical-Physics of the 

region, being the first to generalize the concept of potential 

and the method of Green's functions, largely used until the 

present days in many fields on Physics. However, it seems he 

has been forgotten for a while, what would imply posthumous 

recognition for his work, due to his popularization in works of 

William Thomson, known as Lord Kelvin [17]. 

Nonetheless, if his work was so important both for 

Mathematics and Physics, why it remained obscure in history? 

Cannell [17] enumerates factors like: his premature death, at 
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the age 47; the fact of going to Cambridge to study lately and 

then returning to Nottingham, without establishing personally 

in the former city; his graduation in math in a relatively 

advanced age; the development of abstract works for the 

period he lived, without drawing attention of the scientific 

community, which was worried with practical questions at that 

time; the advanced nature of his work, barely understood for 

much scientists of the époque. 

Electromagnetism was not a commonplace subject at 

Green's time, it became so solely after Kelvin and Faraday. 

Green knew, however, the works of Laplace, Legendre and 

Lacroix and had access to a translation to English of the 

Mècanique Celeste due to Pierre Laplace, made by John 

Toplin, his tutor in Nottingham Free Grammar School, a 

Leibnizian (what explains his preference for "d-ism" instead 

of the Newtonian "dot-ism"). Green also deeply knew the 

work of Poisson on Magnetism, probably accessed by 

attending to the Nottingham Subscription Library. The 

mathematician was interested, in his essay on electricity and 

magnetism (1828), in inverse-type problem related to the 

electric potential (physical quantity named after Green), 

namely, "knowing the potential how can we determine the 

electric fluid (electric charge) density in a ground conductor 

of any form?'' [17]. The former solution to Poisson's equation 

was given in modern notation by 

 

∇2𝜑 = −
𝜌

𝜖0
,    (1) 

with 

𝜑 =
1

4𝜋𝜖0
∫

𝜌(𝑟′)

|𝑟−𝑟′|
𝑑𝑉′

𝑉
.   (2) 

 

In other words, Green was interested in determining the 

charge distribution from operations on the potential function, 

whose negative gradient would result in the force on a unit 

charge exerted on this conductor (nowadays, it is interpreted 

as the electric field).  

Green developed a work in mathematical analysis and 

constructed what we know by Green's theorem [17]. After 

using his theorem, Green investigated what happens in the 

neighborhood of a point charge located in 𝑟 = 𝑟′ (modern 

notation) by evaluating the limit of the solution when 𝑟 → 𝑟′, 

namely, when the evaluation point tends to the position of the 

point charge. He then carried out to the following function 

(modern notation)1: 

 

G(𝑟, 𝑟′) =
1

4π|𝑟−𝑟′|
.  (3) 

 

Green also applied his solution and succeeded in finding a 

formula relating the unknown surface charge density in a 

conductor with the known potential in its surface; his solution 

is likewise discontinuous, what is physically feasible, once 

electric charges (or fluids, at that time), were known to stay 

concentrated in the conductor's surface. The mathematician 

checked if the function satisfied Laplace's equation outside the 

                                                 
1 Once we changed the original Poisson's equation for the 

international system, the original Green’s function was 𝐺(𝑟, 𝑟′) =
1

|𝑟−𝑟′|
. 

source and considered the Green’s function as a response to 

an unitary impulse [17], exactly as is done nowadays. 

In 1930, 102 years later, Paul Dirac introduced his famous 

"delta functions'' without proper mathematical rigor, although 

with a significant practical value. In modern notation the 

differential equation satisfied by Green's functions are 

presented in function of these ``improper functions'', as Dirac 

called them.  

Nevertheless, the formalization of such mathematical 

elements just became possible after the work of Laurent 

Schwartz on the theory of distributions in the 50's, in which 

he describes the "delta functions'' as limits of a sequence, id 

est, a distribution [18]. This is the reason why, in our calculus, 

we use modern notation to find Green's functions. We can 

clearly see how Green was ahead of his time. 

It can be seen that in the history of construction of Green's 

function, an interdisciplinary relation between mathematics 

and physics, based in mathematics structuring the physical 

though, allowed the construction of a fruitful research 

program for both disciplines. Green basically built a 

mathematical idea departing from reasoning with physical 

quantities. Schwartz, on the other hand, assembled a formal 

structure that permits analyzing physics knowledge in a more 

organized and formal structure. 

 

B. Poisson's Equation 

 

Electric charges are held stationary by other forces than the 

ones of electric origin, such as molecular binding forces. Since 

charges are stationary, no electric currents and, thus, no 

magnetic fields are presented (�⃗⃗� = 0). For a stationary 

electric charge distribution, described by 𝜌(𝑟), the associated 

electrostatic field satisfies the following set of differential 

equations,  

 

∇ ⋅ �⃗⃗� =
𝜌

𝜖0
,   (4) 

 

∇ × �⃗⃗� = 0.   (5) 

 

According to the Helmholtz's theorem [19], if both 

divergence and curl of sufficiently smooth, rapidly decaying, 

vector fields are known, the problem can be solved. For the 

electrostatic field, the solution for �⃗⃗� can be written as the 

gradient of a scalar function 𝜑(𝑟), since it is irrotational: 

 

�⃗⃗� = −∇𝜑,   (6) 

 

where 𝜑(𝑟) is well-known as the electrostatic potential. 

Replacing (6) in the equation (4), leads to the Poisson's 

equation: 

 

∇2𝜑 = −
𝜌

𝜖0
,   (7) 

 

and when regions without electric charge distribution are 
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considered, 𝜌 =  0, equation (7) becomes 

 

∇2𝜑 =  0,   (8) 

 

which is known as Laplace's equation. 

In electrostatics problems the solution will be unique if 

boundary conditions are imposed on the potential 𝜑(𝑟) (on the 

electrostatic field �⃗⃗�(𝑟)) in some point of the space, 

accordingly to the Uniqueness theorem [4]. If boundary 

conditions are imposed on 𝜑(𝑟), these are known as Dirichlet 

boundary conditions. However, when boundary conditions are 

applied to �⃗⃗�(𝑟), they are denoted as Neumann boundary 

conditions [4]. Another possibility is to apply mixed boundary 

conditions, both on 𝜑(𝑟) and �⃗⃗�(𝑟). In this case, we call 

Robbin's boundary conditions.  

 

C. Green’s functions 

 

In general, solving the scalar differential equation (7) for 𝜑 is 

easier than solving vector differential equations (4) and (5). 

We can apply Green's function in (7), obtaining the n-

dimensional equation below, 

 

∇2𝐺(𝑟, 𝑟′) = −𝛿𝑛(𝑟 − 𝑟′).  (9) 

 

Considering the Green's identities [20, 21], it is possible to 

obtain an expression for electrostatic potential 

 

∇ ⋅ (𝜑∇𝐺) = 𝜑∇ ⋅ (∇𝐺) + ∇𝜑 ⋅ ∇𝐺, (10) 

 

∇ ⋅ (𝐺∇𝜑) =  𝐺∇ ⋅ (∇𝜑) + ∇𝜑 ⋅ ∇𝐺, (11) 

 

which leads to 

 

∫(𝜑∇2𝐺 − 𝐺∇2𝜑)𝑑𝑉 = ∮(𝜑∇𝐺 − 𝐺∇𝜑) ⋅ �̂�𝑑𝑆. (12) 

 

Then, using (7) and Green's Identity (10) – (11) in equation 

(12), one can obtain 

 

𝜑(𝑟) =
1

𝜖0
∫ 𝐺𝜌𝑑𝑉′ + ∮ 𝐺

𝜕𝜑

𝜕𝑛
𝑑𝑆′ − ∮ 𝜑

𝜕𝐺

𝜕𝑛
𝑑𝑆′,     (13) 

 

which is the general solution for an electrostatic potential and, 

consequently, for the electric field. The second and third terms 

in equation (13) are associated with the choice of the boundary 

conditions to which electric charge density is subject. Once 

boundary conditions are defined, equation (13) will have a 

unique and well-defined solution accordingly to the 

uniqueness theorem.  

In a great number of physical problems that include 

conductors in electrostatic equilibrium and zero potential, it is 

adequate to apply Dirichlet's boundary conditions on both 

Potential and Green's Function, which implies 

 

𝜑(𝑟) =
1

𝜖0
∫ 𝐺𝜌𝑑𝑉′.  (14) 

 

For this kind of problem, it is always possible to add into the 

Green's function a solution to Laplace's equation, denoted by 

𝐺𝐿(𝑟, 𝑟′), which satisfies physical and mathematical boundary 

conditions. Therefore, the full Green's function will be written 

as 

 

𝐺(𝑟, 𝑟′) = 𝐺𝐷(𝑟, 𝑟′) +  𝐺𝐿(𝑟, 𝑟′),               (15) 

 

where 𝐺𝐷(𝑟, 𝑟′) depends exclusively the dimensions of 

Laplacian operator, whereas 𝐺𝐿(𝑟, 𝑟′) depends on chosen 

boundary conditions. Physically, 𝐺𝐷(𝑟, 𝑟′) means the 

potential at point 𝑟 produced by a unit charge placed at the 

point 𝑟′, while 𝐺𝐿(𝑟, 𝑟′) is the response of the electrical 

system to the introduction of this unit charge, which in the 

case relative to method of images, means the potential due to 

charge reorganization in the conductor. In the next section, we 

shall determine the expression for 𝐺𝐷(𝑟, 𝑟′) in 3-dimensional 

and 2-dimensional cases for Laplacian operator. 

 

D. Green's function for Poisson's Equation 

 

For didactical reasons, we determine the expression for the 

Green's function of Poisson's equation considering the 3-

dimensional and the 2-dimensional cases in two different 

sections. 

Three-dimensional case 

The analytical expression for Green's function in three 

dimensions will be determined. It is necessary to apply a 

Fourier Transform, leading Green's function to 𝑘 space.  

The Fourier transform and its inverse for Green's function 

𝐺𝐷(𝑟, 𝑟′) are presented below, respectively 

 

𝐺𝑘
𝐷 ≡  𝐺𝐷(�⃗⃗�, 𝑟′) = ∫ 𝐺𝐷(𝑟, 𝑟′)𝑒𝑖�⃗⃗�⋅𝑟𝑑3𝑟

∞

−∞
, (16) 

 

𝐺𝐷(𝑟, 𝑟′) =
1

(2𝜋)3 ∫ 𝐺𝑘
𝐷𝑒−𝑖�⃗⃗�⋅𝑟𝑑3𝑘

∞

−∞
. (17) 

 

Applying the Fourier transform (16) on equation (9) for 𝑛 =
3, integrating by parts we obtain the following expression 

 

𝐺𝑘
𝐷 =

𝑒𝑖 �⃗⃗⃗�⋅�⃗⃗⃗�′

 (𝑘𝑥
2+𝑘𝑦

2+𝑘𝑧
2)

 ,  (18) 

 

which represents Green's function in 𝑘 space. Applying the 

inverse Fourier transform in (18), we will recover the 

expression for 𝐺𝐷(𝑟, 𝑟′) in coordinates space, 

 

𝐺𝐷(𝑟, 𝑟′) =
1

(2𝜋)3 ∫
𝑒−𝑖�⃗⃗⃗�⋅�⃗⃗⃗�

𝑘𝑥
2+𝑘𝑦

2+𝑘𝑧
2 𝑑3𝑘

∞

−∞
,  (19) 

 

with �⃗⃗� = 𝑟 − 𝑟′. The integral in equation (19) becomes 

simpler by an adequate change of variables for spherical 

coordinates in k space. Once the integrand does not depend on 

variable 𝜙, integration results in numerical factor equals to 

2𝜋. Rewriting the exponent in equation (19) as �⃗⃗� ⋅ �⃗⃗� =
𝑘𝑅𝑐𝑜𝑠𝜃, we integrate over variable 𝜃 to find the following 

result 

 

𝐺𝐷(𝑟, 𝑟′) =
1

(2𝜋)2 ∫
sin(𝑘𝑅)

𝑘
𝑑𝑘

∞

0
.                  (20) 
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The integral in (20) can be taken to the complex plane, with 

part of it being an integral along the real axis and the other one 

along a contour Γ extending to infinity [19]: 

 

∮
sin(𝑧)

𝑧
𝑑𝑧 = ∫

sin(𝑧)

𝑧
𝑑𝑧

∞

−∞
+

1

2𝑖
∮

𝑒−𝑖𝑧

𝑧
𝑑𝑧,

Γ
  (21) 

 

We find the following result  

 

∫
sin(𝑧)

𝑧
𝑑𝑧

∞

−∞
= 2𝜋𝑖

𝑒0

2𝑖
= 𝜋. (22) 

 

and we can find the the Green's function for Laplace's 

equation for the three-dimensional case (20),  

 

𝐺𝐷(𝑟, 𝑟′) =
1

4𝜋|𝑟−𝑟′|
.  (23) 

 

We will discuss the two-dimensional Laplacian operator case 

in sequence. 

 

Two-dimensional case 

 

Evoking the the Green Function for the two-dimensional 

Poisson's equation (9), for 𝑛 = 2 

 

∇2𝐺𝐷(𝑟, 𝑟′) = −𝛿2(𝑟 − 𝑟′),  (24) 

 

and enunciating both Fourier direct and inverse transforms 

 

𝐺𝑘
𝐷 = 𝐺𝐷(�⃗⃗�, 𝑟′) = ∫ 𝐺𝐷(𝑟, 𝑟′)𝑒𝑖�⃗⃗�⋅𝑟𝑑2𝑟

∞

−∞
, (25) 

 

𝐺𝐷(𝑟, 𝑟′) =
1

(2𝜋)2 ∫ 𝐺𝑘
𝐷𝑒−𝑖�⃗⃗�⋅𝑟𝑑2𝑘

∞

−∞
, (26) 

 

we can follow the similar procedure in three-dimensional case 

and obtain 

 

𝐺𝑘
𝐷 =

𝑒𝑖�⃗⃗⃗�⋅�⃗⃗⃗�′

𝑘𝑥
2+𝑘𝑦

2,    (27) 

 

and 

 

𝐺𝐷(𝑟, 𝑟′) =
1

(2𝜋)2 ∫
𝑒𝑖�⃗⃗⃗�⋅�⃗⃗⃗�′𝑒−𝑖�⃗⃗⃗�⋅�⃗⃗⃗�

𝑘𝑥
2+𝑘𝑦

2 𝑑2𝑘
∞

−∞
.  (28) 

 

To solve the integration in equation (28), we can change 

variables to polar coordinates and apply the scalar product 

 

𝐺𝐷(�⃗⃗�, �⃗⃗�′) =
1

(2𝜋)2 ∫ ∫
𝑒𝑖𝑘𝑅𝑐𝑜𝑠𝜃

𝑘
𝑘𝑑𝑘𝑑𝜃

2𝜋

0

∞

0
, (29) 

 

recognizing the integral in 𝜃 as 2𝜋𝐽0(𝑘𝑅), where 𝐽0(𝑘𝑅) is the 

zero-order Bessel function 

 

𝐺𝐷(𝑟, 𝑟′) =
1

2𝜋
∫  

𝐽0(𝑘𝑅)

𝑘
𝑑𝑘

∞

0
=  −

1

2𝜋
ln|𝑟 − 𝑟′|  (30)  

 

where the equation (30) represents the Green's function for 

two-dimensional Laplace's case.  

 

IV. SOLVING ELECTROSTATIC PROBLEMS BY 

GREEN’S FUNCTIONS 

 

In the previous section we presented the expressions of 

Green's functions in 3-dimensional and 2-dimensional cases. 

Now, we will drive our attention to obtain the solution for a 

set of problems using the Green's function and verifying the 

relation with the method of images. 

Textbooks usually prefer to emphasize the development of 

Green’s functions in terms of eigenfunctions of the 

differential operators they satisfy [2-5], as a manner to reduce 

the issue to one similar to the Sturm-Liouville problem, for 

which we know the solutions. This is a clever and efficient 

method, but, in our point of view, reduces the situations to 

solely mathematical tasks [6, 12, 13, 14], which implies few 

reflections on physics concepts (technical dimension). By 

searching for analytic solutions, comparable to the ones 

obtained by the method of images, we can emphasize the 

physical meanings attached to the image charge, to the 

boundary conditions, to charge redistribution and for field 

lines (closer to the structural dimension). The universal 

procedure adopted for all examples is described as follows: i) 

finding the Green’s function; ii) adding a Laplace’s equation 

solution for finding the full green function; iii) adjusting 

boundary conditions to determine an unique solution for 

Green’s function; iv) applying the Green’s function for 

finding the electric potential, and v) applying the gradient 

operator for finding the electric field. The particular solution 

is, then, interpreted as the potential produced by a unit-charge 

in the point 𝑟′, the Laplace’s equation solution is equivalent 

to the image charge introduced in the problem, and the 

integration of the Green’s function gives the net potential due 

to the all the charges of the problem. As a bonus, the solution 

is unique. 

 

A. Point Charge placed near a Grounded Infinite Plane 

Conductor 

 

Let's consider a point electric charge, 𝑞, placed a distance 𝑑 

along the 𝑧 axis of an infinite thin grounded plate along the 𝑥𝑦 

plane. What is electrical potential produced in a region 𝑧 > 0 

in space?  

Green's function for the three-dimension problem, in this 

case, admits a solution for Laplace's equation adjusted to 

Dirichlet boundary conditions for both Green Function and 

Electric Potential.  

The ground conductor is mathematically structured as 

having null electric potential over its surface at 𝑧 = 0. 

Meanwhile, Green's Function reduces the problem of a 

continuous, and in this case unknown, distribution to the one 

of a point charge, exactly what the method of images 

proposes.  

Considering the equation (23), the full Green's function to 

this problem will be 

 

𝐺(𝑟, 𝑟′) =
1

4𝜋√(𝑥−𝑥′)2+(𝑦−𝑦′)2+(𝑧−𝑧′)2}
+ 𝐺𝐿(𝑟, 𝑟′).   (31) 

 

On the boundary 𝑆 = (𝑥, 𝑦, 𝑧 = 0), for every point located on 

the plate, Green's function equals zero 
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𝐺(𝑆, 𝑟′) = 0.   (32) 

 

Thus, it is possible to see by inspection from equation (32), 

that the function 𝐺𝐿(𝑟, 𝑟′) must have the following expression 

 

𝐺𝐿(𝑟, 𝑟′) = −
1

4𝜋√(𝑥−𝑥′)2+(𝑦−𝑦′)2+(𝑧+𝑧′)2
,  (33) 

 

to ensure the condition given by equation (32) will be valid. 

Therefore, insofar the only known electric charge is a point 

one, it can be modeled by a Dirac Delta function charge 

density, whose infinity point is located at point (0,0, 𝑑). 

In other words, the eletric charge density can be write as 

𝜌(𝑥, 𝑦, 𝑧) = 𝑞,𝛿(𝑧 − 𝑑),𝛿(𝑦 − 0),𝛿(𝑥 − 0) in such a way 

that integrating over the volume in equation (14) leads to: 

 

𝜑(𝑥, 𝑦, 𝑧) =
𝑞

4𝜋𝜖0
[

1

√𝑥2+𝑦2+(𝑧−𝑑)2
−

1

√𝑥2+𝑦2+(𝑧+𝑑)2
].  (34) 

 

 
 

FIGURE 1. Contour lines for the electrostatic potential. We can 

verify where we must place an image charge (white) in a way that 

maintains a null potential over the grounded plane conductor (black 

thick line). 

The equation (34) is a solution for Laplace's Equation for 

𝑧 >0, except for 𝑧 = 𝑑 where it diverges. Besides, the 

solution satisfies the imposed boundary conditions. The result 

is the same obtained by the method of images as seen in figure 

1.  

In summary, physically, the electric point charge is placed 

near the conductor plate, it creates an electric potential and an 

electric field. The latter acts exerting forces on the electric 

charges of the conductor, moving its electrons. This motion 

produces an electric charge density which generates a 

“response field” that “appears” in the resultant solution. The 

superposition theorem, valid both in physics and mathematics, 

states that the solution is, besides unique, the result of these 

two effects, namely, the presence of the point charge and the 

reorganization of the electric charge in the conductor. One 

shall stress the net electric charge in the grounded conductor 

is −𝑞, but this result can be easily discussed by the process of 

charging by induction. This interpretation can be horizontally 

transferred for the other two problems. 

It is important to highlight the symmetry of Green's Function 

in the inversion between point and source locations. 

Structuring Physical thought (withdraw the plane by a point 

charge) in such a way to make the Electrical Potential to 

vanish in that surface is a matter related to the mathematical 

point of view.  

After determining the electric potential, it is possible to find 

the associated electric field. Therefore, using the equation (6), 

we find 

 

�⃗⃗� =
𝑞

4𝜋𝜖0
(𝐸𝑥𝑖̂ + 𝐸𝑦�̂� + 𝐸𝑧�̂�),           (35) 

 

where  

 

𝐸𝑥 = [
𝑥

[(𝑑−𝑧)2+𝑟2]
3
2  

−
𝑥

[(𝑑+𝑧)2+𝑟2]
3
2  

], (36) 

 

And 

 

𝐸𝑦 = [
𝑦

[(𝑑−𝑧)2+𝑟2]
3
2  

−
𝑦

[(𝑑+𝑧)2+𝑟2]
3
2  

], (37) 

and 

𝐸𝑧 = [
(𝑑−𝑧)

[(𝑑−𝑧)2+𝑟2]
3
2  

−
(𝑑+𝑧)

[(𝑑+𝑧)2+𝑟2]
3
2  

], (38) 

 

with 𝑟2 = 𝑥2 + 𝑦2, represents the components of three-

dimensional electric field. 

 

B. Infinite charged wire placed near a Grounded Infinite Plane 

Conductor 

 

Consider an infinite charged wire placed at distance 𝑑 along 

the 𝑥 axis, near a grounded infinite plane conductor. It is 

possible to use the Green’s function in two-dimensional case 

(30), to adjust a solution to Laplace's equation 𝐺𝐿(𝑟, 𝑟′). The 

potential is zero on the charged plane, which leads to the full 

Green's function 

 

𝐺(𝑥, 𝑥′, 𝑦, 𝑦′) = −
1

2𝜋
𝑙𝑛 [√

(𝑥−𝑥′)2+(𝑦−𝑦′)2

(𝑥+𝑥′)2+(𝑦−𝑦′)2],       (39) 

 

where we considered the Dirichlet for the determination of the 

Green's function 𝐺𝐿. The equation (39) represents the same 

result obtained by the method of images.  

To obtain the electrostatic potential for this case, we must 

integrate the Green’s function over volume in equation (14). 

Considering the charge density function given by 𝜌 =
𝜆𝛿(𝑥 − 𝑑)𝛿(𝑦 − 0), one obtains 

 

𝜑(𝑥, 𝑦) = −
𝜆

2𝜋𝜖0
𝑙𝑛 [√

(𝑥−𝑑)2+(𝑦)2

(𝑥+𝑑)2+(𝑦)2].             (40) 

 

From equation (40) it is possible to study the equipotential 

surfaces. If the argument of the logarithm function is a 

constant 

 
(𝑥−𝑑)2+𝑦2

(𝑥+𝑑)2+𝑦2 = 𝑚,  (41) 
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thus represents a circumference with equation 

 

{𝑥 − [𝑑
(1+𝑚2)

(1−𝑚2)
])}

2

+ 𝑦2 = [
2𝑚𝑑

1−𝑚2]
2

.        (42) 

 

 
 

FIGURE 2. Circular equipotential surfaces for the electric potential 

due to a charged wire next to an infinite plane. 

 

For the case 𝑚 = 1 in equation (41), the radius of the 

circumference will be infinite, which represents a plane. 

Forasmuch as the solution fits 𝜑(𝑆) = 0 and 𝑥0 = ∞, the 

equipotentials are on the plane and at infinity.  

Considering the cases with 𝑚 < 1, the equipotentials surfaces 

represent circles of radii 𝑟 =
2𝑚𝑑

1−𝑚2  centered at point 𝑥0 =

𝑑(1+𝑚2)

1−𝑚2 , as presented in figure 2. 

From the electrostatic potential (40), the resultant electric field 

can be found using equation (6), given by the following 

expression 

 

�⃗⃗�(𝑟) = 𝐸𝑥𝑖̂ + 𝐸𝑦𝑗̂ + 𝐸𝑧�̂�,  (43) 

 

where 

 

                   𝐸𝑥 =
𝜆𝑑

𝜋𝜖0
 {

𝑑2−𝑥2+𝑦2

[(𝑑−𝑥)2+𝑦2][(𝑑+𝑥)2+𝑦2]
} ,                 (44) 

 

and 

 

𝐸𝑦 =
𝜆𝑑

𝜋𝜖0
 {

2𝑥𝑦

[(𝑑−𝑥)2+𝑦2][(𝑑+𝑥)2+𝑦2]
}      (45), 

 

represents the two cartesian coordinates of electric field. 

 

C. Point Charge placed near a Grounded Spherical 

Conductor 

 

We shall solve the classical problem of finding the potential 

inside a grounded sphere of radius 𝑅, centered at the origin, 

due to a point charge inside the sphere at position 𝑟′, as 

showed at figure 3.  

 

 
 

FIGURE 3. Diagram illustrating the Laplace's equation for a sphere 

of radius R, with a point charge located at 𝑟′. 

The full Green Function for this problem is given by 

 

𝐺(𝑟, 𝜃, 𝑟′, 𝜃′) =
1

4𝜋√𝑟2+𝑟′2−2𝑟𝑟′ cos(𝜃−𝜃′)
+

                           𝐺𝐿(𝑟, 𝜃, 𝑟′, 𝜃′),    (46) 

 

where we already considered the Green's function (23) and the 

spherical symmetry of the problem to write the distance 
|𝑟 − 𝑟′|. In a similar way, it is necessary to add 𝐺𝐿 into the full 

Green's function (46). Over the surface of the sphere, for any 

polar angle, 𝜃, the electrical potential always will be null. This 

is equivalent to make the Green’s function (46) vanish for 𝑟 =
𝑅,  

 

𝐺(𝑅, 𝜃, 𝑟′, 𝜃′) = 0,   (47) 

 

which leads to an expression for 𝐺𝐿 

 

𝐺𝐿(𝑅, 𝜃, 𝑟′, 𝜃′) = −
1

4𝜋√𝑅2+𝑟′2−2𝑅𝑟′ cos(𝜃−𝜃′)
.     (48) 

 

By inspection, we verify that in the point 𝑟 the 𝐺𝐿 must have 

the following form, 

 

𝐺𝐿(𝑟, 𝜃, 𝑟′, 𝜃′) = −
1

4𝜋√𝑟2𝑟′2

𝑅2 +𝑅2−2𝑟𝑟′ cos(𝜃−𝜃′)

, (49) 

 

which corresponds to the Green's function inside the sphere, 

for a point image charge 𝑞′ outside at point 𝑟′ =
𝑅2

𝑟2. The 

equation (49) is the only one that leads to a vanishing Green's 

function over the surface of the sphere. 

Now, we must find the associated electrostatic potential by 

integrating over the volume in equation (14), assuming a 

charge distribution like 𝜌(𝑟′) =
𝑞𝛿(𝑟′−𝑑)𝛿(𝜃′−0)𝛿(𝜙′−0)

𝑟′2  which 

leads to 

 

𝜑(𝑟, 𝜃) =
1

4𝜋𝜖0
{

𝑞

√𝑟2+𝑑2−2𝑟𝑑𝑐𝑜𝑠𝜃
−

𝑞
𝑅

𝑑

√𝑟2+
𝑅4

𝑑2−
2𝑟𝑅2

𝑑
𝑐𝑜𝑠𝜃

}. (50) 

 

The result obtained in equation (50) can be derived by using 

the method of images. Considering a negative image charge 

placed a distance 𝑟′ =
𝑅2

𝑑2, from the centre of the spherical 
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shell and a charge 𝑞′ = − (
𝑞𝑅

𝑑
) produces the same results 

showed in (50) as represented in the figure 4. 

From the electrostatic potential (50), it is possible to find 

the electric field (6), which is expressed in spherical 

coordinates as  

 

�⃗⃗�(𝑟, 𝜃) = 𝐸𝑟�̂� + 𝐸𝜃�̂�,  (51) 

 

where 

 

𝐸𝑟 =
𝑞

4𝜋𝜖0
{

(𝑟−𝑑𝑐𝑜𝑠𝜃)

[𝑟2−2𝑟𝑑𝑐𝑜𝑠𝜃+𝑑2]
3
2

−
𝑅

𝑑

(𝑟−
𝑅2

𝑑
𝑐𝑜𝑠𝜃}

 [𝑟2−2
𝑟𝑅2

𝑑
𝑐𝑜𝑠𝜃 +

𝑅4

𝑑2]

3
2

}(52) 

 

and 

 

𝐸𝜃 =
𝑞

4𝜋𝜖0
{

𝑑𝑠𝑖𝑛𝜃

[(𝑑2−2𝑑𝑟𝑐𝑜𝑠𝜃 +𝑟2]
3
2

−
𝑅

𝑑

𝑅2

𝑑
𝑠𝑖𝑛𝜃

[
𝑅4

𝑑2−
2𝑟𝑅2𝑐𝑜𝑠𝜃

𝑑
+𝑟2]

3
2

} (53) 

 

and the lines of force are represented in the figure 4. 

 

 
FIGURE 4. Lines of force due to the electrostatic field �⃗⃗�(𝑟) and the 

equipotential surfaces for a positive point charge (red) inside the 

spherical shell of radius 𝑅. The blue charge represents the image 

charge 𝑞′, and it guarantees the electric field is null over the surface 

of the spherical shell (black line). 

Considering that the inner charge lies on the 𝑧-axis, the 

induced charge density at surface of the sphere will be 

described by a function of the polar angle 𝜃. 
 

𝜎(𝜃) = 𝜖0
𝜕𝑉

𝜕𝑟
|

𝑟=𝑅
,  (54) 

 

and  

𝜎(𝜃) =  −
𝑞

4𝜋
{

𝑅2−𝑑2

𝑅[𝑅2 + 𝑑2−2𝑑𝑅𝑐𝑜𝑠𝜃]
3
2

},          (55) 

 

and the total charge on the surface of sphere can be found by 

integrating over all angles,  

 

𝑄𝑡 = ∫ ∫ 𝜎(𝜃)𝑑Ω
2𝜋

0

𝜋

0
=  −𝑞.      (56) 

What would happen if charge 𝑞 was outside the grounded 

sphere? In this case, this problem can be solved using this 

procedure in a similar way. Assuming charge 𝑞 is located at 

position 𝑟′ = 𝑑 outside a grounded sphere of radius 𝑅, the 

electrostatic potential outside is given by the sum of the 

potentials due to the charge and its image charge 𝑞′ inside the 

sphere.  

 

 

V. CONCLUSIONS 
 

It was discussed in this paper the possibility of establishing 

comparison between Green's function and the method of 

images in electrostatic problems. The method of images relies 

upon a strong sense of physical interpretation, while the 

technique of Green's function is a powerful form of solving 

problems involving differential equations. Then, it is possible 

to conclude that Green's function mathematically structures 

the Method of Images. In other words, this is equivalent to say 

that mathematics structures physical thought. 

The solution attached to the image charge appears as a 

solution for Laplace's equation, satisfying the boundary 

conditions associated. On the other hand, Green's function 

method is more general technique than the one due to 

calculation by image charges.  

However, in a physics problem, without the interpretation 

connecting these two instances, mathematical knowledge 

relates in non-substantive way and may be anchored to non-

relevant prior knowledge. Therefore, it leads to non-

elaborated ideas as, for example, “problems involving 

conductors are solved by Green's function” or “problems 

involving conductors are solved by the method of images”, 

what places this kind of relation closer to the rote learning pole 

and further from the meaningful learning pole [22].  

Nevertheless, in parallel, the methods may be meaningful 

both in Physics and Mathematics once it is possible to learn 

about conductors in electrostatic equilibrium while 

conceptually and operationally tackling only using Green's 

functions. 

The authors defend, as does Karam [15], that 

mathematical knowledge structures physical thought and that 

gives meaning to mathematical knowledge through situations 

that make the concept of Green's function useful and 

meaningful in the field of physics [14], permitting 

transference to the domain of Mathematics [16].  

The value of this article underlies in showing a deep 

relation between physical thought and mathematical structure 

in a case of electromagnetism (professional cycle). It offers a 

wider view on the role of Mathematics in Physics than the 

common views of Mathematics as tool (operationalistic 

function) or as a merely language (restricted communicative 

function). 

Another intricate point in the discussion is the fact that this 

knowledge is necessarily tied to epistemological features, and 

these cannot be cast aside in teaching-learning processes. 

Green himself obviously did not knew the Dirac Delta 

function, neither Dirac himself had a formal proof of its 

validity, which was developed by Schwartz [18], but this did 

not stop them from doing elaborated Mathematics.  

Similar epistemological difference can be found among 

the works of Newton (or Leibniz) and the ones by Weierstrass. 
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For, as much the notion of function due to the latter 

mathematician approaches the concept of number (static 

view), the one due to the former in closer to the concept of 

variable (dynamic view) [24].  

Related to this, is the unmentionable wide failure in 

calculus teaching in the first year of any course of exact 

Sciences [24], whose cause is, partially, associated with 

disregarding this feature into teaching-learning processes: 

students often study textbooks approaching the concept in a 

Weierstrassian perspective, which is much further (and much 

more formal) from students' prior knowledge than it should 

be. In spite of the existence of great teachers and students in 

these courses, these epistemological features is beyond their 

will power or applied didactical methodology in the teaching 

processes.  

Returning to the discussion of Green's function, we advise 

that its interpretation should be approached to the notion of 

point source, as did Green himself, because this can provide 

conditions for comprehension of more modern concepts as, 

for example, the Dirac Delta Function. Without this 

epistemological ingredient, the process of interdisciplinary 

interaction between Mathematics and Physics in classroom 

can blatantly fail in reaching its objective of providing 

conditions for meaningful learning [22]. 

The authors expect to contribute, by means of discussion 

of these simple examples, to demonstrate the feasibility of 

discussing in an integrated manner the method of images (with 

high degree of physical interpretation) and the technique of 

Green's function (with high degree of mathematical power) in 

classroom. We also understand that this discussion can 

enlighten the history and usefulness of Green’s function in a 

manner that it is presented in a less distorted way than it is in 

textbooks [6]. It can also provide constitutive elements for its 

comprehension for problem-solving, mainly through the 

worked examples. It can bridge the gap between mathematics 

and physics, especially for students and teachers/professors 

who already mastered the content of Green’s functions but 

have hindrances in tackling it [8, 10]. Since learners have 

criteria for using scientific and mathematic concepts, we 

expect to contribute for building solid arguments for 

teachers/professors and students for comprehending this 

subject in a more integrated way [9]. 

The authors also look forward to discuss principles related 

to providing condition not just for comprehension of the 

secondary class of situations associated to calculation of 

electric fields from known boundary conditions, but unknown 

electric charge density pointed in [1], but seeking for 

interdisciplinary integration between Physics and 

Mathematics in a manner of promoting reasoning founded in 

the thesis that Mathematics structure Physical thought [6] and 

that Physics may give sense to concepts of Mathematics [23]. 
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