Table S1. Use of the WNSUR method to develop simultaneously model combinations of *AGB* and its components validated by Leave-One-Out Cross Validations (LOOCV).

Combination of component equation systems	Weight variable	Bias (%)	RMSE (kg)	MAPE (%)
Combination 1:				
$Bst = a_1 \times D^{b1}$	1/D	-1.6	0.316	20.9
$Bbr = a_2 \times D^{b2}$	1/D	-31.7	0.262	54.5
$Ble = a_3 \times D^{b3}$	1/D	-15.5	0.215	40.2
$Bba = a_4 \times D^{b4}$	1/D	-13.6	0.188	34.3
AGB = Bst + Bbr + Ble + Bba	1/D	-6.8	0.642	22.9
Combination 2:				
$Bst = a_1 \times (D^2 H)^{b1}$	$1/D^2H$	5.3	0.289	19.3
$Bbr = a_2 \times (D^2 H)^{b2}$	$1/D^2H$	-53.7	0.283	72.3
$Ble = a_3 \times (D^2 H)^{b3}$	$1/D^2H$	-3.4	0.236	36.0
$Bba = a4 \times (D^2H)^{b4}$	$1/D^2H$	-2.9	0.158	32.3
AGB = Bst + Bbr + Ble + Bba	$1/D^2H$	-2.8	0.795	23.4
Combination 3:				
$Bst = a_I \times (D^2 H)^{bI}$	$1/D^2H$	3.4	0.279	18.5
$Bbr = a_2 \times D^{b2}$	1/D	-30.0	0.261	52.8
$Ble = a_3 \times D^{b3}$	1/D	-10.3	0.210	37.2
$Bba = a_4 \times D^{b4}$	1/D	-13.2	0.194	35.3
AGB = Bst + Bbr + Ble + Bba	1/D	-3.2	0.654	21.7
Combination 4:				
$Bst = a_1 \times D^{b1}$	1/D	0.1	0.290	20.3
$Bbr = a_2 \times (D^2 H)^{b^2}$	$1/D^2H$	-22.0	0.273	48.9
$Ble = a_3 \times D^{b3}$	1/D	-13.2	0.233	40.4
$Bba = a_4 \times D^{b4}$	1/D	-12.3	0.190	34.2
AGB = Bst + Bbr + Ble + Bba	1/D	-3.9	0.577	20.8
Combination 5:				
$Bst = a_1 \times D^{b1}$	1/D	1.5	0.316	22.3
$Bbr = a_2 \times D^{b2}$	1/D	-28.9	0.262	52.6
$Ble = a_3 \times (D^2 H)^{b3}$	$1/D^2H$	-17.3	0.246	43.0
$Bba = a_4 \times D^{b4}$	1/D	-11.2	0.196	36.8
AGB = Bst + Bbr + Ble + Bba	1/D	-5.0	0.613	21.5
Combination 6:				
$Bst = a_1 \times D^{b1}$	1/D	8.2	0.332	25.6
$Bbr = a_2 \times D^{b2}$	1/D	-24.7	0.263	51.1
$Ble = a_3 \times D^{b3}$	$1/D^{0.5}$	-12.6	0.229	40.5
$Bba = a_4 \times (D^2 H)^{b^4}$	$1/(D^2H)^{0.9}$	5.9	0.160	35.8
AGB = Bst + Bbr + Ble + Bba	$1/(D^2H)^{0.3}$	2.2	0.564	18.8

Combination 7:	2			
$Bst = a_1 \times (D^2 H)^{b1}$	$1/D^2H$	2.6	0.271	17.0
$Bbr = a_2 \times (D^2 H)^{b2}$	$1/D^2H$	-56.1	0.277	73.9
$Ble = a_3 \times D^{b3}$	1/D	-37.7	0.191	49.7
$Bba = a_4 \times D^{b4}$	1/D	-1.1	0.314	57.1
AGB = Bst + Bbr + Ble + Bba	$1/D^2H$	-11.0	0.825	25.8
Combination 8:				
$Bst = a_1 \times D^{b1}$	1/D	-1.1	0.297	19.6
$Bbr = a_2 \times (D^2 H)^{b2}$	$1/D^2H$	-46.9	0.280	67.3
$Ble = a_3 \times (D^2 H)^{b3}$	$1/D^2H$	-2.7	0.247	36.6
$Bba = a_4 \times D^{b4}$	1/D	-18.2	0.195	35.9
AGB = Bst + Bbr + Ble + Bba	$1/D^2H$	-6.7	0.618	21.9
~				
Combination 9:	1 /5	0.0	0.05	10.0
$Bst = a_1 \times D^{b1}$	1/D	-0.8	0.276	18.8
$Bbr = a_2 \times D^{b2}$	1/D	-46.4	0.259	65.0
$Ble = a_3 \times (D^2 H)^{b3}$	$1/D^2H$	-2.3	0.248	36.7
$Bba = a_4 \times (D^2 H)^{b4}$	$1/D^2H$	-4.5	0.158	30.2
AGB = Bst + Bbr + Ble + Bba	$1/D^2H$	-4.6	0.611	21.9
Caralination 10				
Combination 10:	1/271	0.2	0.276	166
$Bst = a_1 \times (D^2 H)^{b1}$	$1/D^2H$	-0.2	0.276	16.6
$Bbr = a_2 \times (D^2 H)^{b^2}$	$1/(D^2H)^{-0.5}$	-37.7	0.278	60.9
$Ble = a_3 \times (D^2 H)^{b3}$	$1/D^2H$	-36.8	0.266	57.9
$Bba = a_4 \times D^{b4}$	$1/D^{-0.5}$	-16.6	0.193	35.1
AGB = Bst + Bbr + Ble + Bba	$1/(D^2H)^{-0.5}$	-11.9	0.750	25.8
Combination 11:				
$Bst = a_1 \times D^{b1}$	1/D	-2.1	0.293	19.0
$Bbr = a_1 \times D$ $Bbr = a_2 \times (D^2H)^{b^2}$	$1/D^2H$	-2.1 -48.1	0.278	68.2
$Ble = a_3 \times (D^2 H)^{b3}$	$1/D^{2}H$	-3.1	0.278	37.3
$Bba = a_4 \times (D^2 H)^{b4}$	$1/D H$ $1/D^2H$	-3.1 -4.5	0.232	29.7
	1/D H 1/D²H			
AGB = Bst + Bbr + Ble + Bba	1/D H	-5.5	0.648	22.1
Combination 12:				
$Bst = a_1 \times (D^2 H)^{b1}$	$1/D^2H$	6.7	0.294	20.1
$Bbr = a_2 \times D^{b2}$	1/D	46.0	0.285	60.1
$Ble = a_3 \times (D^2 H)^{b3}$	$1/D^2H$	-2.7	0.252	37.1
$Bba = a_4 \times (D^2H)^{b4}$	$1/D^2H$	14.8	0.239	44.2
AGB = Bst + Bbr + Ble + Bba	$1/D^2H$	0.0	0.792	23.5
AOD = BSI + BOI + BIE + BOU	1/D 11	0.0	0.172	23.3
Combination 13:				
$Bst = a_1 \times (D^2 H)^{b1}$	$1/D^2H$	2.1	0.293	18.1
$Bbr = a_2 \times (D^2 H)^{b2}$	$1/D^2H$	-53.7	0.282	72.5
$Ble = a_3 \times D^{b3}$	1/D	-20.5	0.211	42.0
$Bba = a_4 \times (D^2 H)^{b4}$	$1/D^2H$	-8.0	0.156	29.7
AGB = Bst + Bbr + Ble + Bba	$1/D^2H$	-8.5	0.797	25.2
22. 22. 20. 12. 12.	-, - 11		3.777	-2.2

Supplementary tables to the article "Additive modeling systems to simultaneously predict aboveground biomass and carbon for Litsea glutinosa of agroforestry model in tropical highlands", by Bao Huy, Nguyen Q. Khiem, Nguyen Q. Truong, Krishna P. Poudel and Hailemariam Temesgen. Forest Systems Vol. 32 No. 1, 2023 (https://doi.org/10.5424/fs/2023321-19780)

Combination 14:				
$Bst = a_1 \times (D^2 H)^{b1}$	$1/D^2H$	4.9	0.280	18.7
$Bbr = a_2 \times D^{b2}$	1/D	-37.9	0.259	57.4
$Ble = a_3 \times (D^2 H)^{b3}$	$1/D^2H$	-4.0	0.241	36.8
$Bba = a_4 \times D^{b4}$	1/D	-16.4	0.259	41.7
AGB = Bst + Bbr + Ble + Bba	$1/D^2H$	-2.9	0.790	23.8
Combination 15:				
$Bst = a_1 \times D^{b1}$	1/D	0.1	0.301	20.7
$Bbr = a_2 \times (D^2 H)^{b2}$	$1/D^2H$	-50.7	0.283	70.3
$Ble = a_3 \times D^{b3}$	1/D	-34.7	0.241	55.0
$Bba = a_4 \times (D^2 H)^{b4}$	$1/D^2H$	-2.6	0.160	31.8
AGB = Bst + Bbr + Ble + Bba	$1/D^2H$	-10.8	0.638	23.1
Combination 16:				
$Bst = a_1 \times (D^2 H)^{b1}$	$1/D^2H$	13.7	0.255	22.0
$Bbr = a_2 \times D^{b2}$	1/D	-48.1	0.275	70.3
$Ble = a_3 \times D^{b3}$	1/D	-52.6	0.230	68.8
$Bba = a_4 \times D^{b41} \times H^{b42}$	1/D	18.2	0.182	37.2
AGB = Bst + Bbr + Ble + Bba	$1/D^2H$	-6.0	0.875	30.6

In bold, the simultaneous model combination selected based on LOOCV statistics. *Bst, Bbr, Ble, Bba* and *AGB* are biomass of stem, branches, leaves, bark and total tree aboveground biomass, respectively.

Table S2. Use of the WNSUR method to simultaneously develop model combinations of *AGC* and its component validated by Leave-One-Out Cross Validations (LOOCV).

Combination of component	Weight	Bias (%)	RMSE (kg)	MAPE (%)
equation systems	variable			
Combination 1:				
$Cst = a_1 \times D^{b1}$	1/D	-4.1	0.143	18.5
$Cbr = a_2 \times D^{b2}$	1/D	-32.8	0.129	55.6
$Cle = a_3 \times D^{b3}$	1/D	-15.9	0.095	37.3
$Cba = a_4 \times D^{b4}$	1/D	-14.5	0.085	33.9
AGC = Cst + Cbr + Cle + Cba	1/D	-8.8	0.316	23.5
Combination 2:				
$Cst = a_1 \times (D^2 H)^{b1}$	$1/D^2H$	2.3	0.144	17.9
$Cbr = a_2 \times (D^2 H)^{b2}$	$1/D^2H$	-55.9	0.142	75.1
$Cle = a_3 \times (D^2 H)^{b3}$	$1/D^2H$	-1.9	0.105	32.8
$Cba = a4 \times (D^2H)^{b4}$	$1/D^2H$	-2.7	0.071	31.6
AGC = Cst + Cbr + Cle + Cba	$1/D^2H$	-4.7	0.394	24.0
Combination 3:				
$Cst = a_1 \times (D^2 H)^{b1}$	$1/D^2H$	1.5	0.137	17.3
$Cbr = a_2 \times D^{b^2}$	1/D 11 1/D	-30.6	0.137	53.7
$Cbr = a_2 \times D$ $Cle = a_3 \times D^{b3}$	1/D 1/D	-12.0	0.093	34.9
$Cle = a_3 \times D$			0.093	
$Cba = a_4 \times D^{b4}$	1/D	-13.6		33.8
AGC = Cst + Cbr + Cle + Cba	1/D	-4.9	0.325	22.2
Combination 4:				
$Cst = a_1 \times D^{b1}$	1/D	-3.0	0.132	17.9
$Cbr = a_2 \times (D^2 H)^{b^2}$	$1/D^2H$	-24.5	0.136	51.5
$Cle = a_3 \times D^{b3}$	1/D	-14.5	0.103	37.6
$Cba = a_4 \times D^{b4}$	1/D	-13.8	0.085	33.0
AGC = Cst + Cbr + Cle + Cba	1/D	-6.7	0.295	21.9
Combination 5:				
$Cst = a_1 \times D^{b1}$	1/D	-1.3	0.144	20.1
$Cbr = a_2 \times D^{b2}$	1/D	-29.2	0.129	53.2
$Cle = a_3 \times (D^2 H)^{b3}$	$1/D^2H$	-18.2	0.111	41.2
$Cba = a_4 \times D^{b4}$	1/D	-13.3	0.087	34.9
AGC = Cst + Cbr + Cle + Cba	1/D	-7.4	0.303	22.3
Combination 6:				
$Cst = a_1 \times D^{b1}$	1/D	4.7	0.140	22.0
$Cbr = a_1 \times D^{b2}$	1/D	-23.6	0.130	50.5
$Cle = a_3 \times D^{b3}$	$1/D^{0.5}$	-13.2	0.100	37.4
$Cba = a_4 \times (D^2 H)^{b4}$	$1/(D^2H)^{0.9}$	5.0	0.075	35.7
AGC = Cst + Cbr + Cle + Cba	$1/(D^2H)^{0.3}$	-0.1	0.292	20.0
G 1: .: 7				
Combination 7:	1 // 52*** 0.5	2.0	0.100	10.4
$Cst = a_1 \times (D^2 H)^{b1}$	$1/(D^2H)^{0.5}$	-3.0	0.133	19.4
$Cbr = a_2 \times (D^2 H)^{b^2}$	$1/D^2H$	-62.4	0.146	83.6
$Cle = a_3 \times D^{b3}$	1/D	-36.2	0.096	52.7
$Cba = a_4 \times D^{b4}$	1/D	5.8	0.111	57.0
AGC = Cst + Cbr + Cle + Cba	$1/D^2H$	-12.7	0.387	28.3

Supplementary tables to the article "Additive modeling systems to simultaneously predict aboveground biomass and carbon for Litsea glutinosa of agroforestry model in tropical highlands", by Bao Huy, Nguyen Q. Khiem, Nguyen Q. Truong, Krishna P. Poudel and Hailemariam Temesgen. Forest Systems Vol. 32 No. 1, 2023 (https://doi.org/10.5424/fs/2023321-19780)

Combination of component equation systems	Weight variable	Bias (%)	RMSE (kg)	MAPE (%)
equation systems	variable			
Combination 8:				
$Cst = a_1 \times D^{b1}$	1/D	-3.1	0.130	17.2
$Cbr = a_2 \times (D^2 H)^{b^2}$	$1/D^2H$	-52.6	0.141	72.7
$Cle = a_3 \times (D^2 H)^{b3}$	$1/D^2H$	-2.2	0.110	33.8
$Cba = a_4 \times D^{b4}$	1/D	-13.9	0.085	33.9
AGC = Cst + Cbr + Cle + Cba	$1/D^2H$	-8.3	0.309	22.4
Combination 9:				
$Cst = a_1 \times D^{b1}$	1/D	-4.8	0.150	18.8
$Cbr = a_2 \times D^{b2}$	1/D	-46.2	0.095	57.6
$Cle = a_3 \times (D^2 H)^{b3}$	$1/D^2H$	1.7	0.114	35.6
$Cba = a_4 \times (D^2H)^{b4}$	$1/D^2H$	21.9	0.125	48.8
AGC = Cst + Cbr + Cle + Cba	$1/D^2H$	-3.2	0.319	23.7
Combination 10:				
$Cst = a_1 \times (D^2 H)^{b1}$	$1/D^2H$	-3.8	0.142	16.9
$Cbr = a_2 \times (D^2 H)^{b2}$	$1/(D^2H)^{-0.5}$	-37.2	0.139	61.6
$Cle = a_3 \times (D^2 H)^{b3}$	$1/D^2H$	-31.4	0.119	51.6
$Cba = a_4 \times D^{b4}$	$1/D^{-0.5}$	-17.5	0.087	34.6
AGC = Cst + Cbr + Cle + Cba	$1/(D^2H)^{-0.5}$	-13.1	0.372	26.7
Combination 11:				
$Cst = a_1 \times D^{b1}$	1/D	-3.6	0.129	16.8
$Cbr = a_2 \times (D^2 H)^{b2}$	$1/D^2H$	-53.8	0.141	73.6
$Cle = a_3 \times (D^2 H)^{b3}$	$1/D^2H$	-1.2	0.112	33.8
$Cba = a_4 \times (D^2 H)^{b4}$	$1/D^2H$	-2.7	0.070	29.9
AGC = Cst + Cbr + Cle + Cba	$1/D^2H$	-6.9	0.319	22.4
Combination 12:				
$Cst = a_1 \times (D^2 H)^{b1}$	$1/(D^2H)^{0.5}$	11.4	0.183	15.0
$Cbr = a_2 \times D^{b^2}$	1/D	33.9	0.142	33.9
$Cle = a_3 \times (D^2 H)^{b3}$	$1/(D^2H)^{0.5}$	9.3	0.107	25.1
$Cba = a_4 \times (D^2 H)^{b4}$	$1/D^2H$	6.7	0.117	34.8
AGC = Cst + Cbr + Cle + Cba	$1/(D^2H)^2$	15.5	0.455	16.2
Combination 13:				
$Cst = a_1 \times (D^2 H)^{b1}$	$1/D^2H$	-1.7	0.146	16.8
$Cbr = a_2 \times (D^2 H)^{b2}$	$1/D^2H$	-55.9	0.142	75.3
$Cle = a_3 \times D^{b3}$	1/D	-20.6	0.094	39.1
$Cba = a_4 \times (D^2 H)^{b4}$	$1/D^2H$	-10.3	0.069	28.4
AGC = Cst + Cbr + Cle + Cba	$1/D^2H$	-11.5	0.396	26.6
Combination 14:				
$Cst = a_1 \times (D^2 H)^{b1}$	$1/D^2H$	0.1	0.141	16.9
$Cbr = a_2 \times D^{b2}$	1/D	-29.3	0.129	53.1
$Cle = a_3 \times (D^2 H)^{b3}$	$1/D^2H$	-22.7	0.117	45.5
$Cba = a_4 \times D^{b4}$	1/D	-15.4	0.088	34.8
AGC = Cst + Cbr + Cle + Cba	$1/(D^2H)^{0.5}$	-8.1	0.366	24.5

Supplementary tables to the article "Additive modeling systems to simultaneously predict aboveground biomass and carbon for Litsea glutinosa of agroforestry model in tropical highlands", by Bao Huy, Nguyen Q. Khiem, Nguyen Q. Truong, Krishna P. Poudel and Hailemariam Temesgen. Forest Systems Vol. 32 No. 1, 2023 (https://doi.org/10.5424/fs/2023321-19780)

Combination 15:				
$Cst = a_1 \times D^{b1}$	1/D	-4.2	0.137	18.0
$Cbr = a_2 \times (D^2 H)^{b2}$	$1/D^2H$	-52.5	0.143	73.6
$Cle = a_3 \times D^{b3}$	1/D	-26.8	0.097	44.2
$Cba = a_4 \times (D^2 H)^{b4}$	$1/D^2H$	10.2	0.105	43.4
AGC = Cst + Cbr + Cle + Cba	$1/D^2H$	-10.2	0.334	25.6
Combination 16:				
$Cst = a_1 \times (D^2 H)^{b1}$	$1/D^2H$	-6.8	0.163	21.2
$Cbr = a_2 \times D^{b2}$	1/D	-75.3	0.218	75.3
$Cle = a_3 \times D^{b3}$	1/D	-22.9	0.083	22.9
$Cba = a_4 \times D^{b41} \times H^{b42}$	1/D	22.0	0.215	63.8
AGC = Cst + Cbr + Cle + Cba	$1/(D^2H)$	-16.6	0.346	21.2

In bold, the simultaneous model combination selected based on LOOCV statistics. *Cst, Cbr, Cle, Cba* and *AGC* are carbon sequestration of stem, branches, leaves, bark and total tree aboveground carbon, respectively.