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Abstract
A review of the different mathematical methodologies for calculating energy efficiency in boilers was carried 
out in this work, considering both the methods included in standards and the proposals and applications 
published in research works. The classification was delimited in analytical methods, mechanistic modeling, and 
empirical modeling; moreover, the main equations for each of the methodologies are presented, which allows 
building a compilation that is expected to be useful for a first approach to the subject. It is displayed that those 
mechanistic models are used to evaluate subsystems or specific cases that require a high level of detail, while 
analytical models are used to make a first approximation to the systems described, and empirical models stand 
out in terms of their use at the industrial level if there is access to a starting database to adjust them.

Keywords: mathematical modeling; analytical methods; mechanistic modeling; empirical modeling; review; 
boiler efficiency.

Resumen
En el presente trabajo se realizó una revisión de las diferentes metodologías matemáticas de cálculo de eficiencia 
energética en calderas, considerando tanto los métodos incluidos en normas como las diferentes propuestas y 
aplicaciones publicadas en trabajos investigativos. Se delimitó la clasificación en métodos analíticos, modelados 
mecanicistas y modelados empíricos. Se exponen las principales ecuaciones para cada una de las metodologías, 
lo que permite construir una compilación, que se espera que sea de utilidad para una primera aproximación a 
la temática. Se evidencia que los modelos mecanicistas se emplean para evaluar subsistemas o casos puntuales 
que requieren alto nivel de detalle, mientras que los modelos analíticos se emplean para realizar una primera 
aproximación a los sistemas descritos, y los modelos empíricos destacan en cuanto al uso a nivel industrial, 
siempre y cuando se tenga acceso a una base de datos de partida para ajustarlos.
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1. Introduction
Boilers are energy exchange systems that use the heat generated by burning a fuel, transferring it to a stream of 
water. The resulting stream of hot water or steam is used in industrial processes, heating, or for the generation 
of electrical energy employing turbines. There are two types of boilers in terms of the distribution of the heat 
exchange process: pyro-tubular, where the hot flow goes through the tubes, and the water is in the casing, and 
aqua-tubular, in which the water goes through the tubes and the hot flow through the casing (Kerr; Blair, 2011).

 Boilers can use different fuels. Fossil fuels, such as coal, oil derivatives, and natural gas, are the most used 
(Taler; Dzierwa; Taler; Harchut, 2015), but there are also boilers fueled by industrial waste or biomass, although 
these present a lower performance than those that use fossil fuels (Dedovic et al., 2012; Kær, 2004). Boilers are 
very important equipment in the industrial sector and represent a significant part of energy consumption. 
For example, in Colombia, the most relevant aim uses of energy in industry correspond to indirect heat (e.g., 
steam) with 44 % of the total energy (Unidad de Planeación Minero Energética [UPME]; Institute for Resource 
Efficiency and Energy Strategies [IREES]; TEP Energy; Corpoema, 2019). 

 Energy efficiency is a way of measuring the utilization of the energy available in the fuel used (Chen 
et al., 2021). Considering the large amount of energy used in steam production in industry, improvements in 
boiler energy efficiency can lead to large savings. In Colombia, the energy efficiency potential in this sector by 
implementing the Best Available Technologies and practices worldwide (BAT) increases by 5 to 33 % (UPME et 
al., 2019). Depending on the measurements available in a boiler, the frequency which both the efficiency and the 
type of efficiency to be calculated varies, there are several types of mathematical modeling and computational 
implementations that can be used to calculate efficiency (Amell-Arrieta; Vélez-Rueda, 2003; Valencia-Ochoa; 
Rojas; Campos-Avella, 2019; Tarasevich; Tepljakov; Petlenkov; Vansovits, 2020; Zhou; Deng; Turner; Claridge; 
Haberl, 2002). 

 Typically, the investigation focuses on solving specific problems, and the different reviews found in 
the literature address those problems. García Sánchez, Chacón-Velasco, Fuentes-Díaz, Jaramillo-Ibarra, and 
Martínez-Morales (2020) performed an exhaustive review of the state of the art but limited to CDF modelling. 
Barma et al. (2017) describe the implication of boiler’s energy efficiency in the environmental impact of the 
energy sector, and how an improvement in their efficiency would generate considerable reductions in the 
consumption of fossil fuels and CO2 emissions (Barma et al., 2017). 

 In other reviews, Kim, Lee, Tahmasebi, Jeon, and Yu (2021), and Sankar, Santhosh-Kumar, and 
Balasubramanian (2019) focus on recent methodologies related to computational or numerical simulation. 
Savargave and Lengare (2018) make a comparison between several Artificial Intelligence (AI) methodologies, 
but none of them exposes all the existing methodologies. A consolidation from a mathematical standpoint of 
those methodologies provides a better view of which one of them is most suitable for a given application. The 
purpose of this paper is to review the different methodologies for determining the energy efficiency of boilers, 
classify and describe them and mention their suitability for different potential applications.

2. Methodology
The existing information was collected and analyzed between the end of 2020 and the beginning of 2021. 
Google Scholar was the basic tool for the search, taking advantage of the simultaneous access to searches in 
different specialized databases, such as Web of Science and Scopus. In addition, some tools were incorporated 
in specialized databases to broaden the search in an efficient manner, such as the exploration of similar articles, 
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and articles that cite the article viewed. The search equation included a date, must words, and possible words. 
The date was initially set on 2020 to have access to recent works but eventually was unset to visualize all the 
existing literature and complete the full picture. Must word in our case were “boiler efficiency” and “review” 
in the first approach, and then “boiler”, “efficiency”, and “boiler efficiency”. Finally, the search combinations 
of possible words used were “energy modeling”, “mathematical energy modeling”, “mathematical modeling”, 
“performance modeling”, and “energy performance”. 

 The search combinations made it possible to identify more than 200 articles, which were selected 
using four levels of filtering to determine the complete analysis of the reference: (i) reading the title, as a first 
approximation to the content of the article; (ii) determining the year of the reference, prioritizing recent articles; 
(iii) reviewing the journal where it was published, to discard those that appear in pseudo-scientific journals and 
other unreliable sources; and (iv) reading the abstract of the article. After the above filtering process, a total of 
112 articles were reached; they were read and fully analyzed to perform a final filter, to then select 64 articles 
that constitute the desired state-of-the-art review.

2.1. Methodologies for the calculation of energy efficiency in boilers
Once the different methodologies for boiler energy efficiency calculation have been reviewed, according to 
common characteristics, they can be grouped into analytical methods, mechanistic models, and empirical 
methods (Rusinowski; Stanek, 2007; Savargave; Lengare, 2018). Figure 1 presents the classification of 
methodologies.

Figure 1. Classification of existing methodologies for calculating energy efficiency.
Source: own elaboration.
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Analytical methods
This category includes methods that determine the efficiency of a part of the boiler or the entire one, based on 
models constructed from energy balances, mass balances, exergy balances, and heat transport equations. The 
two most important methods in this category are both those that allow the calculation of the so-called direct 
efficiency and indirect efficiency, which are standardized methods in the Performance Test Code 4 (PTC 4) of 
The American Society of Mechanical Engineers ([ASME], 2013). 

Direct method
The direct method calculates the efficiency by comparing the energy present in the steam output stream and the 
useful energy present in the fuel used, as shown in Equation 1 (Lang, 2009). 

                                                             
                                                                              (1)

 In Equation 1, ɳc is the direct boiler efficiency, QW is the energy in the steam stream, and QC is the energy 
available in the fuel. To determine the useful energy present in the fuel, it is necessary to know its heating value 
(Kaewboonsong; Kuprianov; Chovichien, 2006). The gross calorific value (GCV) is used, which includes the 
heat lost by vaporization of the water in the products (Amell-Arrieta; Vélez-Rueda, 2003).

 Determining efficiency from the direct method requires accurate and direct measurements of multiple 
variables. The main variables required are the inlet water flow, the outlet water flow, the secondary outlet flows 
(blowdowns and auxiliary streams), the pressures and temperatures of the different streams, the fuel flow, and 
the gross calorific value of the fuel. The calculation of the energy in the steam stream is carried out through 
Equation 2.
                                                    

                                                                               (2)
      

 In Equation 2, HEz1 is the specific enthalpy of the fluid entering the system, HSz2 is the specific enthalpy 
of the fluid leaving the system and MrSz2 is the mass flow leaving the system. The energy available in the fuel is 
calculated according to Equation 3.

                                                                                      (3)

 In Equation 3, GCV is the specific gross calorific value, and MrF is the fuel mass flow rate (ASME, 2013). 
GCV is calculated according to Equation 4.

                                                                                         (4) 
 
 Mi, %(Xi)mole and GCVi are molar mass, mole fraction, and GCV of the individual components, and MWF 
is the molar mass of the fuel.

Indirect method
The indirect method calculates the energy losses in the boiler and subtracts them from efficiency of 100 %. 
Equations 5 and 6 present the calculation of the indirect efficiency.

                                                                                          (5 

                                                                                          (6)
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 In Equations 5 and 6, ɳc is the indirect boiler efficiency, and qn corresponds to the different loss terms to 
be considered in the calculation. For example, the heat loss in the flue gas is calculated according to Equation 7.

                                                                                    (7)

 Where mFG is the gas mass flow at the outlet, CPFG is the specific heat of the fuel, and  is the am-
bient temperature.

 The number of loss terms can vary according to the level of detail of the modeling. Bujak performed 
modeling with nine loss terms, including some particularly associated with the use of coal or coal crushing 
as fuel (Bujak, 2008). Rehan, Habib, Elshafei, and Alzaharnah (2018) used modeling with losses from flue gas, 
moisture in air and fuel, partial combustion of coal in CO, and radiation and convection. ASME PTC 4.1 uses 
the following losses: dry flue gas leaving, moisture in the flue gas, moisture in the combustion air, radiation at 
the boiler surface, and blowdown (ASME, 2013). Heuristic considerations are sometimes used to assign values 
to some of the loss terms. For example, Qu, Abdelaziz, and Yin (2014) assigned constants 0.015, 0.04, and 0.005 
to the last three-loss terms listed previously, based on the 2008 PTC 4.1 (Retirado-Mediaceja et al., 2020). The 
largest energy losses are considered to occur in combustion, heat exchanger, and flue gas (Barma et al., 2017; 
Trojan, 2019).

 For the indirect efficiency calculation, measurements are required to calculate the loss terms included 
in the modeling, which implies the need of measuring flue gas temperature, GCV, excess air, thermal properties 
of flue gas components, temperature, pressure, and ambient humidity (Apaza; Delgado; Garcilazo; Obregón, 
2017). 

 The flue gas temperature is a consequence of energy that ends up heating a non-used stream, although 
economizers are sometimes used to recover part of this energy. Calculation of the energy lost in the flue gas 
requires a calculation of the calorific value (Cp) of the stream, which in turn depends on the Cp of the components 
of the stream. These Cp can be calculated with Equations 8, 9, 10, 11, and 12, where the Cp is given in kJ/kmol*K, 
for temperatures given in K.

                            

 The specific heat of the gas corresponds to Equation 13.

                                                                                                                         (13) 

 The  is converted from molar to mass basis using the molecular weight of the gas.  

 Excess air is the additional amount of air to that stoichiometrically required, which is added to 
ensure complete combustion. The minimum amount of air is calculated according to the stoichiometry of 
the combustion reactions, considering that the air contains 21 % oxygen; nevertheless, in practice, complete 
combustion is not achieved by supplying the minimum air, because the mixture between air and fuel is not 
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perfectly homogeneous, to the low residence time in the chamber, and kinetic issues of the reactions. It may cause 
incomplete combustion, which results in the generation of carbon monoxide (CO), and negatively influences 
efficiency. However, excess air also affects energy efficiency, as the incoming air is heated, consuming energy.

 For the calculation of the Air-Fuel Ratio (AFR), a generic combustion reaction is shown in Equation (14).

                                                                                                                                                      

 Where ai, ni and mi  are the stoichiometric coefficient and amount of moles of carbon and hydrogen for 
the i-th species in the fuel, respectively. The theoretically required amount of nitrogen (air) is given by σ in 
Equation 15:

                                                                                  (15)

 To calculate the excess air required, the term βO2 is added in products for the combustion reaction, so 
that the moles of nitrogen, σ, change to Equation 16. 

                                                                                         (16)

Exergetic balance
Exergy is the maximum amount of work available from a flow and is calculated by bringing the flow to a 
thermodynamic equilibrium state with reference (ambient) conditions. An exergy balance simultaneously 
assesses the quantity and quality of energy associated with the process (Behbahaninia; Ramezani; Lotfi 
Hejrandoost, 2017). It can also be interpreted as a measure of the energy irreversibilities associated with this 
process since unavoidable energy losses are not energetically equivalent (Lozano; Valero, 1993). 

 Behbahaninia et al. (2017) performed a parametric analysis of destruction and efficiency concerning 
reference conditions T = 25 °C and P = 1 bar (Lang, 2009), they found that for an increase in temperature, the 
destruction increases and the efficiency decreases. The calculation associated with exergy can be divided into 
subsystems: exergy destruction in the boiler, convection losses, destruction in the heater, loss in the emitted gas, 
loss due to CO formation, and loss due to unburned fuel.

 Like energy efficiency, the greatest exergy loss occurs at the burner, followed by the heat exchanger. 
The blowdown is not considered a loss, but a product of exergy as it depends on the quality of the water and not 
on the efficiency of the boiler. Inside the air mixer, there is no energy loss, but there is an exergy loss associated 
with mixing and heat transfer. Kinetic and potential energy are not considered in these balances. Losses due to 
radiation and incomplete combustion are negligible for a properly functioning system but should be regarded 
if the burner or insulation is considered to warrant it. Briefly, the balance could be reduced to product exergy, 
fuel exergy, losses, and destruction (Behbahaninia et al., 2017; Dorotić; Pukšec; Duić, 2020; Farhat; Zoughaib; El 
Khoury, 2015).

           To obtain the exergy losses, mass, energy, and exergy balances must be established, leading to Equation 17.

                                                                                                           (17)

 ĖF  is fuel exergy, Ėp  is exergy in products, ĖL,i terms are exergy losses and ĖD,j terms represent exergy 
destruction. ĖF  contains 3 components, as shown in Equation 18.

                                                                                                            (18)
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	 Ėf  is the chemical exergy of the fuel consumed, ĖAS  is the exergy of the atomized stream, and Ea,11 is the 
physical exergy of the air. 

	 Ėp can be calculated according to Equation 19, where mi are the mass fluxes of the different components 
and εi are the exergies of the components.

                                                                                                                                              (19)

 Among the exergy losses, ĖL1  is that associated with the stack gas, according to Equation 20.
                                                      

                 (20)

 MG is the equivalent molecular mass of the gas, product of the molar mass of the components multiplied 
by their mole fraction, and  is the mass of gas measured at the stack exit. ĖL2 is the exergy associated with the 
unburned fuel, which for the case of gaseous fuels is assumed to be zero. ĖL3 is the exergy associated with the 
incomplete combustion emission and CO formation. 

 For the case of ĖL4, associated with exergy dissipation through the boiler surface, it is calculated with 
Equation 21 (ASME, 2013).

                                                                                                     (21)
 
 Where T0  is the ambient temperature and TS is the boiler surface temperature. 

 As for the exergy destruction terms, two aspects are considered: one is associated with the air heater, 
which is not considered for all types of boilers. The other corresponds to the exergy destroyed in the boiler, 
according to Equation 22 (Behbahaninia et al., 2017).

                                                                                                       (22)

 A direct exergy efficiency can be calculated using the exergy losses according to Equation 23.

                                                                                                        (23)

 Alternatively, the indirect exergy efficiency can be calculated with Equation 24.
 

                                                                                                       (24)

LMTD and Ɛ-NTU
The Logarithmic Mean Temperature Difference (LMTD) is used to estimate the temperature associated with 
heat transfer in heat exchangers. Thus, this approach can be used to calculate the efficiency of the heat exchange 
subsystem in a boiler. The LMTD is a logarithmic approximation of the temperature difference between the 
heat exchanger inlets and outlets; its value is directly proportional to the heat transferred and can be calculated 
from Equation 25.

                                                                                                           (25)

Where ΔTA is the temperature difference between the two streams at point A and ΔTB is the temperature 
difference at point B. 

.
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 The number of units transferred (NTU) method is an alternative for estimating the heat transfer rate 
in heat exchangers when not all the data needed to do so through LMTD are known. The NTU method can be 
applied regardless of the flow distribution, either parallel or counterflow (Trojan, 2019), according to Equations 
26, 27, and 28.

                                                                                                       (26)

                                                                                                        
                                                                                                    

                                                                                                       (27)

                                                                                                        
                                                                                                        (28) 

 Where Ċmin is the minor between steam and flue gas flow, k is the transfer constant and A is the heat 
exchange surface area (Modliński; Szczepanek; Nabagło; Madejski; Modliński, 2019). 

Thermographic analysis
The thermographic analysis is e to establish radiation losses, using a thermal camera to record boiler surface 
temperatures. This allows estimating heat transfer losses in the walls of the boiler, radiation losses in different 
areas of the boiler, and detecting insulation problems. This analysis is important insofar as radiation losses are 
energy that is directly dissipated to the environment, diminishing the efficiency of the boiler.

 The way to perform the analysis is based on the sum of the surface areas where the temperature is above 
the expected. The analysis also can be carried out by determining what percentage of the surface area has such 
unacceptable or worrying temperatures. These situations can be caused by poor burner adjustment or poor 
insulation. The interpretation of the histogram is done through areas; the total area with a certain temperature 
is directly proportional to the histogram height for the same temperature (Jiménez-Borges; Madrigal; Lapido; 
Vidal, 2016; Serway; Jewett, 2008). Figure 2 illustrates the process of loss analysis by thermography.

Figure 2. Boiler front surface, thermographic camera shot, and histogram with the corresponding distribution. 
Source: Jiménez-Borges et al. (2016).
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2.2. Mechanistic Models
Mechanistic models divide a complex system into subsystems or parts. To understand the behavior of the 
components of a system, mechanistic models assume that a system can be understood by analyzing how the 
different parts perform together and separately. Typically, mechanistic models are associated with a physical, 
tangible system whose components are solid and visible. 

FEM
The Finite Element Method, FEM, is a numerical method employed in the solution of partial differential equations 
associated with engineering and physics problems. It is used in the design of industrial applications and the 
simulation of complex physical systems (Tognoli; Najafi; Rinaldi, 2018). The development of a FEM algorithm 
to solve a problem requires a four-stage development: (1) formulation of the problem in a variational form, (2) 
division of the domain of independent variables into finite elements, (3) projection of the original variational 
problem onto the vector space and (4) numerical computation of the solution of the system of equations. These 
steps allow representing a differential calculus problem with a linear algebra problem. The problem is posed 
on a vector space of non-finite dimension; nevertheless, it can be solved approximately by finding a projection 
onto a subspace of finite dimension (Zhang; Yang; Hu; Lu; Wu, 2013).

 To address the FEM methodology, a case study presented by Tognoli et al. (2018) will be discussed, 
in which the boiler is mainly divided into the gas side and water/steam side. For the steam side, the optimal 
value of NF was determined to be 100 and of Nj to be 20, considering the relationship between error and 
computational cost. The distribution of the partitioning system can be seen in Figure 3. 

 For each small system, a mass balance is performed, corresponding to inputs, outputs, consumption, 
and generation. Under the assumption that the surfaces behave as gray bodies, the Dittus-Boelter correlation is 
used for the convective part. Correlations are considered to model the heat exchange between the flue gases in 
the hearth and the water in the casing. To simulate the water-steam system (casing), three main flows must be 
considered: mf is the water feed flow, is the steam outflow and mp is the blowdown outflow. These assumptions 
generate several equations, which are used in conjunction with the main energy balance shown in Equation 29.

                                                                                                                           (29)

 Consequently, the main efficiency of the boiler is calculated according to Equation 30.

                                                                                                                             (30) 

 Where j corresponds to the simulation time interval, from 1 to the end of the simulation. The length of 
the time intervals remains constant (dt). 

. .
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Figure 3. Structure of a FEM system for a boiler.
Source: Tognoli et al. (2018).

CFD
Computational Fluid Dynamic Modeling (CFD) is a complex methodology that models in detail the behavior 
of liquids and gases from their physicochemical properties, generating a three-dimensional model of the 
fluids, as shown in Figure 4 (Hasini; Yusoff; Shuaib; Boosroh; Haniff, 2009). The physicochemical properties 
are deeply linked to the temperature of the streams, so heat transfer, either by convection or radiation, is 
successfully simulated. However, it requires vast computational power to generate such complex systems, so 
their applicability is often limited to case studies or academia (Díez; Cortés; Campo, 2005; Tognoli et al., 2018). 

 Accordingly, when the level of detail required warrants a CFD simulation and there is no need for 
real-time calculations, CFD can be applied for a specific subsystem. Among the subsystems typically modeled 
with this methodology are the heat exchanger and the convective heat transfer zone (Milićević; Belošević; 
Crnomarković; Tomanović; Tucaković, 2020; Modliński et al., 2019). The detailed CFD calculation is based on 
simulations of previously designed programs such as CFX, CFD ACE+, or CFD GEOM (to generate the spatial 
distribution mainly).

Figure 4. Example of CFD simulation. (a) Flow pattern. (b) Velocity distribution.
Source: Hasini et al. (2009).
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 The success is to show 3D modelings of the different systems (Abroshan, 2020). So the geometric 
dimensions of what is to be simulated, the flow direction, and the different implications of the process as such 
are chosen. Some of the parameters such as gas composition, velocity, temperature profiles for the different 
flows, mass balances, energy balances, and the different assumptions are taken as an input when modeling the 
system, which is provided directly to the software (Gutiérrez-Ortiz, 2011; Hasini et al., 2009; Math et al., 2021).

2.3. Empiric methods
Empirical models are not characterized by a specific type of mathematical expression but are based on 
fitting various modeling approaches to available data (Qin; Li, 2020). This category includes models whose 
mathematical presentation depends on the input and output variables of interest chosen and the modeling 
approach selected.  

Non-lineal mathematical modeling
This category includes modeling approaches in which a non-linear model is fitted. It aims to find the most 
influential variables in the system, the output variables of interest, and generate a model that relates them 
(Abubakar; Bello; Ejilah, 2020; Ivanitckii; Sultanov; Kuryanova, 2021; Zhitarenko; Bejan; Ostapenko, 2020). For 
example, in one study, from a 3E (Efficiency, Economy, Environment) projection, basic energy calculations are 
handled, and fuel energy availability is calculated (Zhao; Duan; Liu, 2019). On the other hand, Rusinowski and 
Stanek (2007) describe a methodology that, based on the DIN 1942 standard, raises the material and energy 
balances, thus generating a database that is subsequently used as input for a neural network. Bujak (2008) 
defines which terms of the energy balance must be included in the mathematical model due to their influence 
on the efficiency so that the efficiency can be estimated with fewer variables.

Multiple Linear Regression
This type of regression is used to relate two or more independent variables, called regressors, to a dependent 
variable, as shown in Equation 31.

                                       
                                                                                                              (31)

 Where the regression coefficients βk denote the magnitude of the effect that the regressors Xki has on the 
independent variable Yi, βo  is the independent term of the model and ϵi is the random error term of the model. 
The multiple linear regression model can also be represented in matrix form, according to Equations 32, 33, 34, 
35, and 36.

                                                            

 The model parameters can be fitted using several methods. The most popular is the least-squares one, 
in which the set of parameter values is chosen that minimizes the sum of the squared differences between the 
values estimated by the model and the experimental data (Granados, 2016). 
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Principal Component Analysis
Principal Component Analysis (PCA) is a descriptive statistical technique that allows obtaining a model with 
a smaller number of variables (characteristics or regressors), trying not to lose information from the original 
model. Suppose that there is a sample with n individuals with m variables Fj measured for each one. Using 
PCA, several factors p < m are sought that approximately explain the value of the m variables for everyone. The 
method to apply the PCA starts from the correlation matrix, considering the value Fj of each of the m random 
variables. As shown in Equation 37, the value of these variables is written for each of the individuals in the form 
of a matrix.

                                                                                             (37)

 Equation 38 presents the sets Mj that can be considered random samples for Fj.

                                                                                              (38)

 From the m x n data corresponding to the m random variables, a sample correlation matrix is constructed, 
defined as shown in Equations 39 and 40.

                                                                                                (39)
                                                          

                                                                                                (40)

 

                                                                                                  (41)

 Due to the above property, these m eigenvalues are called the weights of each of the m principal 
components. The mathematically identified principal factors are represented by the eigenvector basis of the 
matrix R. Then each of the variables can be expressed as a linear combination of the eigenvectors or principal 
components (Forkman; Josse; Piepho, 2019). Bahadori and Vuthaluru (2010) use PCA to set a model that defines 
the boiler’s energy efficiency concerning excess air at the combustion.

Artificial Intelligence
In this section, the different methodologies associated with artificial intelligence are grouped. In all cases in 
this category, the model output variable is a measure of boiler energy efficiency. The application of artificial 
intelligence techniques seeks to determine efficiency using different or partial information, regarding the 
measurements required for an analytical calculation of efficiency. Some of the methodologies combine artificial 
neural networks with evolutionary computing algorithms to determine the model parameters. These algorithms 
are based on imitating nature behaviors, such as bee colony, firefly algorithm, and genetic algorithms. The 
main application in the calculation of energy efficiency in boilers is modeling from databases, which allows the 
generation of equations or algorithms that, with a few input variables, can estimate efficiency quite accurately 
(Tang; Li; Kusiak, 2020). 

Since the correlation matrix is symmetric then it is diagonalizable, and its eigenvalues satisfy Equation 41.
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Artificial Neural Networks
Artificial Neural Networks (ANN) are modeling methods inspired by the functioning of neurons. This system 
is divided into layers: an input layer and one or more intermediate hidden layers that generate the variables of 
interest (output), as shown in Figure 5.  

Figure 5. The basic structure of an ANN.
Source: own elaboration.

 The connection between neurons in each of the layers is mediated by a parameter Θ or weight, a value 
obtained through training (fitting to data) of the network (Ding; Liu; Xiong; Jiang; Shi, 2018; Irwin; Brown; 
Hogg; Swidenbank, 1995; Rusinowski; Stanek, 2007). Once the network training (generation of coefficients) 
from a database is done, the network is considered ready and can be applied to generate predictions (Saha; 
Shoib; Kamruzzaman, 1998). 

 In terms of notation, ai
(j) can be understood as the activation of unit i in layer j of the network, and θ(j) 

as the matrix of weights controlling the mapping of the function from layer j to layer j +1. Thus, a system with 3 
input variables, a hidden layer with 3 units, and an output variable would be represented by Equations 42 , 43, 
44, and 45.                                     

 

 Where hθ is the final output of the neural network, i.e., the efficiency. 

 Usually, multiple training iterations are required to find the neuron weight that gives the smallest 
difference between the desired value, zj, and the network output, the main objective being to reduce the 
quadratic error of the response, as shown in Equation 46.

                                                  
          (46)
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 The selection of the network topology (number of layers and number of elements in each layer) is 
not a problem with a unique solution. A suitable topology depends on the complexity of the problem and 
the size of the training set. In general, it is advisable to start with a simple network and increase the degree of 
complexity (Lawrence; Giles; Tsoi, 1996). Too few nodes will lead to a high error for the system as the predictive 
factors may be too complex for a small number of nodes to predict. On the other hand, too many nodes will 
adapt too much to the training set, presenting problems of overfitting, i.e., the network will be useless for data 
moderately different from the training data (Bengio; LeCun, 2019). Maddah, Sadeghzadeh, Ahmadi, Kumar, 
and Shamshirband (2019) model efficiency as a function of temperature steam and flow rate of the generated 
steam with 93 inputs, using 70-15-15 distribution to training, validation, and test. The structure of the resulting 
ANN is 2-5-1 with an error of 0.8 %.

ELM 
Extreme Learning Machine, ELM, is a hidden-layer feed-forward ANN in which no initial values are needed, 
since the input weights and biases are generated randomly, increasing the randomness of the system concerning 
others in which initial values are fixed. It has a fast learning algorithm and good generalization capability and 
easily overcomes problems such as local minimum and stopping criteria. Suppose there are N samples (xi, 
ti), where xi = [xi

1,xi
2,…,xi

n] is an n-dimensional vector of the i-th sample and ti = [ti
1,ti

2,…,ti
L] is the target 

vector. Having W as an input weight of dimensions M x n, B as hidden layer bias of dimensions M x 1, and	β as 
the output weight of dimensions L x M. The output (T) of the ELM with M hidden neurons can be calculated 
according to Equations 47, 48, 49, and 50.

                                                               

 Then the output weight β is determined by Equation 51 analytically.

                                                                                                                                                         (51)

 Where H+ is the generalized Moore-Penrose inverse of H. If the condition of rand(H) = M is satisfied, 
Equation 51 can be rewritten as Equation 52.

                                                                                                                                                         (52)

 Li, Niu, Liu, and Zhang (2012) use ELM to obtain an empirical relation between combustion efficiency 
and operational variables of boilers.

Artificial Bee Colony (ABC) Algorithm
The Artificial Bee Colony (ABC) algorithm is used to optimize the input weights and biases of the hidden 
layers. It is based on the behavior of three classes of bees: worker, spectator, and scout bees. Each worker bee 
is associated with a single food, which implies that the number of worker bees is equal to the number of food 
sources. Workers make a journey to the food and return to the hive, when they no longer find the food, they 
become scouts and must search for a new one. 
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 The exploration process is related to the ability to independently search for a global optimum, while 
the operation process is related to the ability to apply existing knowledge to search for better solutions. This 
algorithm was employed to optimize the ELM model (Li; Niu; Liu et al., 2012).

Back Propagation
The Back Propagation (BP) algorithm is the most widely used for training ANN. The main advantage of BP is 
that it considers all the weights for each layer, avoiding redundant computations that could arise in intermediate 
terms for networks with some complexity in their topology (Kljajić; Gvozdenac; Vukmirović, 2012). To apply 
BP, the delta rule of BP can be followed, in which the values of differences zc(δ	=	zj - yj) are determined based 
on the values of the next layer and the weights in connection with the hidden layer and the next layer. The BP 
process starts with the calculation of δ for the output layer and then going backward, the errors are propagated 
throughout the entire neural network. The problem of minimizing the objective function can be solved by the 
gradient method described by Equation 53.

                                                                                                       (53)

 This equation is applied in the training process to determine the values of the neuron weights. The 
learning process begins with the successive introduction of operational points from the learning set into the 
inputs of the neural network. Then, the delta values (errors) are calculated for the output layer, and the calculated 
errors are propagated backward through the network, and finally, the weights are corrected. This sequence is 
repeated for all points in the training set. After this process the entire network weight matrix is determined, 
leaving the system ready for simulation. If the error is less than expected the system is ready, otherwise the 
process is repeated from training (Rusinowski; Stanek, 2010).

Firefly Algorithm
The Firefly (FF) Algorithm is used to train and optimize an existent ANN based on the idea that fireflies are 
attracted based on the intensity of brightness; thus, an initial input value is assigned, and a specific brightness is 
set to the objective function (Savargave; Lengare, 2018). It needs input and output values for training the ANN. 
It presents higher accuracy than BP for nonlinear correlations (Savargave; Lengare, 2017).

 The FF follows two main rules: (1) the landscape of the objective function evaluates the brightness 
of fireflies, and (2) the brightness and attraction of fireflies are proportional to each other, and both decrease 
with increasing distance. Since the attraction of the fireflies is directly proportional to the intensity of the light 
emitted by the other firefly, the changes in attraction β concerning distance r can be calculated by Equation 54.

                                                                                      (54)

 Where β0 represents the attraction when r = 0. The motion of firefly i toward the glow shown by firefly 
j can be evaluated with Equation 55.

                                                                                        (55)

 Where the second term is formed due to the attraction between fireflies, and the third term is a random 
motion with αt ϵ

t
i representing the number selected in a random way using the uniform Gaussian distribution 

for some time t, y αt is the randomization parameter. When β0  = 0, the firefly chooses the random motion, and 
if γ	= 0 a minimum is obtained (Savargave; Lengare, 2017).
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Genetic algorithm
The Genetic algorithm (GA) is based on the process of natural selection, emulating methods of nature such as 
mutation or crossover of genotypes, thus searching for solutions to certain problems. It is often used to optimize 
problems containing function-free models that cannot be optimized by normal methods. Zhang, Ding, Wu, 
Kong, and Chou (2007) use GA to optimize an ANN of NOx emission and efficiency.

 The first step in the implementation of any genetic algorithm is the generation of the initial population. 
Each member of the population will be a binary string of length L corresponding to the problem encoding, 
which mimics a genotype or chromosome. Then, each string is evaluated according to the evaluation function, 
or objective function, which dictates the performance concerning a specific set of parameters. According to the 
value of the objective function, reproductive opportunities are assigned, whereby a selection process occurs 
that mimics that which occurs in sexually reproducing populations of living beings. The process of generational 
change is illustrated in Figure 6.

Figure 6. Generational change in the genetic algorithm.
Source: Whitley (1994).

 After recombining, the mutation operator can be applied. For each bit in a string, the mutation occurs 
with a probability of less than 1 %. In other words, 1 bit of a string is changed for every 100 existing bits 
in case of a probability of 1 %. Once the selection, recombination, and mutation process are completed, the 
new population can be evaluated. The process of evaluation, selection, recombination, and mutation forms a 
generation in the execution of a genetic algorithm (Whitley, 1994).

Data Reconciliation 
It consists of taking data that present a certain error, seeking to reduce it. Reconciliation is usually used to 
correct errors in data obtained when making energy and mass balances, which normally are used as input 
of the empirical methods and AI applications (Szega, 2020). Errors in the measurement results may be due to 
the inaccuracy of the equipment, failures, or poor signal processing. Data reconciliation allows to have higher 
reliability in the measurements of process variables, to evaluate the accuracy of the adjusted results of the 
measurements, and to decrease the uncertainty of the measurements taken (Szega; Nowak, 2015). The data 
reconciliation problem for steady-state processes represents an optimization problem with constraints, as 
shown in Equation 56.
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 Subject to:

                                                                                       

                                                                                                     (56)

 Nmed is the number of measurable variables; N is the number of equality constraints, in this case, the 
number of equations; Ndes is the number of inequality constraints;  Nunmed is the number of unmeasurable 
variables; ρ(εi) is the objective function; f is the equality constraint, in this case, the mass or energy balance; g is 
the inequality constraint imposed on the problem; and z is the unmeasured variables of the process, estimated 
with reconciliation.

 In the objective function, ε represents the relative error between measurement and reconciliation as 
shown in Equation 57, with xm = the measurable process variable xr = the reconciliation rate for the process 
variables and σ	= the standard deviation of the measurements.

                                                                                                   (57)

 As to define a performance criterion for function selection, Equation 58 represents aspects such as 
convergence and relative error reduction. The first aspect indicates when the function should be employed in 
real-time applications; the second refers to the ability of the function to serve in error detection (de França; de 
Oliveira-Júnior; de Santana-Souza, 2016).

                                                                                                    (58)

 Where REMi is the relative error measure and RREi is the reconciled relative error, as shown in Equations 
59 and 60.

                                                                                                    (59)

                                                                                                    (60)

 
 Where xi is the true range; xi

m
 is the measured range and xi

r is the reconciled range.

ANFIS
ANFIS (adaptive neuro-fuzzy inference system) is a kind of adaptive multilayer feed-forward network. It 
integrates the linguistic expression function of fuzzy inference with the self-learning characteristic of an ANN. 
The ANFIS system consists of two inputs and one output as shown in Figure 7, with two fuzzy if-then rules, 
which adjust the constants. It resembles having two networks overlapping with an initial classification that 
allows modeling for the same system multiple inputs of the same variable. This adjustment allows the fuzzy 
systems to learn from the data they are modeling (Li; Niu; Xiao, 2012; Wang et al., 2021). This network is normally 
used over other models to improve the accuracy as sawn in Li, Niu, Liu et al. (2012) with an ELM application.
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Figure 7. Architecture ANFIS.
Source: Li et al. (2012).

 The fuzzy if-then rules are: (1) if x1 is A1 and x2 is B1 then f1= p1 x1 + q1 x2 + r1, and (2) if x1 is A2 and x2 is B2  
then f2= p2 x1 + q2x2 + r2, where p1, q1, p2, q2, r1 and r2 are constants.

RSM
Response Surface Methodology (RSM) is used to train neural networks by exploring the relationship between 
input variables and one or more output variables. RSM methodology is a collection of statistical and mathematical 
techniques applied to create empirical models. Its purpose is to optimize the output variable concerning the 
input variables. Regarding boilers, the most common model is one of two input variables and one output 
variable that fits a typical model with two input variables for the RSM methodology, as shown in Equation 61.

                                                                                                                           (61)

 Where, ci are constant coefficients to be found to solve the model, in this case, efficiency as an objective 
function, and flow rate and temperature as independent variables (Maddah et al., 2019).

3. Discussion
The main objective of the exposed methodologies is to estimate the boiler’s efficiency, applying models (AI or 
mathematical modeling) that allow minimizing fuel consumption while maximizing steam production. On 
the other hand, some models focus on estimate the concentration of NOx pollutants, important to validate 
environmental regulations. There are studies that, using methods such as thermographic analysis, examine the 
different boiler’s energetic losses and their possible mitigation. Also, some studies analyze boiler’s behavior 
at a macro level to define the maximum efficiency and the best combination of variables that improve their 
performance. 

 Bringing the discussion to the industrial application, it is worth evaluating the use of the different 
models in real-time estimation of efficiency. Mechanistic models are normally carried out in academic practice 
and their application at an industrial level is quite complicated, which is why empirical models emerge as an 
alternative, within which, historically, mathematical modeling stands out. 

 Taking into account that boilers are complex systems composed of several sub-systems, although most 
of the methodologies presented analyze the whole system, some of them specialize in those sub-systems, this 
is the case of NTU & LMTD that focuses on the heat transfer in the boiler’s or economizer’s exchanger; the 
thermographic analysis focuses on energy losses due to heat transfer to the environment, and is usually used to 
determine the integrity of the boiler insulation; and FEM, which is mechanistic modeling of the heat exchange 
between fluids. 
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 Mathematical modeling is one of the most used in the industry since it does not require great 
computational capacity, but given the recent advances in this area, lately, it has been active work on the 
implementation of AI algorithms, it can relate as they constitute more than half of the exposed methodologies, 
where neural networks stand out, and many of the methodologies are destined to optimize or improve the 
precision of existing models, building hybrid models, which are no other than combinations of two or more 
methods. For example, Li, Niu, Liu et al. (2012) use ELM to obtain empirical relation, ANFIS to improve the 
accuracy of the model, and ABC to optimize the ELM model. 

 No method allows us to apply without data, that’s why at the end measurements of the different 
operating variables of the boiler are needed, or, failing that, reliable historical data, from which the mass and 
energy balance, i.e., analytical methods, provide an efficiency estimation. But, measuring the variables has an 
associated cost, so that is the main purpose of the empirical models, for a relatively small set of variables, even 
a pair, define the efficiency behavior. 

 Once the model is adjusted, there are certain applications to improve efficiency, most common is to 
change the input variables to obtain, theoretically, a better efficiency, but with the existent technology, this 
process is a problem of optimization, giving certain values of the input variables that can be changed in practice 
to improve the boiler’s performance.

4. Conclusions
The detailed review of the methodologies for the calculation of energy efficiency and boiler performance shows 
that the choice of the appropriate methodology depends on the specific case being treated. However, there is 
a strong preference for analytical models for a first approximation, and for systems to be described accurately, 
mechanistic models are more commonly used.

 Analytical models are the main basis for efficiency calculations at the industrial level, since, with a 
starting database, exceptional results are achieved by describing the behavior of the variables of interest, such 
models can be based on regressions or artificial intelligence algorithms. 

 Artificial intelligence is a field in permanent development so that different methodologies and 
improvement proposals to the existing ones are emerging, where a combination of them is possible to optimize 
more and more the adjustment to the systems to be described, covering their shortcomings among them.

 The main contribution of this paper is to generate a broad review of the existing methodologies and 
expose them mathematically, so that, when reviewing the article, regarding specific needs for estimate boiler’s 
energy efficiency (data availability), it is possible to have a good approximation of which methodology works 
best in each case. 

5. Future directions
Future work in boiler’s efficiency modeling could be the application in a real-time efficiency estimation, in 
which the empirical methods or AI algorithms stand out. Another field of research that can be developed is 
the implementation of methods that automatically identify possible changes in variables to improve energy 
efficiency, and that closely compare these possible changes to produce suggestions whose implementation is 
feasible, guiding operators’ decision making. Also, it is important to achieve better reliability and accuracy 
achieved in the models and to model the energy efficiency using fewer input variables. 
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