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Análisis matemático de un modelo epidémico estructurado por sı́ntomas
Pedro Isaac Pesantes-Grados∗ and Roxana López-Cruz†
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Abstract
We propose a modification of the SLIAR (Susceptible- Latent- Symptomatic Infected- Asymptomatic- Recov-
ered) mathematical-epidemiological model with vital dynamics. This model includes a vaccination control
strategy, and a treatment to reduce the symptoms, also the symptomatic infected population is divided into
two states according to its severity. The qualitative analysis shows the local stability of the disease-free
equilibrium point and the endemic point. Simulations and the statistical sensitivity analysis are developed
using a set of parameters for COVID-19, and we found that the transmission, recruitment, finally, vaccina-
tion rates are potential targets to control an outbreak.
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Resumen
Se propone una modificación del modelo epidemiológico SLIAR (Susceptible-Latente- Infectado Sintomático-
Asintomático-Recuperado) con dinámica vital. Este modelo incluye una estrategia de control por vacuna-
ción, y un tratamiento para reducir los sı́ntomas, además la población infectada sintomática se divide en
dos estados según su gravedad. El análisis cualitativo muestra la estabilidad local del punto de equilibrio
libre de enfermedad y el punto endémico. Las simulaciones y el análisis estadı́stico de sensibilidad son de-
sarrollados utilizando un conjunto de parámetros para COVID-19, finalmente, encontramos que las tasas
de transmisión, reclutamiento y vacunación son objetivos potenciales para controlar un brote epidémico.

Palabras clave. Vacunación , estabilidad, sensibilidad, COVID-19.

1. Introduction. In the development of mathematical models applied to epidemiology, an important
milestone is the SIR model proposed by Kermack and McKendrick [13], which classifies epidemiological
populations into three states: Susceptible (S) as the population at risk of contracting the disease, infected (I)
as those who possess the disease and are able to spread it and removed (R) which can be considered both
recovered and deceased. This model has served as a basis for the development of numerous epidemiological
models, which allow to capture in greater detail either a novel theoretical approach or an application to a
particular disease.

Brauer [8] proposed an influenza SEI (susceptible-exposed-infected) mathematical model where con-
sidered an asymptomatic compartment in lieu of the exposed. Arino et al. [4] proposed a basic SLIAR
model and one with treatment considering the following epidemiological states for a respiratory disease in
general: Susceptible (S), latent (L) that are infected people who can not yet spread the disease, and among
those infected that propagate the disease are considered symptomatic (I) and asymptomatic (A), finally it is
considered the removed or recovered population (R). The SLIAR model incorporates asymptomatic status
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based on a characteristic of influenza, in which cases of infectious diseases that do not develop symptoms
occur. It was developed with the aim of analyzing the dynamics of basic models in the post-pandemic con-
text of avian influenza (H5N1) and SARS (2002-2003). This research concluded that the proposed models
were sensitive to parameter values, in particular the fraction of dormant patients which develop symptoms.

In the context of COVID-19 pandemic (Coronavirus 19 disease, caused by the SARS-CoV-2 virus,
which belongs to the family Coronaviridae), this disease triggers a myriad of pathophysiological disorders,
whose most striking characteristic is its rapid transmissibility, it also presents a series of symptomatological
characteristics that range from lack of symptoms (asymptomatic) to moderate pathological effects such as
lung inflammation and thrombosis, generating in many cases severe acute respiratory syndrome (SARS), a
cytokines storm and until death [10]. Moreover, the capability to transmit the disease from asymptomatic
was found [22]. It is necessary, in this context of pandemic, to develop tools that allow us to estimate
the possible scenarios for local outbreaks of this disease, and to give us general guidelines on how to
prepare to cope with it. Here, mathematical and computational modeling plays a major role, as it allows
us to simulate and experiment in silico various hypotheses that will be empirically contrasted, but would
otherwise be difficult to experiment directly with the population or wait long enough until sufficiently robust
and meaningful data can be analyzed.

Based on the previous model of Arino et al. [4] and subsequent modifications [5, 6], they proposed a
modification of latent, infected and asymptomatic compartments, dividing each one in two stages accord-
ing to their degree of infectivity, this model has been applied to the case study of the current COVID-19
pandemic. In this proposal, the incubation state without infecting capacity and the state of pre-symptomatic
infectious latent was differentiated, where the latter one could move to a state of symptomatic or asymp-
tomatic infectious. The transitions among incubation compartments, asymptomatic/symptomatic infected
with a higher probability of survival or not, were estimated using an Erlang distribution, i.e., a gamma
distribution function with form two parameter. For the estimation of parameters, data from various sources
was used and algorithms encoded in R language were used for processing [7].

In the current situation, under the pandemic caused by the SARS-CoV-2 virus, the review and updat-
ing of some hypotheses like the existence of pharmacological treatment, vaccination schemes or different
infected types takes important relevance, as well as studying the dynamics of mathematical models related
to infectious-contagious respiratory diseases.

This work examines the dynamics and local stability of the SLIIAR (Susceptible-Latent-mild symp-
tomatic Infected -severe symptomatic Infected -Asymptomatic-Recovered) model, which is derived from
the SLIAR model and incorporates a new compartment to stratify the symptomatic infected people and
vital dynamics. Besides, due to the characteristics of influenza, SARS, and COVID-19, we consider imple-
menting the vaccination effect with total immunity and a parameter that represents the treatment effect. A
qualitative analysis was done to establish the positivity, boundedness, existence of the equilibrium points,
and their local stability. Additionally, we perform a sensitivity analysis in order to find the most relevant
parameters that perturb the disease dynamics. These analyses help us to determine the relevance of some
sanitary measures in an outbreak.

2. SLIAR model. This model has been previously analyzed using the AH2N2 influenza spread pa-
rameters of 1957, and has an advantage over SEIR models (Susceptible - Exposed - Infected - Removed),
in the sense that asymptomatic can spread the disease [4].

Susceptible
stage

Removal stage
(Recovery, immunity

or death)

timeIncubation
period

Latent
period Infectious period

Symptomatic
period

Exposure

Onset of
symptoms

Figure 2.1: Epidemiological stages. Modified from [9]

2.1. Hypothesis. The mathematical model proposed by Arino et al. [4] does not consider vital dy-
namics and consists of five differential equations representing the five epidemiological states: population of
susceptible (S(t) = S), population of latent or exposed (L(t) = L), population of symptomatic infectious
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(I(t) = I), population of asymptomatic (A(t)) and population of recovered (R(t) = R) in an instant t. It
also considers the following hypothesis:

1. Each infected individual has the same probability of transmitting the disease, that is the same
expected number of contacts, then the transmission rate β > 0 is constant and obeys the law of
mass action.

2. The latent population (L) has no capacity to transmit the disease. Taking into account that the
latency period is the time that elapses from infection until the person becomes infectious while the
incubation period is the time that elapses until onset of symptoms [9], as it can see in the figure
2.1 .

3. In transmission dynamics, a fraction p of the latent population transitions to the symptomatic
infectious population compartment (I) with a transition rate from infected to contagious κ; while,
the remaining fraction of latents (1 − p) transits to the asymptomatic infectious compartment (A)
with the same transition rate κ.

4. The infection spreads through contact with members of the susceptible population and the infected
population (symptomatic and asymptomatic); however, the asymptomatic (A) infect with less in-
tensity than the symptomatic (I), with an infectivity rate reduced by a factor of δ.

5. The removal takes place through a removal rate α> 0 for symptomatic cases, where a fraction of
them (f ) are recovered and passed into the recovered compartment (R), while the rest (1− f ) die
from the infection. The removal rate η> 0 for asymptomatic infectives transiting to the recovered
compartment (R).

Flow diagram of the model:

I

fαI

��

S
βS(I+δA) // L

pκL

??

(1−p)κL

��

R

A

ηA

??

Figure 2.2: Flow diagram of SLIAR model [4]

Where:
• β, represents the constant transmission rate.
• δ, is the rate of attenuation of infectivity by asymptomatics (0 ≤ δ ≤ 1).
• κ, is the rate of transition from latent to infected infectious.
• 1

κ , in the number of days a dormant individual becomes infectious (symptomatic or asymptomatic).
• p, is the proportion of the latent population that becomes symptomatic infectious (0 ≤ p ≤ 1).
• (1− p), is the proportion of the latent population that becomes asymptomatic infectious.
• α, is the rate of infection removal for symptomatic infected.
• 1

α , in the number of days that a symptomatic infectious individual becomes removed (recovers or
dies).
• η, is the recovery rate of asymptomatics.
• 1

η , in the number of days an asymptomatic infectious individual recovers.
• f , is the proportion of symptomatic infections that recover (0 ≤ f ≤ 1).
• (1− f), is the proportion of symptomatic infectious deceased.

While the flow diagram and the system representing them have not been considered the compartment of
dead from disease, it is possible to add this, for a similar analysis. The ordinary differential equations
system is the following:
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dS
dt = −βS (I + δA) , S(0) = S0 > 0

dL
dt = βS (I + δA)− κL L(0) = L0 ≥ 0

dI
dt = pκL− αI, I(0) = I0 ≥ 0

dA
dt = (1− p)κL− ηA, A(0) = A0 ≥ 0

dR
dt = fαI + ηA R(0) = R0 ≥ 0

(β, δ, κ, α, p, f, η) ∈ R7
+.

(2.1)

And the total size of the population at the moment t is given by N(t) = S(t) +L(t) + I(t) +A(t) +R(t).

2.2. Basic qualitative properties. This section will determine some of the properties for the mathe-
matical analysis of the solutions for t ≥ 0, such as the positivity and invariant region. For this purpose, the
methodology outlined by Zhang et al. [29] for the demonstration of the lemmas will be followed.

2.2.1. Positivity. It is important to prove that all the variables of epidemiological states and the solu-
tions of the system of differential equations (2.1) are not negative with positive initial conditions ∀t ≥ 0.

Lemma 2.1. The system of differential equations (2.1) with initial conditions S(0) > 0, L(0) ≥
0, I(0) ≥ 0, A(0) ≥ 0, R(0) ≥ 0 has non negative solutions S(t), L(t), I(t), A(t), R(t) for all t ≥ 0.

Proof:
• Assume the solution (S(t), L(t), I(t), A(t), R(t)) of the system (2.1) with positive initial condi-

tions of existence (S(0) > 0, L(0) ≥ 0, I(0) ≥ 0, A(0) ≥ 0, R(0) ≥ 0) in the interval [0, b),
where 0 < b ≤ ∞. By the first equation of the system (2.1), we have to:

S′(t) = −βS(t) (I(t) + δA(t)) ,

integrating we have to ∫ t

0

S′(t)dt =

∫ t

0

−βS(t) (I(t) + δA(t)) dt

∫ t

0

S′(t)
S(t)

dt =

∫ t

0

−β (I(t) + δA(t)) dt

S(t) = S(0)e−β
∫ t
0

(I(θ)+δA(θ))dθ > 0,∀t ∈ [0, b) .

Therefore, there must be a S(t) > 0,∀t ∈ [0, b).
• On the other hand, there will be a t1 ∈ (0, b) such that L(t1) = 0 and L(t) > 0 in the interval

[0, t1). For any t ∈ [0, t1), by the third equation of the system (2.1):

I ′(t) = pκL(t)− αI(t) ≥ −αI(t)

integrating the differential inequality,∫ t

0

I ′(t)dt ≥
∫ t

0

−αI(t)dt

∫ t

0

I ′(t)
I(t)

dt ≥ −α
∫ t

0

dt

I(t) ≥ I(0)e−αt > 0,∀t ∈ (0, t1) .

• In addition, ∀t ∈ [0, t1], we have to

L′(t) = βS(t) (I(t) + δA(t))− κL(t) ≥ −κL(t),

integrating ∫ t1

0

L′(t)dt ≥
∫ t1

0

−κL(t)dt
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0

L′(t)
L(t)

dt ≥ −κ
∫ t1

0

dt

L(t1) ≥ L(0)e−κt1 > 0,∀t ∈ [0, t1) .

but this is a contradiction to L (t1) = 0, which was previously assumed. Therefore, L(t) > 0,∀t ∈
[0, b).
• Using the same methodology by contradiction, it can be shown that I(t) > 0,∀t ∈ [0, b).
• For the fourth equation of the system (2.1), under the same methodology we have to

A(t) ≥ A(0)e−ηt > 0,∀t ∈ [0, b) .

• For the fifth equation of the system (2.1), using the same methodology we obtain

R′(t) = fαI(t) + ηA(t),

and integrating ∫ t

0

R′(t)dt =

∫ t

0

(fαI(t) + ηA(t)) dt

R(t) =

∫ t

0

(fαI(θ) + ηA(θ)) dθ +R(0) > 0,∀t ∈ [0, b) .

• We have thus obtained that

S(t), L(t), I(t), A(t), R(t) > 0,∀t ∈ [0, b) .

2.2.2. Invariant region. Because the model is related to biological populations, it is assumed that the
variables and parameters are positive ∀t ≥ 0. Therefore, the system of equations (2.1) within a region of
the solutions space Ω of biological interest will be analyzed, which is presented in the following lemma.

Lemma 2.2. The feasible region Ω, defined by

Ω =
{

(S(t), L(t), I(t), A(t), R(t)) ∈ R5
+ : 0 ≤ N(t) ≤ N(0)

}
,

with initial conditions S(0) > 0, L(0) ≥ 0, I(0) ≥ 0, A(0) ≥ 0, R(0) ≥ 0 is positively invariant to the
system of differential equations (2.1).

Proof: Let the system of equations be (2.1), and adding them, we get

dS

dt
+
dL

dt
+
dI

dt
+
dA

dt
+
dR

dt
= −(1− f)αI,

while N(t) = S(t) + L(t) + I(t) +A(t) +R(t), we have to:

dN

dt
= −(1− f)αI.

We integrate member to member in the interval of t ∈ [0, t], we have to∫ t

0

N ′(θ)dθ =

∫ t

0

(−(1− f)αI(θ)) dθ

N(t) = N(0)− (1− f)α

∫ t

0

I(θ)dθ,

where it follows that

N(t) ≤ N(0).

where N(0) represents the initial value of the total population. It proves the boundedness. In addition,
using the previous result of positivity, we can conclude that 0 ≤ N(t) ≤ N(0).
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2.3. Qualitative Analysis.

2.3.1. Equilibrium points. In order to find the equilibrium solutions, we solve the system (2.1) by
setting each equation equal to zero.

By simple inspection, we note that the trivial equilibrium point is a solution of the system, where
S = 0, L = 0, I = 0, A = 0, R = 0, however this point E∗ = (0, 0, 0, 0, 0) lacks biological interest in the
context of an epidemic outbreak.

For I = 0, we have a equilibrium point with L = A = 0, where R ≥ 0 and S takes values from
0 ≤ S ≤ S0, then the disease-free equilibrium point is:

E0 = (S0, 0, 0, 0, R0) .

2.3.2. Calculating R0 using the next generation matrix. This methodology will be applied con-
sidering the steps followed by Amaya-Muvdi [3], where the subsystem of the infected compartments is
evaluated directly: 

dL
dt = βS (I + δA)− κL

dI
dt = pκL− αI

dA
dt = (1− p)κL− ηA.

(2.2)

From this subsystem, we define the following matrices:
• F(L,I,A): Matrix formed by the new infections appearance rates in the compartments of infected

(matrix of entry of infected by the infection).
• V +

(L,I,A): Matrix formed by the transfer rates of individuals to the infected compartments for
reasons other than being infected (matrix of entry of infected by causes other than infection).
• V −(L,I,A): Matrix formed by the transfer rates of individuals outside the infected compartments

(infected exit matrix).
• V(L,I,A) = V −(L,I,A) − V +

(L,I,A).
According to the interpretation made by Amaya-Muvdi [3] and Diekmann et al. [11] of the methodology
used, the matrix F(L,I,A) + V +

(L,I,A) evaluates the entries to the infected compartments, while the matrix
V −(L,I,A) represents the outputs of those compartments per unit of time. In addition, the components of the
matrix V(L,I,A) represent the expected time in which an individual who is in one of the epidemiological
states (L, I,A) passes to another of these states in the future. In our case:

F(L,I,A) = F =


FL

FI

FA

 =


βSI + βδSA

0

0

 ,

V +
(L,I,A) = V + =


V +
L

V +
I

V +
A

 =


0

pκL

(1− p)κL

 , V −(L,I,A) = V − =


V −L

V −I

V −A

 =


κL

αI

ηA



V(L,I,A) = V = V −(L,I,A) − V +
(L,I,A) = V − − V + =


κL

αI − pκL

ηA− (1− p)κL

 .

We proceed to calculate the Jacobian or matrix derivatives of matrices V ,F , evaluate them at the disease-
free equilibrium point for our case E0 = (S0, 0, 0, 0, R0):

F =

(
∂Fi

∂xi
|(E0)

)
, V =

(
∂Vi
∂xi
|(E0)

)
, 1 ≤ i, j ≤ m.
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Where: Fi,Vi represent each component of the input and output matrix respectively, xi represents each
subdivision of the epidemiological status of infected (in our case of latents L, infected I and asymptomatic
A), and m is the order of the matrix F ,V (in our case m = 3). Finding the Jacobian, we have:

F =
∂Fi

∂xi
|E0

=


∂FL

∂L |(E0)
∂FL

∂I |(E0)
∂FL

∂A |(E0)

∂FI

∂L |(E0)
∂FI

∂I |(E0)
∂FI

∂A |(E0)

∂FA

∂L |(E0)
∂FA

∂I |(E0)
∂FA

∂A |(E0)

 =


0 βS0 βδS0

0 0 0

0 0 0

 ,

V =
∂Vi
∂xi
|E0

=


∂VL
∂L |(E0)

∂VL
∂I |(E0)

∂VL
∂A |(E0)

∂VI
∂L |(E0)

∂VI
∂I |(E0)

∂VI
∂A |(E0)

∂VA
∂L |(E0)

∂VA
∂I |(E0)

∂VA
∂A |(E0)

 =


κ 0 0

−pκ α 0

− (1− p)κ 0 η

 .

The inverse matrix of V , given by:

V −1 =


1
κ 0 0

p
α

1
α 0

−p+1
η 0 1

η

 .

Let the matrix product K = FV −1 be named next generation matrix:

K =


0 βS0 βδS0

0 0 0

0 0 0




1
κ 0 0

p
α

1
α 0

−p+1
η 0 1

η

 =


αβδS0(1−p)+ηβpS0

αη
βS0

α
βδS0

η

0 0 0

0 0 0

 .

The basic playback number is defined as the spectral radius of the next generation matrix [25, 3] i.e., as the
higher of the eigenvalues or dominant eigenvalue of the next generation matrix [11]:

R0 = ρ
(
FV −1

)
= ρ (K) .

Calculating the eigenvalues as the roots of the characteristic polynomial associated with the next generation
matrix, we have:

det(K − λI3) = 0

det


αβδS0(1−p)+ηβpS0

αη − λ βS0

α
βδS0

η

0 0− λ 0

0 0 0− λ

 = 0

−λ2

(
λ− S0β

(
αδ (1− p) + ηp

αη

))
= 0⇔ λ1 = λ2 = 0 ∨ λ3 = S0β

(
αδ (1− p) + ηp

αη

)
.

It follows that R0, takes the form of:

R0 = S0β

(
δ (1− p)

η
+
p

α

)
. (2.3)

2.3.3. Local stability. We analyze the stability of the disease-free equilibrium point. The last equation
of the system (2.1) can be omitted because its dynamics does not depend of itself. Linearizing, we get the
Jacobian matrix:

J =


−β (I + δA) 0 −βS −βδS

β (I + δA) −κ βS βδS

0 pκ −α 0

0 (1− p)κ 0 −η

 ,
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thus, analyzing the disease-free point stability

J (E0) =


0 0 −βS0 −βδS0

0 −κ βS0 βδS0

0 pκ −α 0

0 (1− p)κ 0 −η

 ,

whose characteristic equation is the next:

λ
(
λ3 + c2λ

2 + c1λ+ c0
)

= 0,

where:

c2 = η+α+κ, c1 = (βδ (p− 1)S0 + η + α)κ−pκ β S0+η α, c0 = (βδ (p− 1)S0 + η)ακ−β η pκS0.

By the Routh-Hurwitz criterion, we can assure that the characteristic polynomial has roots with negative
real parts only if c2 > 0, c1 > 0, c0 > 0 (from this condition it follows that R0 < 1) and c1c2 > c0.
Although a condition was obtained to study the central manifold (due to ∃λ = 0) for this point, we will not
focus on the stability of E0.

3. SLIIAR model.

3.1. Hypothesis. The proposed model consists of the following considerations:
• This model is a variation of the SLIIAR model based on the stratification of those infected with

symptoms in two compartments (I1, I2), we considered vital dynamics and also deaths due to
disease.
• It is considered that the two sub-populations of symptomatic infectious individuals can spread the

disease with equal intensity.
• Two types of treatment are considered: vaccination and symptomatic treatment.
• It is considered the existence of latent individuals (L), which are infected but do not transmit the

disease.
• Asymptomatic individuals (A) are considered to be able to transmit the disease. In addition, the

transmission is attenuated by an ξ attenuation rate.
• It is considered that a symptomatic infected person can revert to a previous state of less severity by

the action of a symptomatological treatment (medicines and/or palliative care), and does so with a
rate of reversion ε, which is the inverse of the days needed for symptoms to decrease in severity.
• It is considered that there is an immunization intervention, with a vaccination rate κ.

The flow diagram of the model is as follows:

I1

γI1

%%

δI1

��

µ
//

ω1I1 //

Λ // S
Φ(I)S //

µ

��

κS

FF

L
p2ηL //

p1ηL
??

(1−(p1+p2))ηL

��

µ

��

I2
γI2 //
µ

//

εI2

TT

ω2I2 //
R

µ

��
A

γA

99

µ
//

Figure 3.1: Flow diagram from SLIIAR model
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Considering the incidence as Φ (I)S, and the force of infection is given by:

Φ (I) = β (I1 + I2 + ξA) , I = (I1; I2;A) ,Φ : R3
+ → R+.

Where in addition to the previous variables, we can mention the next:
• I1(t) = I1, represents the population of infectious individuals with mild symptoms within the

population in an instant t.
• I2(t) = I2, represents the population of infectious individuals with severe symptoms within the

population in an instant t.
• Λ, represents the recruitment rate.
• β, represents the transmission rate.
• µ, represents the mortality rate independent of the disease.
• ξ, 0 ≤ ξ ≤ 1, is the rate of attenuation of transmission for asymptomatic persons.
• η, is the rate of transition from latent to symptomatic or asymptomatic infected.
• pi,∀i = 1, 2, is the proportion or probability that the latent population becomes one of the possible

infectious states (symptomatic and asymptomatic).
• δ, is the transition rate of a symptomatic mild to severe infected individual.
• ε, is the rate of symptom reversal between the different levels of symptomatic infected.
• γ, is the rate of infection recovery for those infected (symptomatic and asymptomatic).
• ωi,∀i = 1, 2, is the lethality rate of the infection for symptomatic infected.
• κ, is the constant vaccination rate.

The model can be formalized as a system of ordinary differential equations:



dS
dt = Λ− β (I1 + I2 + ξA)S − (κ+ µ)S, S(0) = S0 > 0

dL
dt = β (I1 + I2 + ξA)S − (η + µ)L L(0) = L0 ≥ 0

dI1
dt = p1ηL+ εI2 − (δ + γ + ω1 + µ) I1, I1(0) = I10 ≥ 0

dI2
dt = p2ηL+ δI1 − (ε+ γ + ω2 + µ) I2, I2(0) = I20 ≥ 0

dA
dt = (1− p1 − p2) ηL− (γ + µ)A, A(0) = A0 ≥ 0

dR
dt = γI1 + γI2 + γA+ κS − µR, R(0) = R0 ≥ 0

(Λ, β, ξ, κ, µ, η, p1, p2, ε, δ, γ, ω1, ω2) ∈ R13
+ .

(3.1)

3.2. Basic qualitative properties.

3.2.1. Positivity. Lemma 3.1. The system given by (3.1), with initial conditions S(0) > 0, L(0) ≥
0, I1(0) ≥ 0, I2(0) ≥ 0, A(0) ≥ 0, R(0) ≥ 0 have non-negative solutions S(t), L(t), I1(t), I2(t), A(t), R(t),∀t ≥
0.

Proof: The proof is given by contradiction.
• If exists a negative solution for S (t) with S (0) > 0, so there must exist a

t1 = sup {0 ≤ t ≤ t1|S (t) ≥ 0, L (t) ≥ 0, I1 (t) ≥ 0, I2 (t) ≥ 0, A (t) ≥ 0, R (t) ≥ 0} ,

such that

S (t1) = 0, S′ (t1) < 0,

but from the first equation (3.1), we have that

S′ (t1) = Λ > 0,

and this result means that S (t) ≥ 0,∀t ≥ 0, which is a contradiction with the hypothesis, then
S (t) ≥ 0,∀t ≥ 0 .

• In the case of L (t) with L (0) ≥ 0, if L (t) < 0 so there must exist a

t2 = sup {0 ≤ t ≤ t2|S (t) ≥ 0, L (t) ≥ 0, I1 (t) ≥ 0, I2 (t) ≥ 0, A (t) ≥ 0, R (t) ≥ 0} ,
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such that

L (t2) = 0, L′ (t2) < 0,

from the second equation (3.1), we have that:

L′ (t2) ≥ 0,∀t ≥ 0.

It means that L (t) ≥ 0,∀t ≥ 0, in particular L (t) > 0,∀t > 0 which is a contradiction with the
hypothesis in this case, so we can conclude that L (t) ≥ 0,∀t ≥ 0.
• Following the same analysis for the other populations, we have that:

S(t), L(t), I1(t), I2(t), A(t), R(t) > 0,∀t ≥ 0.

3.2.2. Boundedness. Lemma 3.2. The system (3.1) with initial conditions S(0) > 0, L(0) ≥ 0, I1(0) ≥
0, I2(0) ≥ 0, A(0) ≥ 0, R(0) ≥ 0 is positively invariant in the feasible region Ω, defined by:

Ω =

{
(S(t), L(t), I1(t), I2(t), A(t), R(t)) ∈ R6

+ : N(t) ≤ Λ

µ

}
.

Proof: Let the ordinary differential equations system be (3.1) and adding the simplified system,we
have:

dS

dt
+
dL

dt
+
dL1

dt
+
dL2

dt
+
dA

dt
+
dR

dt
= Λ− µ (S + L+ I1 + I2 +A+R)− ω1I1 − ω2I2,

as N (t) = S (t) + L (t) + I1 (t) + I2 (t) +A (t) +R (t), then:

dN

dt
= Λ− µN − ω1I1 − ω2I2 ≤ Λ− µN,

solving the differential inequality

dN

dt
≤ Λ− µN,

d (Neµt)

dt
≤ Λeµt,

by integration we obtain

N (t) ≤ e−µt
(∫

eµtΛdt+ C

)

N (t) ≤ Λ

µ
+ Ce−µt.

We notice that as N (t) = S (t) + L (t) + I1 (t) + I2 (t) +A (t) +R (t) and the initial conditions S(0) ≥
0, L(0) ≥ 0, I1(0) ≥ 0, I2(0) ≥ 0, A(0) ≥ 0, R(0) ≥ 0, so that N (0) ≥ 0 and N (t) ≥ 0 by the previous
Lemma. In order to determine the integration constant value, in t = 0 we have that N (0) (that represents
the total initial population)

N (0) ≤ Λ

µ
+ C

N (0)− Λ

µ
≤ C,

thus,

N (t) ≤ Λ

µ
+ e−µt

(
N (0)− Λ

µ

)
,

so, we have that when t −→∞:

lim
t−→∞

N (t) ≤ Λ

µ
.
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3.3. Qualitative Analysis. The equilibrium points can be found by setting each of the equations of
the system 3.1 equal to zero.

3.3.1. Disease-free equilibrium point. Theorem 3.1 (Existence of disease-free equilibrium point).
The disease-free equilibrium point E0 always exists for the system (3.1).

Proof: We proceed to determine the disease-free equilibrium point, considering the steady state of the
system (3.1), when I1 = I2 = A = 0, so we found that L = 0, S = Λ

κ+µ , R = κΛ
µ(κ+µ) . Moreover, the

whole parameters are positive, so the positively of the of the following point is assured:

E0 =

(
Λ

κ+ µ
, 0, 0, 0, 0,

κΛ

µ (κ+ µ)

)
.

3.3.2. Calculating R0 using the next generation matrix. Following the methodology of Amaya-
Muvdi [3] used previously, we will evaluate the subsystem of infected compartments:

dL
dt = = β (I1 + I2 + ξA)S − (η + µ)L

dI1
dt = p1ηL+ εI2 − (δ + γ + ω1 + µ) I1
dI2
dt = p2ηL+ δI1 − (ε+ γ + ω2 + µ) I2

dA
dt = (1− p1 − p2) ηL− (γ + µ)A.

From this subsystem, we will form the matrix of new infections appearance rates F(L,I1,I2,A), and the
matrix of transfer rates V(L,I1,I2,A), which in this case take the form:

F(L,I1,I2,A) = F =


FL

FI1

FI2

FA

 =


β (I1 + I2 + ξA)S

0

0

0

 ,

V +
(L,I1,I2,A) = V + =


V +
L

V +
I1

V +
I2

V +
A

 =


0

p1ηL+ εI2

p2ηL+ δI1

(1− p1 − p2) ηL

 ,

V −(L,I1,I2,A) = V − =


V −L

V −I1

V −I2

V −A

 =


(η + µ)L

(δ + γ + ω1 + µ) I1

(ε+ γ + ω2 + µ) I2

(γ + µ)A

 ,

V(L,I1,I2,A) = V = V −(L,I1,I2,A)−V +
(L,I1,I2,A) = V −−V + =


(η + µ)L

(δ + γ + ω1 + µ) I1 − p1ηL− εI2
(ε+ γ + ω2 + µ) I2 − p2ηL− δI1

(γ + µ)A− (1− p1 − p2) ηL

 .

We proceed to calculate the Jacobian matrix of V and F , evaluating them at the disease-free equilibrium
point for our case E0 =

(
Λ
κ+µ , 0, 0, 0, 0,

κΛ
µ(κ+µ)

)
:
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F =
∂Fi

∂xi
|E0 =


∂FL

∂L |(E0)
∂FL

∂I1
|(E0)

∂FL

∂I2
|(E0)

∂FL

∂A |(E0)

∂FI1

∂L |(E0)
∂FI1

∂I1
|(E0)

∂FI1

∂I2
|(E0)

∂FI1

∂A |(E0)

∂FI2

∂L |(E0)
∂FI2

∂I1
|(E0)

∂FI2

∂I2
|(E0)

∂FI2

∂A |(E0)

∂FA

∂L |(E0)
∂FA

∂I1
|(E0)

∂FA

∂I2
|(E0)

∂FA

∂A |(E0)



F =


0 βΛ

κ+µ
βΛ
κ+µ

βξΛ
κ+µ

0 0 0 0

0 0 0 0

0 0 0 0

 ,

V =
∂Vi
∂xi
|E0

=


∂VL
∂L |(E0)

∂VL
∂I1
|(E0)

∂VL
∂I2
|(E0)

∂VL
∂A |(E0)

∂VI1
∂L |(E0)

∂VI1
∂I1
|(E0)

∂VI1
∂I2
|(E0)

∂VI1
∂A |(E0)

∂VI2
∂L |(E0)

∂VI2
∂I1
|(E0)

∂VI2
∂I2
|(E0)

∂VI2
∂A |(E0)

∂VA
∂L |(E0)

∂VA
∂I1
|(E0)

∂VA
∂I2
|(E0)

∂VA
∂A |(E0)



V =


η + µ 0 0 0

−p1η δ + γ + ω1 + µ −ε 0

−p2η −δ ε+ γ + ω2 + µ 0

− (1− p1 − p2) η 0 0 γ + µ

 .

It is necessary to find the inverse matrix of V and then calculate the matrix product K = FV −1 called next
generation matrix. The basic reproduction number is defined as the spectral radius of the next generation
matrix [25, 3] that is, as the largest of the eigenvalues or dominant eigenvalue of the next generation matrix
[11]:

R0 = ρ
(
FV −1

)
= ρ (K) .

Calculating all the steps, we obtain the following basic reproductive number:

R0 =η

{
(1− p1 − p2) Λ

[
µ2 + (ε+ ω1 + ω2 + δ + 2 γ)µ+ γ2 + (ε+ ω1 + ω2 + δ) γ + (ε+ ω2)ω1 + ω2δ

]
βξ

(γ + µ) [µ2 + (ε+ ω1 + ω2 + δ + 2 γ)µ+ γ2 + (ε+ ω1 + ω2 + δ) γ + (ε+ ω2)ω1 + ω2δ] (η + µ) (κ+ µ)

+
(γ + µ)βΛ [(p1 + p2)µ+ (p1 + p2) γ + (ε+ ω2 + δ) p1 + p2 (ε+ ω1 + δ)]

(γ + µ) [µ2 + (ε+ ω1 + ω2 + δ + 2 γ)µ+ γ2 + (ε+ ω1 + ω2 + δ) γ + (ε+ ω2)ω1 + ω2δ] (η + µ) (κ+ µ)

}
,

R0 =
βηΛ

(η + µ) (κ+ µ)

{
p1 (ε+ δ + µ+ γ + ω2)

[(γ + µ+ ω1) (γ + µ+ ω2 + ε) + δ (γ + µ+ ω2)]

+
p2 (ε+ δ + µ+ γ + ω1)

[(γ + µ+ ω1) (γ + µ+ ω2 + ε) + δ (γ + µ+ ω2)]
+
ξ (1− p1 − p2)

(γ + µ)

}
.

(3.2)

3.3.3. Endemic equilibrium point. Theorem 3.2 (Existence of endemic equilibrium point). The
endemic equilibrium point:

E1 = (S∗, L∗, I∗1 , I
∗
2 , A

∗, R∗) ,

exists for the system (3.1) only if R0 > 1. Where S∗, L∗, I∗1 , I
∗
2 , A

∗, R∗ > 0.
Proof: Solving the system (3.1), we get another equilibrium point:

E1 = (S∗, L∗, I∗1 , I
∗
2 , A

∗, R∗) ,
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where

S∗ =
η + µ

βη
{

(ε+δ+µ+γ+ω2)p1
[(γ+µ+ω1)(γ+µ+ω2+ε)+δ(γ+µ+ω2)] + (ε+δ+µ+γ+ω1)p2

[(γ+µ+ω1)(γ+µ+ω2+ε)+δ(γ+µ+ω2)] + ξ(1−p1−p2)
(γ+µ)

} ,
(3.3)

L∗ =
Λ− (κ+ µ)S∗

η + µ
, (3.4)

I∗1 =

{
(ε+ γ + ω2 + µ) p1 + εp2

[(γ + µ+ ω1) (γ + µ+ ω2 + ε) + δ (γ + µ+ ω2)]

}
ηL∗, (3.5)

I∗2 =

{
(δ + γ + ω1 + µ) p2 + δp1

[(γ + µ+ ω1) (γ + µ+ ω2 + ε) + δ (γ + µ+ ω2)]

}
ηL∗, (3.6)

A∗ =
(1− p1 − p2)

γ + µ
ηL∗, (3.7)

R∗ =
γ (I∗1 + I∗2 +A∗) + κS∗

µ
, (3.8)

using (3.2) and (3.3) we deduce the equivalence

S∗ =
Λ

(κ+ µ) R0
,

furthermore, the equation (3.4) must satisfy the following inequality to be positive

Λ > (κ+ µ)S∗,

thus, as S∗ (κ+ µ) = Λ
R0

, we have

Λ >
Λ

R0
⇔ R0 > 1.

3.3.4. Local stability for disease-free equilibrium point. Linearizing the system (3.1), we get the
Jacobian matrix:

J =


−β (I1 + I2 + ξA)− (κ+ µ) 0 −βS −βS −βξS 0

β (I1 + I2 + ξA) − (η + µ) βS βS βξS 0

0 p1η − (δ + γ + ω1 + µ) ε 0 0

0 p2η δ − (ε+ γ + ω2 + µ) 0 0

0 (1− p1 − p2) η 0 0 − (γ + µ) 0

κ 0 γ γ γ −µ

 .

Considering the disease-free equilibrium point E0 =
(

Λ
κ+µ , 0, 0, 0, 0,

κΛ
µ(κ+µ)

)
, we can evaluate this point

in the Jacobian matrix:

J(E0) =



− (κ+ µ) 0 −β
(

Λ
κ+µ

)
−β

(
Λ

κ+µ

)
−βξ

(
Λ

κ+µ

)
0

0 − (η + µ) β
(

Λ
κ+µ

)
β
(

Λ
κ+µ

)
βξ

(
Λ

κ+µ

)
0

0 p1η − (δ + γ + ω1 + µ) ε 0 0

0 p2η δ − (ε+ γ + ω2 + µ) 0 0

0 (1 − p1 − p2) η 0 0 − (γ + µ) 0

κ 0 γ γ γ −µ


.

Let

A = κ+ µ, ,B = η + µ, C = δ + γ + ω1 + µ,
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D = ε+ γ + ω2 + µ, E = γ + µ, F =
βΛ

κ+ µ
, p = 1− p1 − p2,

where the characteristic polynomial is given by

p (λ) = (λ+ µ) (λ+A)
(
λ4 + (B + C +D + E)λ3 + ((B + C +D)E − F (p1 + p2) η + (B +D)C

+DB − pη Fξ − δ ε)λ2 + ((−F (p1 + p2) η + (B +D)C +DB − δ ε)E − F (Cp2 +Dp1+

δ p1 + ε p2) η + (DB − pη Fξ)C −Bδ ε−DFξ pη)λ+ (−F (Cp2 +Dp1 + δ p1 + ε p2) η−
B (−CD + δ ε))E + pη Fξ (−CD + δ ε)) = 0.

We denote the coefficients of the fourth-order polynomial as follow:

a4 = 1, a3 = B+C+D+E, a2 = (B + C +D)E−Fη (p1 + p2) + (B +D)C− δε− pηξF +DB,

a1 = [(B +D)C − Fη (p1 + p2)− δε+BD]E − Fη (Cp2 +Dp1 + δp1 + εp2) + (BD − Fηpξ)C
−Bδε− FDξηp,

a0 = [−Fη (Cp2 +Dp1 + δp1 + εp2)−B (δε−DC)]E + Fpηξ (δε−DC) ,

thus

p (λ) = (λ+A) (λ+ µ)
(
a4λ

4 + a3λ
3 + a2λ

2 + a1λ+ a0

)
= 0.

By the Routh-Hurwitz criterion, the disease-free point is locally asymptotically stable only if the eigen-
values of the Jacobian matrix have negative real parts. Then, the first two roots of the polynomial are λ1 =
−A < 0, λ2 = −µ < 0 and the other roots for the fourth-order polynomial have real negative parts if the co-
efficients of the characteristic polynomial satisfied: a0 > 0, a1 > 0, a2 > 0, a3 > 0, a4 > 0, a3a2 > a4a1

and a3a2a1 > a4a
2
1 + a2

3a0. From a0 > 0, it follows that R0 < 1. We get the following result:
Theorem 3.3 (Local stability of disease-free equilibrium point). The disease-free equilibrium point

E0 of the system 3.1 is locally asymptotically stable only if ai > 0(R0 < 1),∀i = 1, · · · , 4, a3a2 > a4a1

and a3a2a1 > a4a
2
1 + a2

3a0.

3.3.5. Local stability for endemic equilibrium point. Evaluating the endemic equilibrium point
E1 = (S∗, L∗, I∗1 , I

∗
2 , A

∗, R∗) in the Jacobian matrix:

J (E1) =


−β

(
I∗1 + I∗2 + ξA∗

)
− (κ + µ) 0 −βS∗ −βS∗ −βξS∗ 0

β
(
I∗1 + I∗2 + ξA∗

)
− (η + µ) βS∗ βS∗ βξS∗ 0

0 p1η − (δ + γ + ω1 + µ) ε 0 0

0 p2η δ − (ε + γ + ω2 + µ) 0 0

0 (1 − p1 − p2) η 0 0 − (γ + µ) 0

κ 0 γ γ γ −µ

 .

Let

A = κ+ µ, B = η + µ, C = δ + γ + ω1 + µ, D = ε+ γ + ω2 + µ,

E = γ + µ, F = β (I∗1 + I∗2 + ξA∗) , G = βS∗, p = 1− p1 − p2.

So that, the characteristic equation is the following:

p (λ) = (λ+ µ)
(
λ5 + b4λ

4 + b3λ
3 + b2λ

2 + b1λ+ b0
)
,

where:

b4 =A+B + C +D + E + F,

b3 =E (D + C +B + F +A) + (B + C +D)A+ (B +D + F )C + (B + F )D +BF−
G (p1 + p2) η −Gξ pη − δ ε,

b2 = ((B + C +D)A+ (B +D + F )C + (B + F )D +BF −G (p1 + p2) η − δ ε)E+

((B +D)C +BD −G (p1 + p2) η −Gξ pη − δ ε)A+ ((B + F )D −Gη p2 −Gξ pη +BF )C

+ (−Gη p1 +BF −Gξ pη)D −Bδ ε−G (δ p1 + ε p2) η − Fδ ε,
b1 = (((B +D)C +BD −G (p1 + p2) η − δ ε)A+ ((B + F )D −Gη p2 +BF )C + (BF−

Gη p1)D −Bδ ε−G (δ p1 + ε p2) η − Fδ ε)E + ((−Gη p2 +BD −Gξ pη)C−
(Gη p1 +Gξ pη)D −Bδ ε−G (δ p1 + ε p2) η)A+ (−CD + δ ε) (Gξ pη −BF ) ,

b0 = (((−Gη p2 +BD)C −DGη p1 −Bδ ε−G (δ p1 + ε p2) η)A− FB (−CD + δ ε))E+

AGξ pη (−CD + δ ε) .
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By the Routh-Hurwitz criterion, since λ1 = −µ, the other eigenvalues are negative or have negative
real parts if the following inequalities are satisfied:

bi > 0,∀i = 0, 1, 2, 3, 4, b3b4 > b2, b2b3b4 + b0b4 > b22 + b1b
2
4,

(b1b4 − b0)
(
b2b3b4 + b0b4 − b22 − b1b24

)
> b0 (b3b4 − b2)

2
.

Under these conditions, the endemic equilibrium point is locally asymptotically stable. From the con-
dition b0 > 0 we obtain that R0 > 1. We get the following result:

Theorem 3.4 (Local stability of the endemic equilibrium point). The endemic equilibrium point E1

of the system 3.1 exists if R0 > 1 and it is locally asymptotically stable only if bi > 0,∀i = 0, · · · , 4, (R0 >

1), b3b4 > b2, b2b3b4 + b0b4 > b22 + b1b
2
4 and (b1b4 − b0)

(
b2b3b4 + b0b4 − b22 − b1b24

)
> b0 (b3b4 − b2)

2.

4. Simulations.

4.1. SLIAR model. The ordinary differential equation solutions for the model were simulated using
the initial conditions vector (S0, L0, I0, A0, R0) = (1988, 0, 12, 0, 0), and following parameters:

Parameter Meaning Value Reference

β Transmission rate 0.001 (person×day)−1 Assumed

δ Attenuation rate for asymptomatics 0.5 non-dimensional [4, 18]

κ Transition rate from latent to infected infectious 0.526 day−1 [4, 18]
1
κ Average duration of incubation 1.901 days Estimated

p Probability of passing from latent to symptomatic
infected

0.667 non-dimensional [4, 18]

η Recovery rate for asymptomatic 0.244 day−1 [4, 18]
1
η Average duration of infection, time in which an

asymptomatic infected person is contagious
4.098 days Estimated

f Fraction of recovered symptomatic 0.96 non-dimensional Assumed

α Removal rate for symptomatics 0.244 day−1 [4, 18]
1
α Average duration of infection, time in which an

symptomatic infected person is contagious
4.098 days Estimated

Table 4.1: SLIAR model parameter values

Where the value of the recovery rate f was calculated from the COVID-19 fatality rate reported for
Peru [21] of 4%, that is, (1− f) = 0.04. Considering these parameters we can obtain a basic reproductive
number as follows:

R0 = S0β

(
δ (1− p)

η
+
p

α

)
= (1988) (0.001)

(
0.5 (1− 0.667)

0.244
+

0.667

0.244

)
= 6.791.

According to the computer simulations we obtain the figure 4.1a and it can be deduced that the max-
imum number of symptomatic infected is 492 individuals on approximately day 12. Also, the maximum
number of latent and asymptomatic infected people are about 500 and 245 individuals on day 9 and 11,
respectively.

From the phase plane presented (Figure 4.1b), it shows that as the number of susceptible people
decreases, the infected reach a maximum and then descend. This is because at the beginning, there was
enough population to spread the epidemic, but once they reached a maximum number of infected, they
begin to decline since there is no longer enough susceptible population to infect, giving way to the end of
the outbreak.
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Figure 4.1: Solution curves and phase plane for disease-free case with R0 = 6.791

For the simulation sensitivity, one parameter was varied by some magnitude while the others were
not, and the most sensitive parameters were selected (i.e., when varying a parameter by a small magnitude,
it causes a significant change in the dynamics of the model solutions). For this, the MATLAB R2017a
software was used, and different parameter values were computed, focusing on the mild infection curve
as the main epidemiological aspect to consider, due to the large number of people in this epidemiological
class, the figure 4.2 was obtained.

Regarding the transmission rate ”β” (Figure 4.2a), we observe that it is extremely sensitive since varia-
tions in the order of 10−3 cause the peak of the infected curve to shift. In this case, at a higher transmission
rate, we reach the peak of infection faster and it is more pronounced. In the case of the removal rate of
symptomatic individuals ”α” (Figure 4.2b), we note that as it decreases, the epidemic outbreak will take
place with greater speed and intensity.
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Figure 4.2: Sensitivity results for β and α

4.2. SLIIAR model. The initial conditions used to simulate the long term behavior of the solutions
are contained in the following vector (S0, L0, I10 , I20 , A0, R0) = (1988, 0, 12, 0, 0, 0).

In order to calculate β, we considered S0β = β, it means the number of susceptible individuals that
one infectious person can contact to transmit the disease per time unit. For instance, from Li et al. [16] we
can use the rank parameter values in the interval β ∈ [1.06, 1.19] days−1 at the beginning of the outbreak,
considering in our case S0 = 1988, so the rank of β is [5.33, 5.99]× 10−4 (person×day)−1.

The recruitment rate rank was assumed, taking into consideration a small population size according to
our initial population (2000 people). The vaccination rate ”κ”, measures the vaccination speed, that is, the
number of vaccinated people in proportion to the total size of the population per day. For example, if the
health system can vaccinate 3000 people per day in a population of 100000, we get a 0.03 vaccination rate,
it means that 3% per day of susceptible population is vaccinated. We assume a uniform distribution in the
interval [0.4, 0.6] to perform the sensitivity analysis for the attenuation rate for asymptomatics ”ξ”.

The complete list of parameters is the next:
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Parameter Meaning Value Reference

Λ Recruitment rate [1, 20] person×day−1 Assumeda

β Transmission rate [5.33, 9.99]×10−4 (person×day)−1 Assumedb

ξ Attenuation rate for asymptomatics 0.51 non-dimensional [1]

η Transition rate from latent to infected
infectious

[0.1724, 0.2222] day−1 Estimated

1
η Average duration of incubation [4.5, 5.8] days [15, 20]c

p1 Probability of passing from latent to
mild symptomatic

[0.10, 0.83] non-dimensional Estimatedd

p2 Probability of passing from latent to
severe symptomatic

[0, 0.2] non-dimensional [1]

1−p1−p2 Probability of passing from latent to
asymptomatic

[0.17, 0.9] non-dimensional [1, 2]

γ Recovery rate [0.0270, 0.3125] day−1 Estimated
1
γ Average duration of infection, time

in which an infected person is con-
tagious

[3.2, 37] days [1, 15, 2,
30]

ω1 Lethality rate for mild symptomatics [0.0032, 0.01] day−1 [2, 28]e

ω2 Lethality rate for severe symptomat-
ics

[0.000094, 0.18] day−1 [1]

µ Per capita natural death rate [3.1, 5.144]× 10−5 day−1 Assumedf

δ Transition rate from mild to severe
symptomatic

[0.2, 2.0] day−1 Assumed

ε Transition rate from severe to mild
symptomatic

[0.10, 0.33] day−1 Assumed

κ Vaccination rate [0.001, 0.1] day−1 Assumedg

R0 Basic reproduction number [1.5, 6.49] non-dimensional [17]
aBased on 10 person×day−1 (Considering S0 = 367804 ) [28], and 271 person×day−1 (Considering
S0 = 8998505 ) [27]. b Other reported values are 7.38×10−7 (person×day)−1 [28], [0.62, 3.11]×10−8

(person×day)−1 [27], {4.085, 4.811, 6.184, 7.059} days−1 [12].c Even though we considered this
rank, other values have been reported like 6.4 days [14], [4.1, 7] days [1], 7 days [27, 24],2 days (for
average latency period) [1] . d Considering p1 as a complementary probability to p2 and (1−p1−p2).
e Based on the disease-induced death rate. f Based on: 2.74× 10−5days−1 [28], 3.01× 10−5days−1

[27]. gBased on the intervals [0.001; 0.05] [26, 23].

Table 4.2: SLIIAR model parameter values for COVID-19

In the figure 4.3, the solution curves in the disease-free equilibrium case (R0 = 0.6699) show that the
outbreak peaks in about 25 days and tend to be controlled in about two months (Figure 4.3b). Moreover,
the phase planes (Figures 4.4a, 4.4b) indicate that the infected population tends to disappear and there is a
remaining susceptible population. Furthermore, in the endemic case (R0 = 2.0097), infected people reach
a peak around the same time as in the previous case (Figure 4.5), but this peak is higher (Figure 4.5b),
and the phase planes demonstrate the persistence of infected populations, whose trajectories converge to the
endemic equilibrium point (red point). In both cases (Figures 4.4a, 4.6a), the phase planes describe that
while the susceptible population is decreasing, the latent curve grows; after that, both populations reach
a maximum and decrease immediately, but at the end of the dynamic, a growth in susceptible curve takes
place by the recruitment effect.
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Figure 4.3: Solution curves for disease-free case with R0 = 0.6699.
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Figure 4.4: Phase plane curves for disease-free case with R0 = 0.6699.
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Figure 4.6: Phase plane curves for endemic case with R0 = 2.0097.

The simulation sensitivity was achieved for each parameter respect to the mild symptomatic population
in the endemic case (R0 = 2.0097). We identified that the solution curve is highly sensitive to the trans-
mission rate β (caused by variations in the order 10−4, Figure 4.7b), and less sensitive to the recruitment
rate Λ (Figure 4.7a). In these cases, if we increase the parameter values, the mild symptomatic population
reaches a higher peak in less time. Nevertheless, increasing the vaccination rate κ (Figure 4.8a) and the
recovery rate γ (Figure 4.8b) produces a smaller peak in less time.

Taking figure 4.7 into consideration, we observe that decreasing the transmission rate or the recruitment
rate, causes a decrease in endemic cases in the long term. Due to this, controlling the spread by reducing
the number of encounters between people (decreasing β) and the entry of new individuals into the system,
for example, with focused quarantines (low Λ values), can help reduce the number of patients to be treated
and the overload of health systems. From figure 4.8, it is possible to observe that increasing the daily
vaccination rate (increasing κ) as well as decreasing the infectivity time of the disease (increasing the γ
value) with pharmacological treatments or biological agents, produce a lower number of patients.

According to the figure 4.9, the vaccination rate ”κ” has the highest absolute PRCC index (0.87567),
and this parameter also has an inverse proportional relationship (negative value) with respect to R0. It
means that an increment in the vaccination rate results in a reduction in the R0 value, so the epidemic can
decrease its severity. Furthermore, we discovered that R0 is highly sensitive and positively correlated to the
recruitment rate ”Λ” (PRCC index: 0.84617), implying that an increase in the input flux will have a greater
effect on R0 and the severity of an outbreak.The ”γ” recovery rate is also highly (PRCC index absolute
value: 0.75271) and negatively correlated with R0, implying that decreasing the average infection time (i.e.
increasing the recovery rate) will reduce both R0 and the spread of the outbreak.

Parameters such as the transmission rate (β), the probability to become mild and severe infected (p1,
p2), and the attenuation rate for asymptomatic (ξ) are positively correlated, all of them with PRCC values
below 0.5; while parameters like the mortality rate for severe symptomatic (ω2), the transition rate from
mild to severe symptomatic (δ) and the natural death rate (µ) have an inverse proportional relationship with
R0 (with PRCC absolute values less than 0.5).
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Figure 4.7: Sensitivity results for Λ and β in the endemic case
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Figure 4.8: Sensitivity results for κ and γ in the endemic case
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5. Conclusions. The SLIIAR model with vital dynamics, vaccination, and symptomatological treat-
ment was proposed. The disease-free equilibrium point exists and is locally asymptotically stable if R0 < 1,
whereas the endemic equilibrium point exists and is locally asymptotically stable if R0 > 1. The simula-
tions show that transmission and recruitment rates are important targets for outbreak control because they
reduce the R0 value. Furthermore, if the vaccination speed is increased, a vaccination scheme with total
immunity can reduce R0. Taking some public health measures like social distancing, quarantines, or a fast
vaccination strategy, an outbreak can be efficiently controlled. The treatment does not appear to be very
significant in the model dynamics, but the ulterior development of an efficient and rapid treatment effect
can change this scenario. A global stability analysis can be developed and some hypotheses like partial
immunity or reinfections can be considered in future work.
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