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Abstract. When adopting a sound logical system, reasonings made within this system are
correct. The situation with reasonings expressed, at least in part, with natural language is
much more ambiguous. One way to be certain of the correctness of these reasonings is to
provide a logical model of them. To conclude that a reasoning process is correct we need
the logical model to be faithful to the reasoning. In this case, the reasoning inherits, so to
speak, the correctness of the logical model. There is a weak link in this procedure, which
we call the faithfulness problem: how do we decide that the logical model is faithful to the
reasoning that it is supposed to model? That is an issue external to logic, and we do not have
rigorous formal methods to make the decision. The purpose of this paper is to expose the
faithfulness problem (not to solve it). For that purpose, we will consider two examples, one
from the geometrical reasoning in Euclid’s Elements and the other from a study on deductive
reasoning in the psychology of reasoning.
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1. Logical model of Euclidean reasoning and the faithfulness
problem

How can we be certain that our reasoning is correct? In fact, what could we mean
by the correctness of reasoning? In this first part, we will address these issues in
relation to a very specific subject: the reasoning in the mathematical proofs in the
planar geometry of Euclid’s Elements. For this work, we will only need to take into
account one proof, that of proposition 1 of book 1 (proposition I.1).

Attaining certainty on the correctness of a reasoning process depends on how we
define correctness. Here, we adopt a common view in which correctness is achieved
by adopting a particular formal language and following its associated rules of in-
ference. In this way, e.g., if we adopt propositional logic and adhere to its rules of
inferences, we are certain that the reasonings made with propositional logic will be
correct (see, e.g., Hedman 2004, pp.12–9).1

Now, in Euclid’s proofs one adopts a highly regimented language, but a natural
language nonetheless (Netz 1999, pp.89–167). Also, there seems to be a fundamen-
tal component of what we might call diagrammatic reasoning related to diagrams
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(Avigad, Dean and Mumma 2009). How can we determine the correctness of the
reasonings?

As it is well-known, through history, doubts on the rigor of Euclidean proofs have
been uttered (see, e.g., Venema 2012, pp.7–9). Here, we do not propose to address
differences between the notions of rigor and correctness. One might even argue that
even if we conclude that Euclidean proofs are not rigorous, they are nevertheless cor-
rect. For our purpose, it is enough to consider that doubts regarding the lack of rigor
of Euclidean proofs can be further extended to the point of having doubts regarding
the correctness of the proofs (or, at least, of lacking a rigorous way of showing the
correctness of these unrigorous proofs).

If we could model the reasonings in Euclid’s proofs with formal logic, then we
could conclude that the reasonings are correct. Avigad, Dean, and Mumma set for-
ward a logical system they called E that, they claim, provides a faithful model of the
proofs in Euclid’s Elements regarding planar geometry (Avigad, Dean and Mumma
2009). What do they understand by faithful, and what does it imply? A model in E
is faithful to the Euclidean proof when it reproduces line-by-line the “argumentative
structure” (i.e., the reasoning) of the proof.2 In particular, E mimics the inferences
taken to be basic in the Elements (i.e., inferences made directly in one step without
any further justification). In this way, when Euclid deploys an inference in just one
step, so does E; in the same way, when Euclid needs a chain of steps to deploy an
inference, so does E (Avigad, Dean and Mumma 2009, p.731).

There are relevant terminological differences between E and the regimented lan-
guage of the Elements. That is taken not to impact on the faithfulness of E’s models
of Euclidean proofs. One example is the meaning of the term line. With Euclid, the
term line means line segment. In E, lines are, as usually defined in modern mathe-
matics, non-bounded. This is seen as unproblematic since there is a “fairly straightfor-
ward translation between Euclid’s terminology and [E’s]” (Avigad, Dean and Mumma
2009, p.732). Another example is that the language of E does not include the term
triangle. This can be addressed by a definitional extension of E that enables the def-
inition of triangle from the primitive terms of the language of E (Avigad, Dean and
Mumma 2009, p.733). The view of the creators of E is that resorting to definitional
extensions or other forms of “syntactic sugar” enables us to model more closely the
Euclidean proofs (Avigad, Dean and Mumma 2009, p.734). Accordingly, following
the authors, a more precise formulation of the claim that a model in E is faithful to
the corresponding Euclidean proof is:

If we use a suitable textual representation of proofs [in E], then, modulo
syntactic conventions like [the ones above], proofs in [the] formal system
[E] look very much like the informal proofs found in the Elements. (Avigad,
Dean and Mumma 2009, p.714)
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We will have to see in practice what “to look very much like” is taken to be. Let us first
address the second part of the question above. Granted that the models of E are faith-
ful to the Euclidean proof, what does this imply? Avigad, Dean, and Mumma showed
that the logical system E is sound and complete. That has important consequences
regarding the reasoning in Euclidean proofs. Taking into account the faithfulness of
models of E, we may conclude that the proofs in the Elements are closer to formal
proofs than one might previously think (Avigad, Dean and Mumma 2009, p.760).
From the perspective of the present work, the faithfulness of the models of E to the
Euclidean proofs would make these “inherit” the rigor of E: the reasonings in the
Elements (regarding planar geometry) would be sound in the precise sense that there
are accurate models of these that are sound. By having a logical model faithful to the
reasonings, we can argue that they are correct. We have a procedure to determine
the correctness of Euclid’s reasonings. We can be sure that they are right. But are
we sure that the models are faithful? To put it a bit differently: how do we know
with certainty that the models are faithful? To address this question, let us look at
E’s model of the proof of proposition I.1:

Assume a and b are distinct points.
Construct point c such that ab = bc and bc = ca.

Proof.
Let α be the circle with center a passing through b.
Let β be the circle with center b passing through a.
Let c be a point on the intersection of α and β .
Have ab = ac [since they are radii of α].
Have ba = bc [since they are radii of β].
Hence ab = bc and bc = ca.
Q.E.F. (Avigad, Dean and Mumma 2009, p.734)

The terms “have” and “hence” are not part of the formal language, they are used
to improve readability. In the same way, there are comments in brackets. Also, the
drawn diagram is not part of E; it is included to improve the readability of the proof.3

The first line of the proof is the second construction rule of lines and circles (Avi-
gad, Dean and Mumma 2009, p.716). The construction rules establish the accepted
constructions in E; applying one of them corresponds to constructing an object. Some
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preconditions must be satisfied for the construction to be possible; also, the construc-
tion rules construct objects with some specified properties. In the case of rule 2, it
establishes the construction of circles. For that, as a prerequisite, we need two points
that do not coincide. That is our case since it is assumed that points a and b are
distinct. The properties established by rule 2 are: a is the center of α and b is on α.
In this way, the first line constructs a circle α with center a and with b on α. In the
second line, another circle is constructed: the circle β with center b and with a on β .
In the third line, there are two rules at play: one inference rule and one construction
rule. First, we infer a diagrammatic assertion based on the available diagrammatic
information. We do this by applying a rule that enables us to draw a conclusion from
the premises. It is the rule 5 of diagrams rules for intersections (Avigad, Dean and
Mumma 2009, p.721). According to it, if a is on α, b is in α, a is in β , and b is on β ,
then α and β intersect. This rule is present implicitly on the third line since this line
corresponds to rule 6 of the construction rules of intersections, in which the inferred
conclusion of rule 5 — that α and β intersect — is a prerequisite of rule 6 (Avigad,
Dean and Mumma 2009, p.717). The property of the constructed point c is that c is
on α and c is on β .

On line four it is asserted that the segments ab and ac are equal. In E, “segment”
means the length of a line between two points. The comment in brackets is intended
to indicate how the assertion was inferred. One applies the diagram-segment transfer
rule 3. According to this rule, if a is the center of α and b is on α, then ac = ab if
and only if c is on α, which is the case. On line five, one applies the same inference to
conclude that the segments ba and bc are equal. Finally, on line six, one applies two
metrical inferences — the symmetry of line segments and the transitivity of equality
— to conclude that the segments ab, bc, and ca are equal (Avigad, Dean and Mumma
2009, p.735). This concludes the proof in E.

A relevant aspect of Avigad, Dean, and Mumma’s approach relates to how faith-
fulness is determined. It is not. We take for granted that the model is faithful to the
Euclidean original. The authors explicitly write the following: “Since the point of this
exercise is to demonstrate that proofs in E are faithful to the text of the Elements,
we recommend comparing our versions with Euclid’s.” (Avigad, Dean and Mumma
2009, p.734). That is, the faithfulness of the model is supposed to be self-evident by
just checking the Euclidean text in relation to the E’s model. So, let us do that. The
Euclidean text is as follows:

On a given finite straight line to construct an equilateral triangle.

Let AB be the given finite straight line.
Thus it is required to construct an equilateral triangle on the straight line
AB.
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With center A and distance AB let the circle BC D be described; [Post. 3]
again, with center B and distance BA let the circle AC E be described; [Post.
3]
and from the point C , in which the circles cut one another, to the points A, B
let the straight lines CA, CB be joined. [Post. I]
Now, since the point A is the center of the circle C DB, AC is equal to AB.
[Def. I5]
Again, since the point B is the center of the circle CAE, BC is equal to BA.
[Def. I5]
But CA was also proved equal to AB; therefore each of the straight lines CA,
CB is equal to AB.
And things which are equal to the same thing are also equal to one another;
[C. N. I]
therefore CA is also equal to CB.
Therefore the three straight lines CA, AB, BC are equal to one another.
Therefore the triangle ABC is equilateral; and it has been constructed on the
given finite straight line AB.
(Being) what it was required to do. (Heath 1956, pp.241–2)

One can immediately notice that while in E we have the construction of a point c
such that ab = bc, and bc = ca (where a and b are distinct points), in the Elements
we have the construction of an equilateral triangle. This situation does not imply a
lack of faithfulness on the part of the logical model. As mentioned, we can consider
a definitional extension in which we define a triangle from primitive terms of E.
Accordingly:

Consider the [Euclidean] phrase “let abc be a triangle.” Assuming we take
this to mean a nondegenerate triangle, we parse this as saying that a, b, and
c are points, and there are lines L, M , and N , such that a and b are on L but
c is not, b and c are on M but a is not, and c and a are on N but b is not.
(Avigad, Dean and Mumma 2009, p.733)

We could include a new line at the end of E’s model of the proof of proposition I.1,
something like the following:

abc is an equilateral triangle [by taking into account the definitional exten-
sion].
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Apparently, there would be no lack of faithfulness due to the formulation of the model
in terms of segments. But a closer look into the Euclidean reasoning shows that E’s
model is not faithful after all. As it is, in our view, lines 4 and 5 of the model are not
faithful to the Euclidean reasoning. We will only address line 4 since they are equiv-
alent. Line four consists of: have ab = ac [since they are radii of α]. The Euclidean
counterpart of this line is: since the point A is the center of the circle C DB, AC is
equal to AB [Def. I5]. As we have seen, the reasoning underlying line four consists in
applying the diagram-segment transfer rule 3 (if a is the center of α and b is on α,
then ac = ab if and only if c is on α). To be more exact, it consists in applying what
Avigad, Dean, and Mumma call a direct consequence of the rule (Avigad, Dean and
Mumma 2009, pp.725–7). We can formulate it somewhat as follows: if a is the center
of α, and b is on α, and c is on α, then ac = ab. From line 1, we have that a is the
center of α, and b is on α by construction. From line 3, we have that c is on α. The
diagram-segment transfer rule 3 licenses us to infer that ac = ab. This reasoning,
however, does not correspond to Euclid’s thinking. In this respect, the comment in
brackets — [since they are radii of α]— is misleading since it does not agree with the
reasoning made in E. What is the corresponding reasoning in the Elements? Previous
to concluding that AC is equal to AB, we draw the line segments CA and CB: let the
straight lines CA, CB be joined. Then we resort to definition 15: a circle is a plane fig-
ure contained by one line such that all the straight lines falling upon it from one point
among those lying within the figure are equal to one another (Heath 1956, p.153).
Definition 16 makes the previous one clearer: and the point is called the center of the
circle (Heath 1956, p.154). In the reasoning encapsulated in the proof, we have what
we might call a component of diagrammatic reasoning. We draw two line segments
connecting points C to A and C to B. We then see these line segments not merely
as such but more specifically as radii of circle α. Taking into account the meaning of
radii as given in definition 15, we then infer that they are equal. We could model this
reasoning informally as follows:

Diagrammatic reasoning: seeing CA and CB as radii of α, and not just as line
segments.
Applying a sort of universal elimination rule: All radii of a circle are equal;
CA and CB radii of α;
Then, CA= CB.

To be more faithful to the Euclidean reasoning, in our view, the model should
have more parts corresponding to the construction of the line passing through C
and A and the line passing through C and B. We then would apply an inference rule
enabling us to take the segments to be radii of α, and, afterward, we would make
another inference to conclude that they are equal because they are radii of the same
circle (we would do the same for circle β). It could start by including something like
the following:
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Let L1 be the line through c and a.
Let L2 be the line through c and b. (construction rule 1 for lines and circles;
Avigad, Dean and Mumma 2009, p.716)

In E, segments are defined as the lengths of line segments from a point to another
(Avigad, Dean and Mumma 2009, p.710). To include the above construction rule
enables to approach in E the procedure adopted in the Euclidean proof. We would
explicitly construct the lines passing by c and a, and c and b. Afterward, instead of
ab = ac [by a direct consequence of the segment transfer rule 3], we would have
something like the following:

(definitional extension of radii in E).
inference: ab and ac are radii of circle α (here ab and ac are not just seg-
ments/lengths as defined in E but line segments as defined in the Elements).
variant of transfer rule 3: if ab and ac are radii of circle α, then ac = ab
(here, in the conclusion ab and ac return to being “simply” segments as de-
fined in E — the length of the line segments connecting points a and b and
a and c).

This would correspond to the application of a variant of the segment transfer rule
3 (if a is the center of α and b is on α, then ac = ab if and only if c is on α), in
which we would make use of a definitional extension of radii of a circle. The new
inference would correspond to the Euclidean practice of seeing an object in different
ways (Macbeth 2010). In this case, we would model seeing ab and ac not merely
as the segments we have just constructed connecting the points but as radii of the
circle α. This “seeing an object in different ways” occurs throughout the Euclidean
proof. After seeing line segments as radii and concluding that, because of this, they
are equal, one returns to see them as “just” line segments and concludes by resort
to common notion 1 that the line segments CA and CB are equal. From this, one
concludes that the line segments “CA, AB, BC are equal to one another” (Heath 1956,
p.241). Until this moment, there is no mention of the notion of a triangle. However,
immediately after this line of the proof one concludes: “Therefore the triangle ABC
is equilateral” (Heath 1956, p.242). For this to be the case, we reason in the diagram
as Macbeth puts it (Macbeth 2010, p.265): we actively go beyond seeing three line
segments (proved to be metrically equal) as just line segments to see them as the sides
of a triangle. Being metrically equal, we conclude that the triangle is equilateral.

One might argue that even if E’s model is not faithful in this part, there is no
harm done. But we would need an argumentation that shows that this partial lack of
faithfulness does not affect the inheritance of soundness on the part of the Euclidean
proof from the model. This argumentation would be made outside logic; it would
be informal. This would be another instance of the faithfulness problem: how do we
show that the model is faithful enough to guarantee the soundness of the Euclidean
reasoning?
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Returning to our proposition of a more faithful model of the proof of proposition
I.1, we are also stuck on the faithfulness problem: how can we decide with certainty
that (a completed version of) this model is faithful? There seems to be no certainty in
our claim of the faithfulness of the model. Without this certainty, there is no certainty
on the soundness of the Euclidean reasoning also. We might say that our gut instinct
is that the model is faithful, and because of this, we see that the Euclidean reasoning
is sound. But gut instinct is not enough.

2. Logical models of natural language deductive reasoning
and the faithfulness problem

We also face the faithfulness problem when addressing human reasoning more gen-
erally, not expressed in terms of a regimented language like that of the mathematical
practice of the Elements. We will address deductive reasoning; that is, the reasoning
expressed with natural language in which the form of the argument guaranties that
it is valid. One form of a valid argument is the modus ponens (Evans 2005). One ex-
ample of this kind of argument is the following: If it is raining then the ground is
wet; it is raining; so, the ground is wet. Using a schematic formulation, the pattern
of a modus ponens argument is as follows: if the first, then the second; but the first;
so, the second (Novaes 2012, p.72).

Here, we will consider a particular experimental study of deductive reasoning,
the so-called Byrne’s suppression task (Byrne 1989); we will focus just on the part
relating to modus ponens. The participants in the experiment were given a set of
premises, and their task was to choose one of three proposed conclusions. They were
told that the premises were true. The basic premises were:

If she has an essay to write then she will study late in the library.
She has an essay to write.

There were three possible conclusions to choose from:

(a) She will study late in the library.
(b) She will not study late in the library.
(c) She may or may not study late in the library.

A group of participants was faced with the above premises. Of these, 96% of them
choose the conclusion (a). This corresponds to a modus ponens argument. We can say
that they adopted a pattern of a modus ponens argument according to the schematic
formulation above.

A second group must undertake their reasoning task considering also what Byrne
calls an alternative antecedent — an antecedent that could elicit the same conclusion
(Byrne 1989, p.65):
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If she has an essay to write then she will study late in the library.
If she has some textbooks to read then she will study late in the library.
She has an essay to write.

In this case, it was obtained the same percentage as with the first group. The pres-
ence of another premise did not affect the reasoning; it mainly — for 96% of the
participants — corresponds to a modus ponens argument.

Finally, A third group was given the initial premises together with what Byrne
calls an additional antecedent — an antecedent that “refers to some additional re-
quirement that must also hold” (Byrne 1989, p.67):

If she has an essay to write then she will study late in the library.
If the library stays open then she will study late in the library.
She has an essay to write.

In this case, only 38% of the participants in this group arrive at the conclusion (a).
From a (classic) logical point of view, like in the case of the so-called alternative
premise, we should have something like: if p then q or if r then q; p; then q (p →
q ∨ r → q; p; then q). The additional premise should not affect the reasoning if this
is made strictly by considering the logical form of the argument (as prescribed in
classical logic).

According to Byrne, the additional premise leads to a suppression of the modus
ponens argument: due to the context (the presence of an additional premise), the
participants are rejecting instances of the valid modus ponens.

This result would imply that the mental inferences underlying human reasoning
expressed with natural language, even in the case of deductive reasoning, do not
comply with logical rules of inference. There would be no modus ponens inferences
underlying what we might expect to be modus ponens arguments. That is so because,
in many cases, where we should have a modus ponens argument we face a modus
ponens suppression, and we have a different conclusion. Byrne takes her result as
indicating that we do not reason with a mental logic (Byrne 1989). In simple terms,
mental logic corresponds to the idea that we reason according to logical rules. One
example is modus ponens; we would have a logical inference rule system in our minds,
literally, and there would exist a modus ponens inference (Manktelow 2012, pp.43–6).

Byrne’s conclusion was challenged by Stenning and van Lambalgen (2004b). Be-
fore addressing their approach, it is important to clarify from the start that Stenning
and van Lambalgen do not propose some sort of mental logic. To the best of our
knowledge, this aspect of their approach is made clearer in a book by Novaes:

Stenning and van Lambalgen offer extensive modelling of human reasoning
in terms of this framework, but I take it that they do not mean to claim that
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the very syntactical rules described by the framework are actually and pre-
cisely implemented when people reason. Instead, as I read them, the formal-
ism is presented as a model of the phenomena in question, just as a physical
theory is a model of physical reality: an approximate description, not the
‘real thing’. (Novaes 2012, p.142)

In personal communication, Stenning clarifies that they take at least some
aspects of the formalism to be accurate representations of psychological phe-
nomena. For example, the formalism does presuppose an asymmetry be-
tween positive and negative information, and there are reasons to think that
this asymmetry is a real psychological phenomenon (e.g., the discrepancy in
reasoning competence with modus ponens v. modus tollens, which is naturally
accounted for in terms of such an asymmetry). (Novaes 2012, p.142)

I will address Stenning and van Lambalgen’s approach in a way equivalent to the log-
ical system E — as providing a logical model, in this case, of a reasoning task. There
is an important difference between E and the logical system proposed by Stenning
and van Lambalgen. In the first case, we always have the same logical system E that
is applied to all the Euclidean reasonings under consideration. In the case of Sten-
ning and van Lambalgen, we have a more general logical framework that is made
more specific for each participant: we model each participant’s interpretation of the
reasoning task with a particular variant of the logical system. Initially, we model each
participant’s reasoning to a particular interpretation of the premises (corresponding
to reaching a specific setting of the model). Only afterward do we have the modeling
of the inferences of the participant using the specific variant of the logical system.
We can refer to these two steps as reasoning to an interpretation or model of the
premises, and reasoning from this fixed interpretation or model (Varga, Stenning
and Martignon 2015; Stenning and van Lambalgen 2004b).

That leads to a completely different view on the results of the suppression task.
In Byrne’s case, we face a modus ponens suppression, conceived as a failure to apply
classical logic and leading to a non-sound reasoning. We can now conceive this as
the adoption by the participant of a reasoning pattern that is sound according to the
variant of the logical system — the specific logical model — that we take to be faithful
to the participant’s reasoning.

The main characteristic of the general logical framework adopted by Stenning
and van Lambalgen is how a conditional “if p then q” is represented. It has the form
p∧¬ab→ q, which we can read as “if p and nothing is abnormal, then q”; ab stands
for an abnormality that would lead to an exception: in the case of an abnormality, we
cannot infer q from p; it blocks the inference. One takes the conditional formulas to
have conjoined abnormality conditions with the form r1→ ab1, . . . , rn→ abn. When
there is evidence of some ri , we take it to be the case that we have the abnormality
abi . This is an important aspect of this logical framework, which corresponds to the
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adoption of the closed world assumption: if there is no positive evidence for a propo-
sition, we can conclude that it is false; concerning an abnormality ab, this means
that if there is no positive evidence for ab then we conclude that ¬ab is true. In this
case the logical form of the conditional reduces to p→ q (Stenning and Lambalgen
2010, p.6; Stenning and Lambalgen 2008, p.184; Besold et al. 2017, pp.45–6).

Let us see Stenning and van Lambalgen’s approach at work in the case of Byrne’s
suppression task. The conditional “If she has an essay to write then she will study
late in the library” is represented by the formula p∧¬ab→ q. Both the conditionals
“if the library stays open then she will study late in the library” and “if she has some
textbooks to read then she will study late in the library” are represented by a formula
of the form r ∧¬ab′→ q.

In this case,modelinga participant’s reasoning toan interpretation of the premises
is made by adjusting the meaning of the abnormalities in the previous general formu-
las. That leads to taking into account, if that is the case, some abnormality conditions.
Afterward, it is modeled the reasoning from the resulting fixed model.

A model consistent with a modus ponens argument in the first group has, simplify-
ing, the clauses {p; p∧¬ab→ q}. There is no information leading to consider that we
have an abnormality. That implies that we have {p; p→ q}. In this case, the setting
of the model is finalized by replacing→ by the classical biconditional↔ (Besold et
al. 2017, p.47). The end result of this modeling of the participant’s reasoning to an
interpretation is {p; p↔ q}. The reasoning from this interpretation starts from the
logical form p↔ q and the premise p, and derives q (Stenning and Lambalgen 2008,
p.197).

Let us now see a model consistent with the suppression of the modus ponens ar-
gument by a majority of the third group’s participants. Besides the conditional clause
of the first premise p ∧ ¬ab → q (p = “she has an essay to write”, q = “she will
study late in the library”), we also have a clause representing the additional premise:
r∧¬ab′→ q, where r = “the library stays open”. Also, the additional premise makes
salient the possibility of an abnormality represented in the model by the abnormality
condition ¬r → ab (Stenning and Lambalgen 2019, pp.7–8; Stenning and Lambal-
gen 2008, p.198).

The reasoning to an interpretation starts with a set that contains p, p ∧ ¬ab →
q, r ∧¬ab′ → q, and ¬r → ab. This reduces to {p; (p ∧ r)↔ q}. To be able to infer
q from (p∧ r)↔ q (“if she has an essay to write and the library stays open then she
will study late in the library”) we would need to have as a premise, besides p (“she
has an essay to write”), also r (“the library stays open”). According to Stenning and
van Lambalgen, “the reasoning from an interpretation is now stuck in the absence of
information about r” (Stenning and Lambalgen 2008, p.198).

This situation does not occur with the second group. In this case, as we have
seen, the alternative conditional (“if she has some textbooks to read then she will
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study late in the library”) is also formalized as r ∧¬ab′→ q. According to Stenning
and van Lambalgen, “by general knowledge, the alternatives do not highlight possible
obstacles” (Stenning and Lambalgen 2008, p.199). As they mention elsewhere, “[the]
integration of the third premise does not lead to the addition of information on ab
or ab′” (Stenning and Lambalgen 2004a, pp.20–1). In this way, there are no possible
abnormalities, and the reasoning to an interpretation fixes the model {p; p∧ r↔ q}.
Reasoning from this interpretation/model derives q (Stenning and Lambalgen 2008,
p.199).

From what we have just seen, it is evident that the general framework proposed
by Stenning and van Lambalgen is flexible enough to provide models of reasoning
compatible with the results in the suppression task with the three groups. But do
these models correspond in any way to the actual reasonings of the participants? As
it is, this could be an ad hoc way of fitting to the experimental results (the choice of
the conclusion by each participant). What is at stake is the faithfulness of the models
to the actual reasonings.

As Stenning and van Lambalgen mention, regarding another reasoning task, one
needs a controlled experiment to provide evidence that the reasoning does take place
as modeled (Stenning and Lambalgen 2008, p.59). For that purpose, after each par-
ticipant undertakes the reasoning task, they ask him or her for a justification of the
chosen conclusion (Stenning and Lambalgen 2004b, p.40). This unfolds in the form
of a dialogue that is supposed to bring some light on the participant’s reasoning when
making his or her choice. Let us consider two excerpts of dialogues. The first is taken
as evidence for the modeling of the suppression of modus ponens:

Subject 2.
S: Ok yeah I think it is likely that she stays late in the library tonight, but it
depends if the library is open. . . so perhaps I think [pauses]. yeah, in a way
I think hmm what does it say to me? I mean the fact that you first say that
she has an essay to write then she stays late in the library, but then you add
to it if the library stays open she stays late in the library so perhaps she’s not
actually in the library tonight, because the library’s not open. I don’t think
it’s a very good way of putting it.
E: How would you put it?
S: I would say, if Marian has an essay to write, and the library stays open
late, then she does stay late in the library. (Stenning and Lambalgen 2008,
p.204)

According to Stenning and van Lambalgen, Subject 2’s answer is accounted straight-
forwardly by the logical model. The conditional has the form (p∧ r)→ q. In this way,
the modus ponens is suppressed, unless the premise r (“the library stays open late”)
is included; in this case, r together with p (“Marian has an essay to write”) licenses
the inference that q (“she does stay late in the library”) (Stenning and Lambalgen
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2008, p.204).
Stenning and van Lambalgen give the following excerpt as an example of evi-

dence for the adoption of the closed world assumption:

Subject 7.
S: . . . that she has to write an essay. because she stays till late in the library
when she has to write an essay, and today she stays till late in the library.
E: Could there be other reasons for her to stay late in the library?
S: That could be possible, for example, maybe she reads a very long book.
But as I understand it she stays late in the library only if she has to write an
essay. (Stenning and Lambalgen 2008, p.205)

In Stenning and van Lambalgen’s interpretation of the dialogue, “the italicized phrase
seems to point to closed-world reasoning” (Stenning and Lambalgen 2008, p.205).

Stenning and van Lambalgen consider that seven out of ten participants behave
according to the logical model (Stenning and Lambalgen 2008, p.212); however, they
are aware of the limitations of using dialogues. Accordingly:

We do not interpret these dialogues as reports of reasoning that went on be-
fore the dialogue, let alone as transparent and complete reflections of such
preceding thought processes. These dialogues are the subjects’ reasoning
with a tutor during a dialogue. Engaging subjects in dialogue undoubtedly
changes their thoughts, and may even invoke learning. The relation between
the reasoning processes evoked by the standard way of conducting the task,
and the processes reflected in subsequent dialogues is a relation that remains
to be clarified. (Stenning and Lambalgen 2001, p.280)

Elsewhere they also remark the following:

We acknowledge that we cannot be certain that our interpretations of the
dialogues are correct representations of mental processes — the reader will
often have alternative suggestions. (Stenning and Lambalgen 2008, p.59)

We face two layers of the faithfulness problem with logical models of reasoning
tasks. In the case of the logical model of Euclidean reasoning we had only one: we
cannot be certain that the model is faithful to the reasoning as expressed in the proof.
The situation here is more complex. Here, we also face the issue of the participant’s
reconstruction of his or her reasoning. As Stenning and van Lambalgen rightly point
to, it is unclear what is the actual relation between the participant’s reconstruction
expressed in the dialogue and the earlier reasoning. We do not have this problem in
the modeling of Euclidean reasoning. What we call Euclidean reasoning is expressed
in the proof. We are modeling the proofs while taking them to express an underlying
reasoning process. It is here that we face the faithfulness problem: how can we be
sure that our model is faithful to the Euclidean proof (as practiced by Euclid)? With
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logical models of reasoning tasks, we also have this layer of the faithfulness prob-
lem. Stenning and van Lambalgen acknowledge that they cannot be certain of their
interpretation of the dialogues. That is, even if we took for granted that a dialogue
expresses the actual reasoning of a participant, we cannot be sure that we are making
the correct interpretation of the dialogue. In this way, in the logical modeling of a
reasoning task the faithfulness problem is two-fold: (1) we are not certain that the
dialogues express the reasonings of the participants; (2) we are not certain of making
the correct interpretations of the dialogues (someone else will often have different
interpretations). Without this, we only have logical models that are compatible with
the choices of conclusions made by the participants.

By construction, the natural language conditionals, arising from the interpreta-
tion of the dialogues, adopted by Stenning and van Lambalgen, correspond to logical
conditionals. For example, in the case of the suppression of modus ponens, Stenning
and van Lambalgen propose the logical model (p ∧ r)→ q (as the result of the rea-
soning to an interpretation); this corresponds in Subject 2’s dialogue to the phrase “if
Marian has an essay to write, and the library stays open late, then she does stay late in
the library”. Stenning and van Lambalgen take this phrase to be accounted straight-
forwardly by the logical conditional “→” (and connective “∧”), so we can consider
this phrase as a natural language conditional with which the participant expresses
his or her reasoning.

Regarding Subject 2’s reasoning, Stenning and van Lambalgen take the dialogue
as evidence for Subject 2’s reasoning to an interpretation according to their model,
such that Subject 2 arrives at the interpretation modeled by (p ∧ r)→ q. Again, like
in the case of the E’s model, we might say that our gut instinct is that Stenning and
van Lambalgen are right in the case of this particular participant (at least regard-
ing the interpretation of the dialogue). However, in general, we are not certain that
we are making a rigorous interpretation of the dialogue concerning the participant’s
reconstruction of his or her reasoning (since we have no formal method to attest
this). Neither are we certain that the dialogue corresponds in any clear way to the
reasoning of the participant.

3. Further comments

We expect the particular cases of the faithfulness problem we have addressed in de-
tail here not to be the exception but the rule. That is, when developing a logical
model of some form of reasoning we expect there to be difficulties in ascertaining
the faithfulness of the model.4

In our view, in logic literature, there is a clear example of the faithfulness problem
that logicians have been addressing without considering that this is a particular case
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of a much vaster issue. It regards translating a natural language sentence or argument
into the formal language of a logic; for example, the sentence “Donald embraced
Orman at noon” or the argument “All horses are animals. ∴ All heads of horses are
heads of animals” (Michels 2021). In this case, “the correctness of a formalization
can never be a completely formal matter, i.e. logic alone can never tell us whether a
formula is a correct formalization of a sentence” (Michels 2021, p.16).

Logicians have tried to put forward criteria for the adequateness of formaliza-
tions (see, e.g., Brun 2014 and Peregrin and Svoboda 2017). However, issues have
been raised regarding the coherence of formalizations (Dicher 2021) and regarding
limitations in the proposed criteria (Reinmuth 2021).

While we are agnostic regarding how logicians are facing the problem of the
adequateness of formalizations (which for us is one more example of the faithfulness
problem), we do not expect that the very specific approaches they are developing for
the case of the formal rendering of sentences or arguments in natural language to be
applicable in very different situations, like the two cases we have exposed here.

While our intention in the present work is just to expose the faithfulness problem
as a possibly very generalized problem, we will sketch some directions which could
be explored to give a “solution” to the faithfulness problem. We must notice that
we cannot attain absolute certainty — the kind of certainty we have with logic —
when facing the faithfulness problem. This much is implicit in logicians’ treatment
of the adequateness of formalizations problem. Paraphrasing the above citation, the
faithfulness of a logical model can never be a completely formal matter. As such, it is
a metalogical issue and needs tools outside logic to be addressed.

What is our second-best option after logic/absolute certainty? Our view is that
we should apply the methods of science to face the problem. That is, we might aim
to attain what we might call a scientific certainty.

Regarding Stenning and van Lambalgen’s logical model, we can fully adopt the
view set forward by Novaes mentioned in the previous section: to take the logical
model “as a model of the phenomena in question, just as a physical theory is a model
of physical reality” (Novaes 2012, p.142). The faithfulness of the model becomes a
scientific question to be addressed by scientific methods, in particular experimenta-
tion.5

Little is known about the underlying neurophysiological phenomena of the sup-
pression task, and how much we might — as an empirical question — take Stenning
and van Lambalgen’s formalism to model the phenomena. However, there is at least
one experimental work whose results can be read as evidence that effects of sup-
pression occur as predicted by the logical model (Pijnacker et al. 2010). This one
experiment shows that we are already at a point where we can start to address the
faithfulness of the model as an empirical issue.

Regarding our first case study, the situation is more cumbersome. Science is still
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far from providing empirical “criteria” to address the faithfulness of E’s models. What
could be, for the time being, our third-best option after logic certainty and scientific
certainty?

We think our best option is to consider whatever scientific results we might have
available (e.g., Hamami, Mumma and Amalric 2021) together with specialized philo-
sophical approaches. We already have many philosophical “results” regarding the rea-
soning underlying Euclidean proofs, like, e.g., Manders (2008), Macbeth (2010), and
Dal Magro and García-Perez (2019). In fact, Manders’ work has been taken into ac-
count in the development of the formal system E (Avigad, Dean and Mumma 2009).
Our tentative proposition is to include the issue of the faithfulness of models of E (or
other formal systems) in our philosophical inquiries into Euclidean proofs.

For the time being we think it is best to have a pluralistic approach to the faithful-
ness problem, adopting the best available “tools” for each case where we face issues
regarding the faithfulness of the logical model.

4. Conclusions

Logic provides a powerful formalism to address the correctness of reasonings. Within
logic itself, the soundness of inferences is not subjected to doubt, in the sense that for
every logical system we have a collection of sound rules of inference. Outside logic,
if we try to address the correctness of reasonings expressed with natural language,
we face enormous difficulties due to the lack of a formal approach to address it. One
way to deal with this difficulty is to envisage logical models of the reasoning under
study. If we can find logical models of the reasoning, then we might say that the
reasoning is correct or sound in the sense of having a sound logical model. But for
this to be the case we really must have a logical model of the reasoning. That is, the
model must be faithful to the reasoning that it models. In this work we consider two
examples of reasonings, the Euclidean reasoning in the proofs on planar geometry
in the Elements, and the reasoning in Byrne’s suppression task. In the case of the Eu-
clidean reasoning, a logical model has been proposed by Avigad, Dean, and Mumma.
In the case of the reasoning task, a logical model has been proposed by Stenning
and van Lambalgen. In both cases, issues can be raised concerning the faithfulness
of these models. The purpose of the present work is to call the attention to what we
have called the faithfulness problem, which we suspect to be a generalized issue in
logical modeling, by using these two logical models as examples. Like in the case of
these two examples, the general case might be that we have no way to decide with
(absolute) certainty that a logical model is faithful to the reasoning it is supposed to
be modeling.6
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Notes
1Unless stated, we will take certainty to mean the “absolute” certainty provided by logic.
2Here, we adopt Novaes’ view that “a formal language [. . . ] can characterize directly the

target phenomena without the mediation of ordinary languages” (Novaes 2012, p.99). In
this way, the idea of logic as translating natural language statements (being a model of these)
might best be understood as a metaphor (unless we are considering the particular case where
we are directly modeling natural language sentences). In this part of the paper, we take logic
to (try to) model the reasonings expressed in the argumentative structure. In this way, we
will be liberal in our terminology and sometimes speak of models of Euclidean proofs others
of models of Euclidean reasonings.

3According to the authors, “in E the diagram is nothing more than the collection of gen-
erally valid diagrammatic features that are guaranteed by the construction. In other words

PRINCIPIA 26(3): 429–447 (2022)

https://www.researchgate.net/publication/2896327_Evolutionary_Considerations_
on_Logical_Reasoning
https://www.researchgate.net/publication/239015102_A_working_memory_model_of_relations_between_interpretation_and_reasoning
https://www.researchgate.net/publication/239015102_A_working_memory_model_of_relations_between_interpretation_and_reasoning
https://www.researchgate.net/publication/286784975_The_logical_response_to_a_noisy_world
https://www.researchgate.net/publication/286784975_The_logical_response_to_a_noisy_world
https://www.researchgate.net/publication/330324480_REASONING_AND_DISCOURSE_COHERENCE_IN_AUTISM_SPE
https://www.researchgate.net/publication/330324480_REASONING_AND_DISCOURSE_COHERENCE_IN_AUTISM_SPE
CTRUM_DISORDER
https://www.researchgate.net/publication/280114264_There_is_no_one_logic_to_model_human_reasoning_
https://www.researchgate.net/publication/280114264_There_is_no_one_logic_to_model_human_reasoning_
The_case_for_interpretation


The faithfulness problem 447

[. . . ] we identify the diagram with the information provided by [a] construction [. . . ] and
all the direct diagrammatic consequences of these data” (Avigad, Dean and Mumma 2009,
p.706).

4And this can be the case also when the modeling is not of human reasoning. One example
is the modeling with Description Logics of data models used in databases; more specifically,
the modeling of the Entity-Relationship (ER) model. Accordingly, “several features of the ER
model and desired reasoning tasks could not fully be captured by the proposed translation”
(Sattler, Calvanese and Molitor 2007, p.168). Another example might be the logical modeling
of the OCC theory of emotions. It is claimed concerning the proposed logical modeling its
“faithfulness to the OCC theory” (Adam, Highers and Longin 2009, p.513). Considering the
difficulties, we have found in our two case studies, we feel that the putative faithfulness of
the modeling of the OCC theory needs more thorough scrutiny.

5In our view, this corresponds to adopting an anti-exceptionalist stance on logic. On anti-
exceptionalism, see, e.g., Payette and Wyatt (2018) and Martin and Hjortland (2021).

6According to the view sketched in the previous section, this implies that we cannot, with-
out somehow addressing faithfulness issues, use the existence of a logical model to decide
with (some sort of) certainty that the reasoning being modeled is correct. For example, if we
were to attain scientific certainty on the faithfulness of the logical model of a reasoning task,
we could use the existence of this model to decide with scientific certainty that a participant’s
reasoning is correct.
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