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ABSTRACT 
Watching the presentation of a large-scale network is very important for network state 
tracking, performance optimization, traffic engineering, anomaly detection, fault 
analysis, etc. In this paper, we try to develop deep learning technology to solve the 
defect problem of tensor filling based on inner product interaction. To solve the 
limitations of the existing tensor-filling algorithms, a new neural tensor-filling (NTC) 
model is proposed. NTC model can effectively type the third-order communication 
between data landscapes through outer creation operation. It creates the third-order 
interaction mapping tensor. On this basis, the interaction between local features of the 
3D neural network is studied. In this paper, another fusion neural tensor filling (Fu 
NTC) model is proposed to solve the problem that the NTC model can only extract the 
nonlinear complex structural information between potential feature dimensions. In the 
framework of the neural network, the NTC model and tensor decomposition model 
share the same potential feature embedding. It can effectively extract nonlinear 
feature information and linear feature information at the same time. It achieves higher 
precision data recovery. 
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1. INTRODUCTION 
The rapid development and wide application of modern multimedia technology and 

information science. We need a higher level of technology to achieve data collection, 
storage, processing, and analysis. Massive data brings convenience to our life. Its 
scale is increasing. Its structure is becoming more and more complex. The data we 
collected may be incomplete. In addition, in the recommendation system, we also 
need to use the known data to infer the unknown data[1]. It can also be transformed 
into the problem of missing data recovery.

The estimation of missing values from the very limited information of an unknown 
matrix has attracted extensive attention in many fields. In practical applications, the 
target matrix is usually low rank or approximately low rank. For example, natural 
image data has a low-rank structure [2]. Therefore, a hypothesis is often used in the 
matrix filling: the matrix to be restored as a low-rank or near-low-rank structure [3-5]. 
The above problem is called the rank minimization problem [6]. Because the rank 
function is nonconvex and discontinuous. The solution to the above problem is the 
NPHard problem [7]. The original algorithm which can calculate the lowest rank 
solution of all instances needs at least an exponential time of matrix dimension [8]. In 
reference [9], Wei et al. Proposed two heuristic algorithms for approximate RMP 
based on convex optimization. And it proved that the kernel norm (i.e., the sum of 
singular values). The heuristic method is optimal in the sense of minimizing the 
convex envelope of rank functions. Subsequently, a series of theoretical studies were 
carried out to prove that. The kernel norm is a good convex proxy for the minimization 
of rank functions [10]. Yang et al. [11] proved that the kernel norm is the most compact 
convex lower bound of the rank function. And the relationship between kernel norm 
and matrix rank is similar to that between the L1 norm and l0 norm of the vector. 
Therefore, many scholars have implemented the rank kernel function as a surrogate 
matrix. The fixed-point extension and approximate singular value decomposition 
algorithm for solving the rank minimization problem of large-scale matrices [12] 
proposed by Qiao et al. Ahn et al. Provide a boundary for the number of elements 
needed to reconstruct a low-rank matrix. It is optimal in the range of a small numerical 
constant and a logarithmic factor [13-15]. In addition, some studies have shown that, 
under certain constraints, the minimum kernel norm can be filled by partial 
observation elements of the matrix [16].

The kernel norm minimization problem was first proposed. One of the most 
advanced semi-definite programming algorithms, to solve the problem. The algorithm 
is based on the interior point method. It needs to solve a large number of linear 
equations to calculate Newton's direction. When the matrix scale is large. The 
algorithm is not suitable. Ai proposed the singular value threshold algorithm (SVT) for 
the approximate solution of the kernel norm minimization problem in 2010. It proved 
that the method is suitable for large-scale matrix-filling problems [17].In addition, 
Saeedi et al. Proposed a fast approximate gradient descent method for solving kernel 
norm regularized linear least squares problems [18].In practical applications, the 
above-mentioned kernel norm algorithm and some other kernel norm algorithms may 
only obtain suboptimal solutions. A large number of iterative converge is required [19]. 
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An important reason for this is that the kernel norm cannot approximate the rank 
function well in practical applications. Specifically, in the rank function, all non-zero 
singular values are treated equally. The kernel norm is to add all singular values. It 
leads to different singular values in the process of optimization. In addition, the 
theoretical requirements of heuristic kernel norms are difficult to meet in practical 
applications [20]. Therefore, some kernel norm extension algorithms have been 
proposed. Zhang et al. Used joint minimization of Schatten PNorm and LPNorm is 
used to recover the incomplete noise matrix. And it is applied to actual scenarios such 
as collaborative filtering and social network link prediction in the recommendation 
system [21]. CHEN et al. Proposed to use truncated kernel norm to better 
approximate matrix rank function. The truncated kernel norm is obtained by 
subtracting the sum of the largest singular values from the kernel norm [22]. At the 
same time, a new matrix-filling algorithm is proposed to minimize the truncated kernel 
norm of the matrix. At the same time, three effective iterative algorithms are 
developed to solve the truncated kernel norm minimization model: TNNRADMM、
TNNRAPGL、TNNRADMMAP. The first type (TNNRADMM is an alternative multiplier 
method (ADMM). Firstly, according to a new ADMM update rule, the adaptive penalty 
parameter is used to accelerate the convergence speed. Among them, the ADMM 
method has also been widely used in image processing, such as non-local low-rank 
regularization [23] compressed sensing and matrix decomposition based on dual 
kernel norm for occluded image restoration [24], imprecise low rank and structural 
sparse decomposition [25]. Subsequently, the TNN algorithm has been successfully 
applied in many fields by many scholars. Liu et al. Proposed a matrix-filling TNN 
algorithm based on weighted residuals [26]. Liu proposed a more efficient TNN 
algorithm to deal with the matrix filling of high dynamic range images [27]. In addition, 
the reference research [28] further shows that TNN can be used as a better 
alternative to the rank function.

In the field of computer vision and signal processing, a large number of 
multidimensional data need to be analyzed and processed. In particular, 
multidimensional arrays (i.e., tensors) provide a natural representation of these data. 
Tensor is considered a generalization of a multivariate linear matrix or vector. Since 
tensor is a mathematical model which can establish multi-dimensional data structure. 
The study and research of tensors have attracted great attention. In recent years, 
more and more people use it in computer vision [29], machine learning [30], signal 
processing [31], pattern recognition [32], and other fields. However, due to technical 
limitations, the tensors we observe in real life are usually incomplete. It makes the 
application of tensors a challenging problem.

Because of previous studies, the goal of this paper is to recover the original data 
from partially lost observation matrix and tensor data. And apply them to practical 
applications, such as spectral data recovery, image/video data, text analysis, multitask 
learning, recommendation system, etc.
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2. NEURAL TENSOR FILLING MODEL FOR PRECISE 
NETWORK MONITORING

In the modern data center, there are tens of thousands of servers. And the network 
scale is constantly expanding. Network monitoring, monitoring equipment, and 
communication costs will be a huge challenge. To effectively reduce the measurement 
cost. It measures the network performance data of some nodes and paths. It 
reconstructs other unmeasured networks. Therefore, in the case of sampling. How to 
reconstruct and infer the unmeasured network performance data. And how to ensure 
the push. The accuracy of measurement has become a prominent problem in network 
monitoring.

2.1. DESCRIPTION OF THE NTC MODEL
To solve the limitations of the existing tensor filling algorithms. A new neural tensor 

filling (NTC) model is proposed. The multi-layer architecture is adopted. And the 
output of the previous layer is used as the input of the next layer to model the source 
node target node time interaction. Figure.1 is the overall framework of the NTC 
model. From bottom to top, there are five main functional modules: input sheet, 
inserting layer, interactive mapping sheet, feature abstraction layer, and prediction 
layer.

 
Figure 1. The overall framework of the NTC model 
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At the lowest input sheet, there are three indicator vectors , , . The source 
node , target node , and moment hole  are described separately. Next, the 
embedded sheet is fully associated. It designs the source node, target node, and time 
hole onto a feature direction respectively. 

  (1) 

Among them, , , . The potential characteristic 
matrix represents the source node, target node, and time respectively. ,  and  is 
a unique hot code vector indicating the source node , the target node , and the time 
slot , respectively. ,  and  is the regularization coefficient.

2.2. DETAIL OF THE NTC MODEL
Inspired by this, the input and embedding layers of a neural network are designed 

to obtain a potential eigenvector of the source node, target node, and time slot. Given 
the ID of the source node , target node , and slot , their embedding vectors can be 
obtained by the formula ,  and :

  (2) 

Among them, ,  and The unique hot ID indication 
vectors of the source node , target node , and slot  are represented respectively. 
On top of the embedded layer, 3D interactive mapping is recommended to represent 
the interaction between potential features.

  (3) 

Among them,  was an . In the 3D measurement of , each of its 
values  could be calculated. This was the main project of the NTC model to 
safeguard the authenticity of the NTC model's data speculation. The main 
compensations of using this 3D communication map to express the communication 
between features were:

1. Compared with the traditional inner product operation, the outer product of the 3D 
interactive mapping tensor can capture the interaction between dimensions more 
effectively. Because the embedded dimensions of the inner product are 
independent of each other. 

2. The 3D interaction and map structure were good for high-level relevant models. And 
they could be regarded as a kind of tornado in the depth. He could use the powerful 
3D CNN to learn the complicated structure concealed in the nursing data. So that 
he could restore the missing data more accurately. 

To extract the potential information from the net checking data, a simple key was to 
use the MLP net. Although MLP was hypothetically certain to have a robust aptitude to 
express information. It had the shortcoming of a large number of arguments that could 
not be ignored.

ei ej ek
i j k

min
A,B,C,ΘC

f ,ΘM
f

∑
i, j,k∈Ω

(xijk − f (eiA, ejB, ekCΘC
f , ΘM

f ))
2

+ α∥A∥ + β∥B∥ + γ∥C∥

A ∈ RI×R B ∈ RJ×R C ∈ RK×R

ei ej ek
i j

k α β γ

i j k
ai bj ck

ai = eiA, bj = ejB, ck = ekC

ei ∈ R1×I ej ∈ R1×J ek ∈ R1×K

i j k

ε = ai o bj o ck

ε R × R × R R
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To solve the shortcomings of MLP, it is suggested to use 3D CNN to extract hidden 
features on a 3D interactive map.3D CNN stacks layers in the way of local connection 
and limits distribution. It uses much fewer limits than the MLP network. It makes it 
possible to build a hidden 3D CNN model than an MLP network [33-34]. The hidden 
3D CNN typically can better learn the high-order correlation between embedded 
dimensions, thus bringing higher accuracy for the recovery of missing data.

In the design of 3D CNN, there were L roll-up layers and a full connect sheet. The 
input of 3D CNN was the 3D communication map . It seemed that he 
was not going to give up. In each layer, there were T-packing cores (or filters). On 
each floor, the three-dimensional operation of the crumple core and the Re LU was 
performed first. And then a deviation was added. Using the re Lu as the activation 
function, the three-dimensional transformation was carried out. And a new one was 
obtained. The structure design of 3D CNN was to cutting potential topographies from 
the 3D communication map. It was achieved through the three-dimensional operation 
between the purification cores. The various layers of the input Hebe. Because one of 
the two kinds of cores could only excerpt one kind of topographies from the input 
Hebe. To excerpt more kinds of topographies. T (t) and 1 (more than one) of the 3D 
CNN were used. Therefore, there were T feature maps on each layer of the tornado. 
And each of them stored the data extracted by a core of the tornado. In the simulation 
test, how the number of the spiral core T would affect the performance was displayed. 
And the data was set according to the test.

In each convolution sheet, the input of the first sheet can be expressed as a . 
When l = 1, its contribution is a 3D interactive mapping tensor . After convolution, 
the i-th feature chart extracted from the L-th convolution sheet can be expressed as 
follows:

  (4) 

Among them,  represents the i-th chin record extracted on the L-th complication 
sheet.  represents the convolution operation,  represents deviation. The 
term of the i-th typical diagram of the layer l can be obtained by the following formula: 

 

Among them,  means the item of the 3D communication chart.  
means the deviation term of the i-feature map of level l.  was the scope of the spiral 
core beside the source node, the target node. And the time direction.  and  is 
the  term of the  layer of the  sheet.

The latter sheet of the NTC model was the prediction sheet. It accepted the 
production of the previous chin-extracting sheet. Then the final deduction data was 
generated. On this floor, he first inputs into a single-sheet observation device. And 
then used the Sigmoid function σ (·) to calculate :

ε ∈ RR×R×R

εl−1

εl−1

Sl
i = ReLU (Gl

i ⊗ El−1 + bl)
Sl

i
⊗ bl (x, y, z)

eli
xyz = ReLU(bli + ∑lR−1

p=0 ∑lR−1llR−1
q=0 ∑li

r=0 gli
pqre0

(x+p)(y+q)(z+r)), l = 1

eli
xyz = ReLU(bli + ∑T−1

m=0 ∑lR−1
p=0 ∑lR−1lR−1

q=0 ∑lim
r=0 gpqre(l−1)m

(x+p)(y+q)(z+r)), l > 1

e0
xyz (x, y, z) bli

lR
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pqr glim
pqr

(p, q, r) i l

̂xijk
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  (6) 

Among them,  a vector is a weight.  is the expansion vector of 
3D CNN output. B is a deviation term.

2.3. THEORETICAL ANALYSIS
The NTC model is assumed to have a half-barbican structure. The convolution 

kernel is 2×2×2.

  (7) 

The theorem is proved by mathematical induction.

The input layer maps the tensor (, each of its entries) for 3D interactively . It 
encodes the third-order interaction between embedded dimensions . In this 
case, .

When , the size of the convolution kernel is . convolution layer 
captures 2 of the input 3D interactive mapping tensor. It can capture the sixth-order 
features of the input layer. The entries in the first feature map of the first convolution 
layer depend on the eight elements of the previous layer, namely, the 3D interactive 
mapping tensor.

When , the feature can be captured. When , the convolution layer 
 captures 2 of the convolution layers . The feature of the local 

region, and the term of the i-th feature map of the  layer . The interaction 
between embedded dimensions  can be captured. 
Where the interaction between embedded dimensions  is new 
to the  level of convolution. And  can be inherited from the previous 
level .

 

Figure 2. Example of high-order feature extraction

̂xijk = σ (wT
outs + b)

WR
out ∈ RR s ∈ RR

k1 = 3(l + 1)

exyz
[x; Y; Z ]

l = 0, K0 = 3
l = 1 2 × t wo × 2 L

Kt = 1 Kt = 1
T + 1 t × t wo × 2

(T + 1) e(t+1)i
xyz

[x; X + 1; Y; y + 1; Z; Z + 1]
[x + 1; y + 1; Z + 1]

(T + 1) [x; Y; Z ]
t .t+1 re, K(M203) = 3 + KT = 3 + 3(T + 1) = 3((T + 1) + 1)
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CP disintegration was the most common way to solve the problem. It was widely 
studied. It showed how to interpret the CP division as an exception to the NTC model. 
The internal product function was used as the interaction function in the CP 
disintegration. The internal product of , , and  were the elements on the 
diagonally opposite side of the , , and . If one wanted to express the standard 
CP decomposed model with the NTC model, he needed to do the following:

1. By deleting the feature extracting layer based on 3D CNN, the three-dimensional 
interaction map layer in NTC was connected with the prediction layer directly.

2. The diagonally opposite three-dimensional interaction map was unfolded, forming 
the input of the prediction layer, and then projected the input to the prediction layer.

 (8) 

Among them,  was the unfolded arrow,  and h respectively showed the 
activation functions and parameters of the prediction layer. To put it bluntly, if  
constant functions of out and h were set to 1. So the revised NTC has filled in the 
model based on the CP disintegration.

2.4. 2.4 EXPERIMENTAL SIMULATION OF THE REAL DATA SET
Represent raw data as  about . To process the data more 

effectively, we use the inverse function of . They represent matrix and variance 
respectively

  (9) 

Performance index: in the experimental simulation, four evaluation indexes are 
used to evaluate the performance of the NTC model: training error ratio ( ). 

  (10) 

  (11) 

  (12) 

  (13) 

ai bj CK
ai bj CK

̂xijk = aout (hT h)
V aout

aout

χ ∈ RI×J×K xijk
σ

xijk = μ + 2σer f inv (2xijk − 1)
SER

SER =
∑i, j,k∈Ω (xijk − x̂ijk)

2

∑i, j,k∈Ω x2
ijk

TER =
∑i, j,k∈Ω̄ (xijk − x̂ijk)

2

∑i, j,k∈Ω̄ x2
ijk

MAE =
1
m ∑

i, j,k∈(Ω+Ω̄)

xijk − x̂ijk

RMSE =
1
m ∑

i, j,k∈(Ω+Ω̄)
(xijk − x̂ijk)

2
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 and  represent the monitoring data tensors respectively . The  
original monitoring data and predictive monitoring data. Only the training error ratio 

 was calculated for the sampled data set. And the test error ratio  was 
calculated for the non-sampled data set. The mean absolute error  and root 
mean square error  was calculated for all data items. 

 
(a) 

 
(b) 

Figure 3. The influence of spatial dimension (R) on potential features 

Effects of CNN mode. In this comparative experiment, in addition to 3D CNN, 
2dcnn was implemented to extract potential features of missing data. As expected, 3D 
CNNs have much better recovery performance than 2D CNNs. The convolution of 3D 

xijk ̂xijk χ (I, J, K )

SER TER
MAE

RMSE
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CNNs in the depth direction explicitly captures higher-order features of network 
monitoring data in time. 2D CNNs cannot achieve in such an unambiguous way. 

Table 1. Recovery performance of Abilene 

Table 2. Recovery performance of ws-dream 

2.5. REAL NETWORK PLATFORM EXPERIMENT
To more effectively verify the accuracy of the proposed NTC model for missing data 

recovery of a network monitoring system, the NTC model will be applied to the 
network monitoring center in the later stage of the experiment. The algorithm of the 
NTC model will be integrated into the network monitoring platform. Large-scale actual 
network deployment will be carried out. Then, experiments are carried out in a real 
network environment to evaluate, verify and improve the proposed algorithm.

It is proposed to adopt the software. The hardware-integrated platform of high-
performance data packet collection and intelligent analysis. It can realize high-speed 
packet capture and obtain the latest data sets of the backbone network and service 

Model
TER                   MAE

1 % 3 % 5 % 7 % 9 % 11 % 1 % 3 % 5 % 7 % 9 % 11 %

CP-als 0.99 0.98 0.96 0.95 0.94 0.93 0.55 0.55 0.54 0.53 0.52 0.52

CP-nmu 0.96 0.98 0.96 0.95 0.93 0.93 0.5 0.5 0.54 0.53 0.52 0.51

CP-opt 0.99 0.98 0.96 0.95 0.94 0.93 0.55 0.55 0.54 0.53 0.52 0.52

No-CNN 1.99 1.12 0.11 0.07 0.06 0.05 0.89 0.51 0.54 0.53 0.52 0.52

No-OUT 0.05 0.04 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.01 0.01 0.01

NTC 0.01 0.03 0.03 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01

Advance 21 27 31 32 33 33 26 36 40 43 43 44

Model
TER                   MAE

1 % 3 % 5 % 7 % 9 % 11 % 1 % 3 % 5 % 7 % 9 % 11 %

CP-als 0.99 0.97 0.95 0.93 0.91 0.90 0.52 0.51 0.50 0.49 0.48 0.48

CP-nmu 0.99 0.97 0.95 0.93 0.91 0.90 0.52 0.51 0.50 0.49 0.48 0.48

CP-opt 0.99 0.97 0.95 0.93 0.91 0.90 0.52 0.51 0.50 0.49 0.48 0.48

No-CNN 2.85 0.95 0.72 0.60 0.40 0.25 1.20 0.85 0.44 0.33 0.23 0.21

No-OUT 0.15 0.14 0.14 0.11 0.11 0.10 0.06 0.06 0.05 0.04 0.04 0.03

NTC 0.12 0.11 0.11 0.10 0.10 0.02 0.06 0.04 0.04 0.04 0.03 0.03

Advance 8 8 9 9 9 9 9 11 12 12 13 14
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requests of operators. It includes the following aspects: one-way delay, round-trip 
delay (QoS), round-trip delay (QoS), packet loss rate (QoS), packet loss rate (QoS), 
packet loss rate (QoS), packet loss rate (QoS), packet loss rate.

In the actual deployment of the NTC model, a small and medium-sized LAN is 
proposed to collect monitoring data every 10 minutes to continuously measure the 
network performance data for 7 days, mainly measuring network delay and 
bandwidth. The measured data of this week were taken as the total sample of NTC 
model training. In the subsequent validation of the NTC model, the first task is to train 
the parameters of the NTC model in this real network monitoring platform, including 
the dimension of latent feature space (R) and the number of convolution kernels (T).In 
the previous real data set simulation experiments, we can see that there are generally 
a better R-value and t-value in the data, not that the larger the R-value and t-value, 
the better. After training the optimal R-value and t-value, to verify that the NTC model 
can also have good recovery accuracy in the case of a large data loss rate, a random 
collection of 1% to 10% of the total sample data for model training and missing data 
recovery. Finally, the performance of the proposed NTC model is evaluated and 
verified by comparing it with the real data.

Because the deployment of the NTC model in a real network monitoring platform is 
not enough to evaluate the performance of the NTC model. It is planned to implement 
all the comparison algorithms on the platform. To evaluate the effectiveness of the 
NTC model through comparative analysis.

3. FUSION NEURAL TENSOR FILLING MODEL FOR 
MORE COMPREHENSIVE FEATURE EXTRACTION

One model based on tensor filling uses a linear kernel to extract potential features 
from data. And the other model based on a neural network uses a nonlinear kernel to 
learn interaction functions in data. However, the actual network monitoring data may 
contain both linear and nonlinear features. Therefore, it is not comprehensive to adopt 
a single linear kernel or a nonlinear kernel. Then, to better improve the recovery 
performance of network monitoring data unmeasured data, the next problem is how to 
integrate the model based on tensor filling. And the model is based on a neural 
network. So that they can enhance each other. To better model the complex data 
interaction. It improves the information extraction of data.

3.1. SOLUTION OVERVIEW
To fuse linear and nonlinear frameworks, a simple solution is to take one of the 

models as the main one and express the other model under its framework. To fuse 
them. The NTC model is a typical non-linear model. It can be expressed and extended 
by other algorithms in its framework. It is proved that the tensor filling model based on 
CP decomposition is a special case of NTC. Therefore, a simple solution is to use a 
neural network to represent CP and let NTC and CP share the same embedding layer. 
That is a potential eigenvector. And then combine the output of their interaction 
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function to predict the recovery data. This method is similar to the famous neural 
tensor network (NTN).

The model combines the inner product and outer product of potential features to 
realize the fusion of linear and nonlinear latent features. Therefore, the model is 
defined as a fusion neural tensor completion (Fu NTC) model. The structure of the Fu 
NTC model is similar to that of the NTC model. It also adopts multi-layer hierarchical 
architecture. 

3.2. DETAIL OF FU NTC MODEL
The essential purpose of input and inserting layer operations is to represent the 

potential characteristics of source node i, target node j, and time k by the ID of source 
node i, target node j, and time k, respectively 

  (14) 

Among them, the potential eigenvectors of the source node , target node , and 
time  are ,  and . ,  and . The feature nodes are 
embedded in the feature matrix of the source node. And the target node respectively. 
The latent characteristic matrices , , and  contain the features of the whole 
network monitoring data. It is the key point of the whole model training. 

In theory, the performance of the fusion model may be limited if the linear model. 
And the nonlinear model shares the same embedding layer. Because this means that 
the linear model. Because the nonlinear model must use the same size as the 
embedding vector. For the two models with large changes in the optimal embedding 
dimension, the optimal feature extraction may not be obtained. Moreover, using the 
same embedding layer, the fusion model is not flexible enough.

The feature extraction layer of the Fu NTC model is divided into two parts: linear 
feature extraction and nonlinear feature extraction. The nonlinear feature extraction 
follows the NTC model. And it uses the outer product of the potential feature vector as 
the interaction function to generate a 3D interactive mapping tensor. And then it uses 
3D CNN to extract high-order features. The nonlinear model can extract effective 
information from network measurement data. And the recovery performance of 
unmeasured data is also verified in the simulation experiment in the previous chapter. 
However, linear feature extraction is the representation of CP decomposition in the 
neural network. Different from the traditional CP decomposition, the result of the inner 
product is not added at this time. Instead, it is extended into a tensor to facilitate the 
fusion operation of the feature fusion layer.

ai = eiA, bj = ejB, ck = ekC

i j
k ai bj ck A ∈ RI×R B ∈ RJ×R C ∈ RK×R

A B C
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Figure 4. Linear feature extraction and nonlinear feature extraction 

In the feature fusion layer, the feature vector y1 is obtained from the nonlinear 
model. It is spliced with the feature vector y2 obtained from the linear model to form a 
fusion vector

 (15) 

Where  represents the vector splicing operation. The feature vector  contains 
both nonlinear features and linear features. During the network training, the reverse 
update operation will adjust the nonlinear model and the linear model synchronously. 
To realize the synchronous extraction of nonlinear features and linear features for the 
whole model.

It is only different from the NTC model which only uses single-layer MLP. The 
number of MLP layers in the Fu NTC model needs to be adjusted dynamically.

3.3. REAL DATA SET EXPERIMENTAL SIMULATION
An equally large number of experiments were performed in this study to answer the 

following questions:

1. Effect of key hyperparameters (i.e., potential feature space dimension (R), number 
of convolution kernels (T), and number of convolution layers (L)) on the 
performance of the Fu NTC model.

2. Whether the CNN-based mode has an impact on the recovery performance of Fu 
NTC.

z = [y1
y2]

[] z
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3. The performance of the Fu NTC model can surpass the current optimal NTC model.

The influence of latent feature space dimension (R). R is the number of hidden 
features captured. In the NTC model. R directly affects the size of the 3D interactive 
mapping tensor, while in the Fu NTC model, r not only affects the extraction of 
nonlinear features. That is the size of the 3D interactive mapping tensor of the outer 
product. But also, affects the extraction of linear features. That is the size of the vector 
formed by the inner product. The performance of the Fu NTC model is better than 
other contrast algorithms in all kinds of R. It shows that no matter how much R. It is, 
the fused neural tensor filling model is better than the single (linear or nonlinear) 
feature extraction model in mining potential features in the data. This shows that. The 
optimal number of latent features for nonlinear feature extraction is also the best latent 
feature data for linear feature extraction. It also effectively proves the rationality of 
sharing embedded layers between nonlinear models. And the linear model in the 
previous model design. 

 
(a) 

 
(b) 

Figure 5. The influence of spatial dimension (R) on potential features 
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The influence of the number of convolution kernels (T). The number of convolution 
kernels is an important factor affecting the feature extraction performance of the 3D 
CNN model. NTC model will be affected by hyperparameter t. And Fu NTC model will 
also be affected by T. Because the nonlinear feature extraction part of the Fu NTC 
model still adopts the frame structure of 3D CNN. In the experimental algorithm, only 
Fu NTC, NTC, and not out (special cases of NTC) use 3D CNN to extract information. 
The recovery performance of the Fu NTC model is better than that of the NTC and no-
out algorithm, especially in the comparison between the NTC model and the NTC 
model. It shows that the NTC model only extracts nonlinear information is not enough, 
even using the 3D CNN framework. It is very effective for feature extraction. The 
effectiveness of the tensor filling model is also demonstrated. Similarly, the 
performance trend of the Fu NTC model increases first and then decreases with the 
increase of the T value. It indicates that the number of convolution kernels is not 
better. According to the experimental results, the number of convolution kernels of the 
Fu NTC model in Abilene is set to t = 32, and that of WS-dream is set to t = 64.

The influence of CNN mode. Different CNN patterns affect the effectiveness of 
feature extraction. As we have known before. 3D CNN has one more convolution 
dimension than 2D CNN. It means that 3D CNN can simultaneously extract features 
from three dimensions of data: source node, target node, and time, while 2D CNN 
cannot. Experiments on the NTC model and Fu NTC model verify the effect of 3D 
CNN. In the two models, the recovery performance of 3dcnn is always better than that 
of 2D CNN. And Fu NTC model has always been better than the NTC model. Whether 
in 3D CNN mode or 2D CNN mode. It also shows the effectiveness of the Fu NTC 
model.

In the experimental simulation, the performance of the seven missing data recovery 
algorithms increases with the increase in sampling rate. In particular, the performance 
of the Fu NTC model is slightly improved compared with the NTC model. This means 
that the fusion neural tensor-filling model can extract more features than the neural 
tensor-filling model. It only extracts nonlinear features. When the sampling rate is 1%. 
The term of the Fu NTC model is about 0.04 and 0.11. What are the 24 and 8 areas of 
the best CP. It is based tensor filling algorithm except for the NTC model.

3.4. REAL NETWORK PLATFORM EXPERIMENT
The real network platform and NTC model adopt the same platform. The Fu NTC 

model is integrated into the network monitoring platform. And the performance of the 
proposed Fu NTC model is evaluated. It is verified in the real network environment.

The performance of the small network was monitored by NTC for 10 minutes every 
day. Then all the comparison algorithms and the Fu NTC model are tested. And the 
recovery performance of the Fu NTC model for missing data is verified through the 
analysis of the experimental results. 
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4. SUMMARY
Through the new neural network framework, the NTC model and CP inner product 

model share the embedded layer. And then splice the output of their respective 
interaction functions to speculate the missing data. The experimental results show 
that. The fusion neural tensor filling model has better data recovery performance than 
the traditional tensor filling algorithm and NTC model. In this paper, for the large-scale 
network monitoring system based on the new sparse network monitoring technology. 
We make the following contributions to improving the prediction accuracy of 
unmeasured data

1. In this paper, a 3D interactive mapping tensor is proposed to explicitly show the 
feature interaction between the source node, target node, and time. The interactive 
mapping tensor uses the outer product operation to model tensor filling to capture 
the complex correlation between feature dimensions.

2. To extract hidden features and recover lost data more accurately, this paper 
proposes a 3D CNN framework based on a 3D interactive mapping tensor. It proves 
theoretically that. CNN can be used to study the great-order correlation between 
feature scopes from local scope to global scope.

3. To excerpt the potential features unseen in the network performance statistics more 
comprehensively. This paper proposes a new fusion neural tensor filling model 
(funtc). It can extract both nonlinear and linear features.

4. In this paper, comprehensive experiments are carried out on two open actual 
network checking statistics sets to calculate and verify the efficacy of NTC and Fu 
NTC. The experimental results show that NTC and Fu NTC can realize better 
retrieval precision even at a very low selection rate.
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