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Resumen 

Introducción: En este trabajo se estudiará la importancia de las fuentes armónicas en el volumen 

cerebral que reproducen una distribución de potencial en el cuero cabelludo determinada, las 

cuales además de ser clase de unicidad, tienen una importancia fundamental para la solución del 

problema inverso de identificación de fuentes en cualquier otra clase de fuentes, para reproducir 

la misma medición.  

Método: Se propone el modelo de medio conductor para relacionar las mediciones con las 

fuentes que las reproducen. Se reduce el problema a un planteamiento operacional que nos 

permitirá caracterizar las llamadas mediciones admisibles con respecto a la clase de fuentes que 

se considere. 

Resultados: Se caracteriza el conjunto de datos admisibles para la clase de fuentes armónicas en 

el volumen del cerebro y se ve la importancia de la clase de fuentes armónicas para la 

identificación de fuentes en otras clases de fuentes, lo cual se ejemplifica con la clase de fuentes 

armónicas en una vecindad de la corteza cerebral. También se muestra la importancia de la clase 



de fuentes armónicas en la aplicación del método de datos admisibles (MDA) a un esquema 

general de regularización para el problema de identificación de fuentes pertenecientes a clases de 

unicidad. 

Conclusión: Se propone una metodología general de resolución del problema inverso 

electroencefalográfico de identificación de fuentes, haciendo uso de la clase de fuentes armónicas 

en el volumen cerebral. Dada una clase arbitraria ℱ de fuentes con la propiedad de unicidad para 

la solución del problema inverso, se desarrolla un método general para la identificación de la 

fuente en ℱ que mejor aproxima una medición del potencial sobre el cuero cabelludo. 

Palabras clave: modelo de medio conductor; fuentes armónicas; fuentes equivalentes; problema 

inverso electroencefalográfico; método de datos admisibles 

 

Abstract 

Introduction: In this work we discuss the relevance of the harmonic sources on the brain 

volume, which reproduce a given potential distribution on the scalp. These sources, apart from 

being a unicity class, they play a fundamental role in the resolution of the inverse problem of 

source identification with respect to any other sources class.  

Method: We make use of the volume conductor model for the head, in order to relate sources 

and reproduced measurements. The problem is rewritten as an operational formulation which 

allows to characterize the admissible measurements with respect to any considered sources class.  

Results: The admissible data set is characterized for the harmonic sources class on the brain 

volume. Also, the importance of this class in the context of the source estimation problem, with 

respect to any sources class, is shown. This is specifically illustrated considering the class of 

harmonic sources on a neighborhood of the cortex. Moreover, it is also shown the role the 

harmonic sources class on the brain plays when applying the Admissible Data Method (ADM) in 

order to get a general regularization scheme for the source estimation problem with respect to a 

unicity sources class.  

Conclusion: A general resolution methodology for the source estimation problem in the context 

of the inverse electroencephalographic problem is proposed, in which the harmonic sources class 

on the brain volume is crucial. Namely, given an arbitrary sources unicity class (for this inverse 

problem), a general method is developed for identifying the source in this class whose reproduced 



potential distribution best approximates a given potential measurement on the scalp. We consider 

sources classes in connection with the electrical activity near the cortex.  

Keywords: volume conductor model; harmonic sources; equivalent sources; inverse 

electroencephalographic problema; admissible data method 
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Introduction 

 

 

There are many works in the specialized literature dealing with the electrical activity source 

estimation problem in the brain, starting from potential distribution measurements on the scalp, 

corresponding to instantaneous electroencephalographic (EEG) measurements (Munck, Van Dik, 

& Spekreijse, 1988), (Amir, 1994), (El Badia & Ha Duong, 1998), (Fraguela Collar, Morín 

Castillo, & Oliveros Oliveros, 2008), (Morín Castillo, et al., 2013), (Fraguela Collar, Oliveros 

Oliveros, Morín Castillo, & Conde Mones, 2015) and references therein. Roughly speaking, this 

problem consists on identifying or estimate the source on the brain volume, including location 

and description, which yields the measured electric potential in form of electroencephalographic 

signal (EEG). These works make use of the volume conductor model, justified in (Sarvas, 1987), 

(Plonsey & Fleming, 1969). From a mathematical point of view, some drawbacks arise from the 

kind of models, partially but not completely solved in the literature. 

This current work is mainly devoted to highlight the importance of the harmonic sources 

on the brain volume in the context of the previously mentioned source estimation problem. This 

kind of sources has no physiological meaning, since they are distributed over the whole brain 

volume and it is a well-known fact that EEG basically reflects the electrical activity close to the 

cortex at a macro spatial scale (regardless of whether or not it is influenced by any other inner 

sources) (Nunez, Nunez, & Srinivasan, 2019). However, from a mathematical perspective, this 

sources class plays a fundamental role in the sources characterization with respect to any other 



sources class, especially the ones relevant from a physiological point of view, as the multipoles, 

the sources concentrated in the cortex, or the spatially piecewise constant sources. It is worth to 

mention that these classes, commonly used in this context, have empty interior, which turns to be 

a serious drawback in the application of optimization methodologies. 

We make emphasis on the unicity property for the sources class, an important requirement 

in the identification problem, which seems to be overlooked in previous related works. On the 

other hand, a big part of this manuscript is dedicated to show how the harmonic sources class on 

the brain volume is used to identify sources (belonging to a unicity class) which reproduce a 

potential measurement on the scalp. 

In spite of an EEG measurement is given on a finite number of electrodes, we consider the 

potential measurement is known on the scalp. The interpolation problem consisting in extend this 

kind of data to the whole scalp is out of the scope of the present article. 

Here we focus on showing the general methodology. Therefore, we choose a simple 

geometric model for the head, consisting in two concentric spheres modeling the splitting 

surfaces between the brain and the rest of the head. In this case, this makes possible the use of 

explicit analytic expressions for the solutions of certain contour problems. In case of requiring 

more realistic models, more complex geometries (with more layers and more involved surfaces) 

are mandatory, and the contour problems need to be numerically solved, in general. 

Finally, since the source estimation problem is not well posed, a regularization algorithm 

is required in order to minimize the error sensitivity on the potential measurement (the problem 

of lack of uniqueness is easily solved by choosing appropriate unicity sources classes) (Kirsch, 

2013). Usually, iterative methods are used in this context. However, we decided to use a different 

approach: the “Admissible Data Method” (Hernandez Montero, Fraguela Collar, & Henry, 2019). 

This methodology allows to clarify a priori if a certain sources class is appropriate to identify a 

given measurement. 

We apply the previously mentioned identification methodology to the specific case of 

sources supported and harmonic on a neighborhood of the cortex, which turn to be a more natural 

and convenient class than the above cited harmonic on the whole brain volume class. This should 

be understood in the following sense: by natural we mean an equivalent mathematical source 

which both reproduces the measurement and it is concentrated at the biological active zone. As it 



has been said above, the EEG reflects synaptic activity occurring near the cortex (Nunez, Nunez, 

& Srinivasan, 2019).  

 

 

Method 

 

 

The model and the Inverse Electroencephalographic Problem 

 

 

In the simple volume conductor model (studied in (Sarvas, 1987) based on the results in 

(Geselowitz, 1967)), the brain is considered as conducting medium of electrical current, in which 

there is also a generating mechanism of other biological currents produced by neuronal activity, 

called impressed currents.  

We will denote by Ω1 the region occupied by the brain, and by 𝜕Ω1 = 𝑆1 its border, 

corresponding to the cortex. 𝜎1 denotes the Ohmic current conductivity (in a normal brain is 

considered to be constant and equal to the one corresponding to the saturated salt water (Nunez & 

Srinivasan, 2006)) and 𝜇 denotes the magnetic permeability. From the perspective of a macro 

spatial scale, the EEG measurements detect average synaptic source activity (Nunez, Nunez, & 

Srinivasan, 2019), so the constant conductivities reflect the average effect of microscopic spatial 

fluctuations. Additionally, we suppose that the electric field generated in the brain is due to their 

conductive properties as physical medium, and electrical sources originated by neuronal activity. 

Finally, 𝑢1 will be the electric potential in the brain volume Ω1. On the other hand, the rest of the 

head is considered also as a homogeneous conducting medium Ω2, with outer border 𝜕Ω2 = 𝑆2 

corresponding to the scalp. Its average conductivity, considered constant, is 𝜎2. In this region 

there are no sources of electrical activity (see Fig. 1). Analogously, 𝑢2 will be the electric 

potential distribution in Ω2. We set Ω = Ω1 ∪ Ω2. 

In this way, other layers such as the skull or the spinal brain fluid, among others, are not 

considered. The outer medium (outside the head) is supposed to have a vanishing conductivity. 



Hence, the simple quasi-static model describes the behavior of potentials 𝑢1 and 𝑢2, in the 

following way: 

 

−𝜎1∆𝑢1 = 𝑓 in Ω1, ( 1 ) 

∆𝑢2 = 0 in Ω2, ( 2 ) 

𝑢1 = 𝑢2 on 𝑆1, ( 3 ) 

𝜎1
𝜕𝑢1

𝜕𝑛1
 = 𝜎2

𝜕𝑢2

𝜕𝑛1
 on 𝑆1, ( 4 ) 

𝜕𝑢2

𝜕𝑛2
|

𝑥∈𝜕Ω2

= 0  on 𝑆2, ( 5 ) 

 

Where  
𝜕𝑢𝑖

𝜕𝑛𝑗
 denotes the normal derivative of 𝑢𝑖 on 𝑆𝑗 with respect to the normal unitary vector 𝑛𝑗 , 

outer to Ω𝑗, 𝑖, 𝑗 = 1,2. Here, the forward problem consists on, given a source 𝑓, finding the 

potentials 𝑢1 and 𝑢2. Thus, the corresponding inverse problem consists on, given a measurement 

𝑉, finding an equivalent source 𝑓 satisfying ( 1 ) - ( 5 ) in such a way that the corresponding 

potential simultaneously fulfills the condition 𝑢2|𝑆2
= 𝑉.  

 

 

Fig. 1. Simple schematic representation of the volume conductor model.  

Source: Own elaboration. 

 

We consider the Hilbert spaces 𝐿2(Ω𝑖), 𝐿2(𝑆𝑖) and 𝐿2(Ω) of square summable functions defined 

on Ω𝑖, 𝑆𝑖 and Ω; respectively (𝑖 = 1,2). Analogously, we will denote by 𝐻1(Ω𝑖) and 𝐻1(Ω) the 



corresponding Sobolev spaces (𝑖 = 1,2). We will denote also by 𝐻1(S𝑖) the subspaces of 𝐿2(𝑆𝑖)          

given by the traces in 𝑆𝑖 of functions in 𝐻1(Ω𝑖) (𝑖 = 1,2). 

The superindex (1) will indicate subspace corresponding to functions orthogonal to 

constants (with respect to the appropriate inner product). Namely, if 𝑊 is a function Hilbert space 

with inner product 〈, 〉𝑊, then 𝑊(1) = {𝑤 ∈ 𝑊: 〈𝑤, 1〉𝑊 = 0}, where 1 is the indicator function of 

the corresponding domain. Also, the superindex ⊥ denotes the orthogonal complement in 𝑊 of a 

set 𝐹 in 𝑊, that is, 𝐹⊥ = {𝑤 ∈ 𝑊: 〈𝑤, 𝑓〉𝑊 = 0, ∀𝑓 ∈ 𝐹}. 

In the neuronal activity source estimation problem, via model ( 1 ) - ( 5 ), the operative 

formulation requires to find an operator 𝒜  which associates to each neuronal activity source 𝑓 

(in a certain class ℱ) the measurement 𝑉. Namely, the inverse source estimation problem reduces 

to solve the operational equation 

 

𝒜(𝑓) = 𝑉, ( 6 ) 

 

Where 𝑉 = 𝑢2|𝑆2
 is the potential distribution measurement on 𝑆2. 

Hence, solving the inverse source estimation problem means that, starting from the 

instantaneous electroencephalographic measurement 𝑉 = 𝑢2|𝑆2
, a source 𝑓 “reproducing this 

measurement” could be find, i.e., substituting  𝑓 in the model ( 1 ) - ( 5 ), there exists a unique 

solution (𝑢1
(𝑓)

, 𝑢2
(𝑓)

 ) satisfying 𝑢2
(𝑓)

|
𝑆2

= 𝑉. 

Given a class ℱ of functions defined on the brain, the image of ℱ by the operator 𝒜 will 

be called admissible data set. This is exactly the set of measurements which could be reproduced 

by sources in the class ℱ. Furthermore, the class ℱ will be said to be a unicity class if operator 𝒜 

restricted to ℱ is injective. In what follows the admissible data set associated to a sources class ℱ 

will be denoted by ℳ[ℱ]: 

 

𝒜[ℱ] = ℳ[ℱ]. ( 7 ) 

 

In (Fraguela Collar, Oliveros Oliveros, Morín Castillo, & Conde Mones, 2015) was proved that 

operator 𝒜 is compact from 𝐿2
(1)(Ω1) to 𝐿2

(1)(𝑆2). In addition, in Theorem 2.3 was shown that 



(Ker𝒜)⊥ = ℋ(1)(Ω1), where ℋ(Ω1) is the closed subspace in 𝐿2(Ω1) of harmonic functions. 

From this result yield the following conclusions, which will be important in what follows: 

 

a) If the desired source is required to be in ℋ(1)(Ω1), then the unicity theorem for the 

solution of the inverse problem corresponding to the operational equation ( 6 ) is fulfilled. 

b) If the source 𝑓 which reproduces a given potential distribution 𝑉 is required to be in a 

certain class ℱ which satisfies the unicity condition for the solution of the inverse 

problem, and 𝑉 can also be reproduced by ℎ ∈ ℋ(1)(Ω1) (note that each one uniquely 

reproduces 𝑉 in their own class. Certainly, there is no unique representation in 𝐿2(Ω1)), 

then ℎ is the orthogonal projection of 𝑓 on ℋ(1)(Ω1), independently of the chosen class 

ℱ. 

 

We note that another unicity class for the source estimation problem was obtained in (Fraguela 

Collar, Oliveros Oliveros, Morín Castillo, & Conde Mones, 2015) consisting on certain kind of 

piecewise constant sources. 

 

 

Operational formulation of the inverse problem 

 

 

In order to solve the source estimation problem for certain unicity classes in the context of the 

volume conductor model  ( 1 ) - ( 5 ), we need to reduce the inverse problem to an equivalent 

operational formulation. In general, solving this inverse problem in a realistic geometry is a quite 

involved mathematical problem. For the sake of simplicity, in order to explain our methodology 

more easily, we will consider a simple geometric model for the head.  

We consider two concentric spheres. The interior of the inner sphere 𝑆1, of radius 𝑅1 > 0 

corresponds to the brain volume Ω1, and the interior of the outer sphere 𝑆2, of radius 𝑅2 > 𝑅1, 

corresponds to the whole head Ω and outlines the region Ω2 corresponding to the spherical crown 

(see Fig. 1 and Fig. 2).  

 



 

Fig. 2. Simple scheme of the head and brain.  

Source: Own elaboration. 

 

This simple spherical model allows us to build explicit analytical expressions for the solutions of 

the volume conductor model ( 1 ) - ( 5 ) in terms of the Fourier series with respect to classical 

orthonormales bases, which eases the qualitative analysis, and also constitutes the basis of an 

algorithm for the numerical resolution of the forward and inverse problems. 

We start from assuming that the source is in a unicity class ℱ in 𝐿2
(1)(Ω1). Note that, in 

𝐿2
(1)(Ω1), the forward problem ( 1 ) - ( 5 ) has an unique solution in the Sobolev space 𝐻1

(1)(Ω), 

and hence its restriction to the border 𝑆2 could be considered in the sense of Sobolev traces on 𝑆2, 

(Mijailov, 1978). 

Next, we introduce some contour problems, which are auxiliary in solving the main 

inverse problem of source estimation, and associated to the corresponding solution. Note that 

these contour problems have no physical meaning; we use them for analyzing the operational 

formulation of the inverse problem. Their solutions will be interpreted in a weak sense. Fix a 

source 𝑓 ∈ 𝐿2
(1)(Ω1) and 𝜓 ∈ 𝐿2

(1)(𝑆1). 

 

𝜎1𝛥𝑤1 = 𝑓 in Ω1, 

𝜕𝑤1

𝜕𝑛1

= 0  on S1, 

( 8 ) 

 

𝛥𝑣1 = 0 in Ω1, 

𝜎1

𝜕𝑣1

𝜕𝑛1

= 𝜓 on S1, 

( 9 ) 



 

𝛥𝑣2 = 0 in Ω2, 

𝜎2

𝜕𝑣2

𝜕𝑛1

= 𝜓 on S1, 

∂𝑣2

∂n2

= 0 on S2. 

( 10 ) 

 

Definition 1. The functions 𝑤1, 𝑣1 ∈ 𝐻1(𝛺1), 𝑣2 ∈ 𝐻1(𝛺2), satisfying  

 

𝜎1 ∫ 𝛻𝑤1 ∙ 𝛻𝜔1𝑑𝑥
Ω1

= ∫ 𝑓𝜔1𝑑𝑥
Ω1

, ∀𝜔1 ∈ 𝐻1(Ω1), 
( 11 ) 

𝜎1 ∫ 𝛻𝑣1 ∙ 𝛻𝜔1𝑑𝑥
Ω1

= ∫ 𝜓𝜔1𝑑𝑥
S1

, ∀𝜔1 ∈ 𝐻1(Ω1), 
( 12 ) 

𝜎2 ∫ 𝛻𝑣2 ∙ 𝛻𝜔2𝑑𝑥
Ω2

= − ∫ 𝜓𝜔2𝑑𝑠
S1

, ∀𝜔2 ∈ 𝐻1(Ω2), ( 13 ) 

 

will be called weak solutions of problems ( 8 ), ( 9 ) and ( 10 ), respectively. 

The following result holds.  

Theorem 1. Problems ( 8 ), ( 9 ) and ( 10 ) have weak solution if and only if 𝑓 ∈ 𝐿2
(1)(𝛺1) and 

𝜓 ∈ 𝐿2
(1)(𝑆1). In this case, the weak solutions are unique in their respective spaces 𝐻1

(1)(𝛺1) and 

𝐻1

(1)(𝛺2), and the following inequalities hold: 

 

‖𝑤1‖𝐻1(Ω1) ≤ 𝐶1‖𝑓‖𝐿2(Ω1), ( 14 ) 

‖𝑣1‖𝐻1(Ω1) ≤ 𝐾1‖𝜓‖𝐿2(𝑆1), ( 15 ) 

‖𝑣2‖𝐻1(Ω2) ≤ 𝐶2‖𝜓‖𝐿2(𝑆1), ( 16 ) 

 

Where constants 𝐶1, 𝐾1 and 𝐶2 do not depend on 𝑓 and 𝜓, (see Mijailov, 1978). 

Consequently, the following operators are well defined by using the weak solutions of 

problems ( 8 ), ( 9 ) and ( 10 ): 

 



𝐴0: 𝐿2
(1)

(Ω1) ⟶ 𝐿2(𝑆1),  𝐴0𝑓 = 𝑤1|𝑆1
, ( 17 ) 

𝐵0: 𝐿2
(1)(𝑆1) ⟶ 𝐿2(𝑆1),  𝐵0𝜓 = 𝑣1|𝑆1

, ( 18 ) 

𝐶0: 𝐿2
(1)(𝑆1) ⟶ 𝐿2(𝑆1),  𝐶0𝜓 = 𝑣2|𝑆1

, ( 19 ) 

𝐷0: 𝐿2
(1)(𝑆1) ⟶ 𝐿2(𝑆2),  𝐷0𝜓 = 𝑣2|𝑆2

. ( 20 ) 

 

Making use of previous results and the compactness of the trace operators from 𝐻1(Ω1) to 

𝐿2(S1), and from 𝐻1(Ω2) to 𝐿2(𝑆1) and to 𝐿2(𝑆2), we conclude the compactness of the above 

operators, 𝐴0, 𝐵0, 𝐶0 and 𝐷0. It is convenient to consider the projection operators 𝑃𝑖: 𝐿2(𝑆𝑖) ⟶

𝐿2

(1)(S𝑖), defined by: 

 

𝑃𝑖𝜑𝑖 = 𝜑𝑖 −
1

|𝑆𝑖|
∫ 𝜑𝑖𝑑𝑠

𝑆𝑖

, 𝑖 = 1,2, 
( 21 ) 

 

Where |𝑆𝑖| denotes the Lebesgue measure of 𝑆𝑖. These averages could be considered as reference 

potentials, and these substractions are required in order to assure existence of the corresponding 

solutions. Thus we define the following operators: 

 

𝐴 = 𝑃1 ∘ 𝐴0: 𝐿2
(1)(Ω1) ⟶ 𝐿2

(1)(𝑆1), ( 22 ) 

𝐵 = 𝑃1 ∘ 𝐵0: 𝐿2
(1)(𝑆1) ⟶ 𝐿2

(1)(𝑆1), ( 23 ) 

𝐶 = 𝑃1 ∘ 𝐶0: 𝐿2
(1)

(𝑆1) ⟶ 𝐿2
(1)

(𝑆1), ( 24 ) 

𝐷 = 𝑃2 ∘ 𝐷0: 𝐿2
(1)(𝑆1) ⟶ 𝐿2

(1)(𝑆2). ( 25 ) 

 

By using these operators 𝐴, 𝐵, 𝐶 and 𝐷, the solution of the inverse problem associated to the 

contour problem ( 1 ) - ( 5 ) can be obtained by solving the following system of operational 

equations: 

 



𝐴𝑓 + 𝐵𝜓 = 𝐶𝜓, ( 26 ) 

𝐷𝜓 = 𝑉. ( 27 ) 

 

Actually, equation ( 27 ) is equivalent to the Cauchy problem in region Ω2 for the Laplace 

operator with respect to the Cauchy data 
𝜕𝑢2

𝜕𝑛2

= 0  on 𝑆2 and 𝑢2|𝑆2
= 𝑉 , where 𝑉 ∈ 𝐿2

(1)(𝑆2). 

Once 𝜓 is known, it can be substituted in  ( 26 ), obtaining the operational equation:  

 

𝐴𝑓 = −(𝐵 − 𝐶)𝜓. ( 28 ) 

 

Thus, equation ( 28 ) give us 𝑓, so system ( 26 ) - ( 27 ) is equivalent to inverse source estimation 

problem. Finally, the operator which relates the source 𝑓 with the measurement 𝑉 is given by: 

 

𝒜 = 𝐷(−(𝐵 − 𝐶)−1𝐴) = −𝐷(𝐵 − 𝐶)−1𝐴. ( 29 ) 

The following result can be found in (Fraguela Collar, Oliveros Oliveros, Morín Castillo, & 

Conde Mones, 2015). 

Theorem 2. One has 

 

[𝐾𝑒𝑟 𝒜]⊥ = ℋ(1)(Ω1). 

 

This theorem justifies remarks a) and b) above. An important corollary follows also from it: if 

𝑓 ∈ ℱ reproduces a measurement 𝑉, and the harmonic function ℎ0 is the unique harmonic source 

on Ω1 which also reproduces 𝑉, then ℎ0 is the orthogonal projection of 𝑓 on ℋ(1)(Ω1), 

independently of the chosen class ℱ, and 𝑓 − ℎ0 is the component of 𝑓 in Ker 𝒜.  

Hence, for the class ℱ  to be an unicity class is necessary and sufficient that  

 

(ℱ − ℱ) ∩ 𝐾𝑒𝑟 𝒜 = {0}, 

 



Where ℱ − ℱ = {𝑓1 − 𝑓2 : 𝑓1, 𝑓2 ∈ ℱ} and 0 is the vanishing function. Note that the class ℱ need 

not to be a linear space. Indeed, ℱ is a unicity class if 𝒜 (or A) restricted to ℱ is injective. This 

happens if for any 𝑓1, 𝑓2 ∈ 𝐹 with 𝒜(𝑓1) = 𝒜(𝑓2) one gets  𝑓1 = 𝑓2, but 𝒜(𝑓1 − 𝑓2) = 𝒜(𝑓1) −

𝒜(𝑓2), so 𝒜(𝑓1) = 𝒜(𝑓2) is equivalent to 𝑓1 − 𝑓2 ∈ 𝐾𝑒𝑟𝒜, which has to be trivial.  

 

 

Admisible data method 

 

 

The “Admissible Data Method” (ADM), as a regularization strategy (Hernandez Montero, 

Fraguela Collar, & Henry, 2019), can be applied to any sources unicity class ℱ. Concretely, in 

the context of the inverse source estimation problem linked to the instantaneous contour problem                       

( 1 ) - ( 5 ), when the admissible data set ℳ[ℱ] is contained into the admissible data set 

corresponding to the harmonic sources ℋ(1)(Ω1), consists of the following steps: 

 

1. Choose, if possible, a closed vector subspace or compact convex subset ℳ0 of ℳ[𝐹] in 

such a way that the minimum distance problem to ℳ0, would be well posed in 𝐿2(𝑆2). 

2. Assuming fixed a measurement error and a measurement 𝑉̃ ∈ 𝐿2(𝑆2) (with error), find the 

admissible data 𝑉0 ∈ ℳ0 which attains the minimum distance to 𝑉̃, and check that this 

distance has the magnitude order of the measurement error. 

3. Compute the harmonic source ℎ0 which reproduces the measurement 𝑉0. 

4. Finally, use ℎ0 to characterize the source 𝑓 ∈ ℱ which best reproduces the measurement 

𝑉0 in the class ℱ. In order to do that, one makes use of remark after Theorem 2: 𝑓 − ℎ0 is 

orthogonal to any harmonic function.  

 

This methodology will be illustrated in the last section, in the case of the sources supported and 

harmonic in a neighborhood of the cortex. 

 

 



Results 

 

 

Reduction of the instantaneous source estimation problem to a Cauchy data 

problem on cortex 

 

 

In order to find the restriction to 𝑆1 of the solution 𝑢2 on Ω2, we will study the following contour 

problem, which is a Cauchy problem for the Laplace equation on Ω2, with vanishing Neumann 

contour condition and Dirichlet data 𝑉: 

 

𝛥𝑢2 = 0 in Ω2 , ( 30 ) 

𝜕𝑢2

𝜕𝑛2

= 0  on 𝑆2, ( 31 ) 

𝑢2|𝑆2
= 𝑉, ( 32 ) 

 

Where 𝑉 is the potential distribution electroencephalographic measurement 𝑉 in 𝑆2 (the whole 

scalp) and 𝑢2 is the electric potential in Ω2, at a given time instant. We proceed by computing 

formally the solution and studying the convergence of the obtained series (Mijailov, 1978). 

 We consider the normalized spherical harmonics (Tijonov & Samarsky, 1980, pp. 765-

778): 

 

𝑌𝑛𝑚(𝜃, 𝜙) = √
2𝑛 + 1

4𝜋

(𝑛 − |𝑚|)!

(𝑛 + |𝑚|)!
𝑃𝑛

|𝑚|(𝑐𝑜𝑠𝜃)𝑒𝑖𝑚𝜙, 

( 33 ) 

 

Where 𝑃𝑛
(𝑚)(𝜃, 𝜙) are the associated Legendre polynomials, and 𝜃 ∈ [0, 𝜋], 𝜙 ∈ [0,2𝜋], 1 ≤ 𝑛 <

∞, −𝑛 ≤  𝑚 ≤ 𝑛. Thus, 𝑉 is given by 

 



𝑉(𝜃, 𝜙) = ∑ ∑ 𝑉𝑛𝑚

𝑛

𝑚=−𝑛

∞

𝑛=0

𝑌𝑛𝑚(𝜃, 𝜙), 
( 34 ) 

 

Where 𝑉𝑛𝑚 are the Fourier coefficients of 𝑉. It can be checked that the corresponding solution to 

problem ( 30 ) - ( 32 ) is given by 

 

𝑢2(𝑟, 𝜃, 𝜙) = ∑ ∑ (
𝑛 + 1

2𝑛 + 1
(

𝑟

𝑅2
)

𝑛

+
𝑛

2𝑛 + 1
(

𝑅2

𝑟
)

𝑛+1

)

𝑛

𝑚=−𝑛

∞

𝑛=1

𝑉𝑛𝑚𝑌𝑛𝑚(𝜃, 𝜙), 
( 35 ) 

 

With convergence in 𝐿2(Ω2). The solution of the Cauchy problem corresponds to restrict 𝑢2 to 

𝑆1, which means to evaluate ( 35 ) at 𝑟 = 𝑅1, obtaining 

 

𝑢2(𝑅1, 𝜃, 𝜙) = ∑ ∑ (
𝑛 + 1

2𝑛 + 1
(

𝑅1

𝑅2
)

𝑛

+
𝑛

2𝑛 + 1
(

𝑅2

𝑅1
)

𝑛+1

)

𝑛

𝑚=−𝑛

∞

𝑛=1

𝑉𝑛𝑚𝑌𝑛𝑚(𝜃, 𝜙). 
( 36 ) 

 

In order to assure that the above expression for 𝑢2(𝑅1, 𝜃, 𝜙) to be the trace in 𝑆1 of a function in 

𝐻1(𝛺1), the series composed with the squares of Fourier coefficients of ( 36 ), multiplied by 𝑛, 

must converge (Mijailov, 1978, p. 221). Then, by using an elementary result on convergence of 

numerical series
1
 we obtain the following condition on the Fourier coefficients of 𝑉: 

 

∑ 𝑛 (
𝑅2

𝑅1
)

2𝑛

∑ |𝑉𝑛𝑚|2

𝑛

𝑚=−𝑛

∞

𝑛=1

< ∞. 
( 37 ) 

 

Next we find out what conditions on 𝑉 must be imposed in order for 𝜓 =
𝜎2

𝜎1

𝜕𝑢2

𝜕𝑟
|

𝑟=𝑅1

 to be 

𝐿2
(1)(𝑆1)2. It is easy to see that 

 

                                                 
1
 If 𝑥𝑛 and 𝑦𝑛 are nonnegative term sequences, and lim𝑛→∞

𝑥𝑛

𝑦𝑛
= 𝛼 ∈ (0, ∞), then these 

sequences are said to be “equivalent”, and then ∑ 𝑥𝑛
∞
𝑛=1 < +∞ iff ∑ 𝑦𝑛

∞
𝑛=1 < +∞ 

2
 This is a consequence of the necessary and sufficient condition for the existence of solution 

Neumann problem for the Laplace equation on Ω1 ∪ Ω2 and on Ω1. 



𝜓 =
𝜎2

𝜎1

𝜕𝑢2

𝜕𝑟
|

𝑟=𝑅1

=
𝜎2

𝜎1
∑ ∑

𝑛(𝑛 + 1)

2𝑛 + 1

𝑛

𝑚=−𝑛

(
𝑅1

𝑛−1

𝑅2
𝑛 −

𝑅2
𝑛+1

𝑅1
𝑛+2)

∞

𝑛=0

𝑉𝑛𝑚𝑌𝑛𝑚(𝜃, 𝜙). 
( 38 ) 

 

Consequently, ( 38 )  must converge in 𝐿2(𝑆1). Proceeding as before, we get the following result:  

Theorem 3. One has 𝜓 ∈ 𝐿2
(1)(𝑆1) if and only if the Fourier coefficients 𝑉𝑛𝑚 satisfy 

 

∑ 𝑛2 (
𝑅2

𝑅1
)

2𝑛

∑ |𝑉𝑛𝑚|2

𝑛

𝑚=−𝑛

∞

𝑛=1

< ∞. 
( 39 ) 

 

All of this machinery allows us to convert the source estimation problem in the head into a source 

estimation problem in the brain from Cauchy data on the cortex. From now on we will suppose 

that the Fourier coefficients 𝑉𝑛𝑚 of 𝑉 satisfy condition ( 39 ). From an operational point of view, 

it makes sense to solve equation ( 28 ) from 𝜓 given by ( 38 ). That is 

 

𝐴𝑓 = 𝐶𝜓 − 𝐵𝜓 = 𝑔, ( 40 ) 

 

Which could be viewed as the identification of the source 𝑓, which reproduces the potential 𝑔 on 

the cortex 𝑆1, as it would be artificially measured.  

In order to obtain an explicit expression for 𝑔 = 𝐶𝜓 − 𝐵𝜓, we make use of ( 38 ). Since 

operators 𝐵 and 𝐶 linear and continuous, it is enough to compute 𝐵(𝑌𝑛𝑚(𝜃, 𝜙)) and 

𝐶(𝑌𝑛𝑚(𝜃, 𝜙)). For this purpose, in view of ( 18 ) and ( 19 ), we solve problems ( 9 ) and ( 10 ) 

with contour data 𝑌𝑛𝑚(𝜃, 𝜙). 

For 𝐵(𝑌𝑛𝑚(𝜃, 𝜙)), we look for the solution 𝑣1 of  the contour problem ( 9 ) of the form 

 

𝑣1(𝑟, 𝜃, 𝜑) = 𝐴𝑟𝑛𝑌𝑛𝑚(𝜃, 𝜑), ( 41 ) 

 

And for 𝐶(𝑌𝑛𝑚(𝜃, 𝜙)), we seek the solution 𝑣2 of the contour problem ( 10 ) of the form 

 



𝑣2(𝑟, 𝜃, 𝜙) = (𝐴𝑛𝑟𝑛 + 𝐵𝑛𝑟−(𝑛+1))𝑌𝑛𝑚(𝜃, 𝜙). ( 42 ) 

 

In this way we get  

 

𝐵(𝜓) =
𝜎2

𝜎1
2 ∑

𝑛 + 1

2𝑛 + 1
(

𝑅2

𝑅1
)

𝑛+1

((
𝑅1

𝑅2
)

2𝑛+1

− 1)

∞

𝑛=1

∑ 𝑉𝑛𝑚𝑌𝑛𝑚(𝜃, 𝜙)

𝑛

𝑚=−𝑛

, 
( 43 ) 

𝐶(𝜓) =
1

𝜎2
∑

𝑛(𝑛 + 1)

(2𝑛 + 1)
(

1

𝑛
(

𝑅1

𝑅2
)

𝑛

+
1

𝑛 + 1
(

𝑅2

𝑅1
)

𝑛+1

) ∑ 𝑉𝑛𝑚

𝑛

𝑚=−𝑛

𝑌𝑛𝑚(𝜃, 𝜙)

∞

𝑛=1

. 
( 44 ) 

 

From this expressions one easily gets 

 

𝑔 =
1

𝜎1

∑
𝑛 + 1

2𝑛 + 1
{(

𝑅1

𝑅2

)
𝑛

(1 −
𝜎2

𝜎1

) + (
𝑅2

𝑅1

)
𝑛+1

(
𝑛

𝑛 + 1
+

𝜎2

𝜎1

)} ∑ 𝑉𝑛𝑚

𝑛

𝑚=−𝑛

𝑌𝑛𝑚(𝜃, 𝜙)

∞

𝑛=1

. 
( 45 ) 

 

In summary, we conclude that, if the Fourier coefficients 𝑉𝑛𝑚 of measurement 𝑉 satisfy condition 

( 39 ), then the source estimation problem turns to solve equation 𝐴𝑓 =  𝑔, where 𝑔 is given by ( 

45 ). This problem can be interpreted as a source estimation problem in the brain, assuming it is 

isolated, and starting from the “measurement” 𝑔 on the cortex. In what follows, we will apply 

this conclusion. 

 

 

Identification of harmonic sources in the brain 

 

 

In this section we consider a given instantaneous potential distribution 𝑉 on the scalp, and we 

study under what conditions there exists an (unique) harmonic source 𝑓 in the brain which 

reproduces 𝑉. By the way, we will find an explicit expression for 𝑓.  

We start from the fact that any harmonic source 𝑓 in Ω1 should take the following form: 

 



𝑓(𝑟, 𝜃, 𝜙) = ∑ ∑ 𝐹𝑛𝑚√
2𝑛 + 3

𝑅1
2𝑛+3 𝑟𝑛𝑌𝑛𝑚(𝜃, 𝜙)

𝑛

𝑚=−𝑛

∞

𝑛=1

, 

( 46 ) 

 

Which is a development with respect to the orthonormal basis of spherical harmonics 

√
2𝑛+3

𝑅1
2𝑛+3 𝑟𝑛𝑌𝑛𝑚(𝜃, 𝜙). Hence, the convergence of this series (in the 𝐿2(Ω1) sense) is equivalent to 

the condition 

 

∑ ∑ |𝐹𝑛𝑚|2 < ∞

𝑛

𝑚=−𝑛

∞

𝑛=1

. 
( 47 ) 

 

Since operator 𝐴 is linear and continuous, we get 

 

𝐴𝑓 = ∑ ∑ 𝐹𝑛𝑚√
2𝑛 + 3

𝑅1
2𝑛+3 𝐴(𝑟𝑛𝑌𝑛𝑚(𝜃, 𝜙))

𝑛

𝑚=−𝑛

∞

𝑛=1

. 

( 48 ) 

 

In order to compute  

 

𝐴(𝑟𝑛𝑌𝑛𝑚(𝜃, 𝜙)), ( 49 ) 

 

In view of ( 17 ), it is required to solve the associated problem  

 

−𝜎1𝛥𝑤1(𝑟, 𝜃, 𝜙) = 𝑟𝑛𝑌𝑛𝑚(𝜃, 𝜙) en Ω1, ( 50 ) 

𝜕𝑤1

𝜕𝑛1
|
𝑆1

= 0 sobre 𝑆1. ( 51 ) 

 

Thus we look for a solution of the form 

 

𝑤1 = 𝑣(𝑟)𝑌𝑛𝑚(𝜃, 𝜙), ( 52 ) 



Where 𝑣(𝑟) satisfies the equation 

 

𝑑

𝑑𝑟
(𝑟2

𝑑(𝑣(𝑟))

𝑑𝑟
) − 𝑣(𝑟)𝑛(𝑛 + 1) = −

𝑟𝑛+2

𝜎1
. 

( 53 ) 

 

The general solution of this equation takes the form 

 

𝑣(𝑟) = 𝑣0(𝑟) + 𝑣𝑝(𝑟), ( 54 ) 

 

Where 𝑣0 is solution for the associated homogeneous equation and 𝑣𝑝 is a particular solution. We 

propose a particular solution of the form 

 

𝑣𝑝(𝑟) = 𝐿𝑟𝑘. ( 55 ) 

 

From ( 53 ) we obtain 

 

𝑟𝑘 𝐿(𝑘(𝑘 + 1) − 𝑛(𝑛 + 1)) = −
1

𝜎1
𝑟𝑛+2. 

( 56 ) 

 

Thus we get the condition 𝑘 = 𝑛 + 2, so 

 

𝐿(𝑛2 + 5𝑛 + 6 − 𝑛2 − 𝑛) = −
1

𝜎1
, 

( 57 ) 

 

And 

 

𝐿 = −
1

2𝜎1(2𝑛 + 3)
. 

( 58 ) 

 

The function 𝑣0 satisfies the homogeneous equation 

 



𝑑

𝑑𝑟
(𝑟2

𝑑𝑣0(𝑟)

𝑑𝑟
) − 𝑣0(𝑟)𝑛(𝑛 + 1) = 0, 

( 59 ) 

 

And must be bounded at 𝑟 = 0, so takes the form 

 

𝑣0(𝑟) = 𝐵𝑟𝑛. ( 60 ) 

 

From the contour condition ( 51 ) we get 

 

𝑑𝑣0(𝑅1)

𝑑𝑟
+

𝑑𝑣𝑝(𝑅1)

𝑑𝑟
= 0, 

( 61 ) 

 

So 

 

𝐵 =
(𝑛 + 2)

𝜎12𝑛(2𝑛 + 3)
𝑅1

2. 
( 62 ) 

 

In this way we have finally found that  

 

𝐴𝑓(𝑟, 𝜃, 𝜙) = ∑ ∑ 𝐹𝑛𝑚

√(2𝑛 + 3)𝑅1

𝜎1𝑛(2𝑛 + 3)

𝑛

𝑚=−𝑛

∞

𝑛=1

𝑌𝑛𝑚(𝜃, 𝜙). 
( 63 ) 

 

From ( 40 ) we must equate expressions ( 63 ) and ( 45 ). From the unicity of the coefficients, we 

obtain the Fourier coefficients 𝐹𝑛𝑚 in terms of the corresponding 𝑉𝑛𝑚. Concretely, the final 

expression for f is: 

 

𝑓 = ∑ ∑ √
1

(2𝑛 + 3)𝑅1

𝑛(𝑛 + 1)(2𝑛 + 3)

2𝑛 + 1
{(

𝑅1

𝑅2
)

𝑛

(1 −
𝜎2

𝜎1
)

𝑛

𝑚=−𝑛

∞

𝑛=1

+ (
𝑅2

𝑅1
)

𝑛+1

(
𝑛

𝑛 + 1
+

𝜎2

𝜎1
)} 𝑉𝑛𝑚√

2𝑛 + 3

𝑅1
2𝑛+3 𝑟𝑛𝑌𝑛𝑚(𝜃, 𝜙), 

( 64 ) 



 

Where the convergence must be in 𝐿2(Ω1). Comparing expressions ( 48 ) and ( 64 ) we conclude 

the following result. 

Theorem 4. There exists a biunivocal correspondence between the set of harmonic sources 𝑓 in 

the brain Ω1 and the set of measurements 𝑉 on the scalp (in 𝐿2(𝑆2)) whose Fourier coefficients 

𝑉𝑛𝑚 with respect to the orthonormalized spherical harmonics 𝑌𝑛𝑚(𝜃, 𝜙) satisfy: 

 

∑ 𝑛3 (
𝑅2

𝑅1
)

2𝑛

∑ |𝑉𝑛𝑚|2

𝑛

𝑚=−𝑛

< ∞

∞

𝑛=1

. 
( 65 ) 

 

Furthermore, given a measurement 𝑉 satisfying condition ( 65 ), the unique harmonic source in 

Ω1 which reproduces it is given by  ( 64 ). 

We recall that from the previous theorem it follows that ℋ(1)(Ω1) is a sources unicity 

class, and the admissible data set corresponding to this class of harmonic sources orthogonal to 

the constants, denoted by ℳ[ℋ(1)(Ω1)] following notation ( 7 ), turns to be the set of 

measurements 𝑉 satisfying ( 65 ).  

Note that, from Theorem 2 and 4 it follows that for any sources class ℱ in 𝐿2(Ω1) the 

corresponding admissible data set ℳ[ℱ] is contained into the set of measurements 𝑉 in 𝐿2(𝑆2) 

which satisfy condition ( 65 ). Note also that this condition ( 65 ) is a quite strong smooth 

requirement on the spatial distribution of the measurements 𝑉, for each time instant. 

 

 

Importance of the class of harmonic sources in the sources identification 

methodology on arbitrary unicity classes. The particular case of harmonic 

sources in a neighbourhood of the cortex 

 

 

In this section we assume as before a given instantaneous potential distribution 𝑉 on the scalp, 

and we study the existence of a source in the brain reproducing it. For this source 𝑓 we assume it 



is supported and harmonic in a neigbourhood of the cortex. We stablish conditions on 𝑉 for its 

existence, and we will find the admissible data set for this class. 

Let us first clarify what will be understood for “a neighbourhood of the cortex” (see Fig. 

3): Fix 𝑅0 satisfying 0 < 𝑅0 < 𝑅1. Ω1
(0)

= {0 < 𝑟 ≤ 𝑅0} represents the subcortical part of the 

brain, Ω1
(1)

= {𝑅0 < 𝑟 ≤ 𝑅1} stands for a certain spherical neighbourhood of the cortex, and 

Ω2 = {𝑅1 < 𝑟 ≤ 𝑅2} is the rest of the head as before. Analogously, the sphere 𝑆0 = {𝑟 = 𝑅0} is 

the border of Ω1
(0)

, the sphere 𝑆1 = {𝑟 = 𝑅1} stands for the cortex and is the common border of 

Ω1
(0)

 and Ω1
(1)

, and 𝑆2 = {𝑟 = 𝑅2} stands for the scalp, where the measurements are taken, which 

is the outer border of Ω2. 

 

 

Fig. 3 Schematic figure of volume conductor model, where 𝛺1
(1)

 denotes the cerebral 

cortex 𝛺1
(0)

 it represents the remaining layers such as the scalp, skull, meninges, 

among others. 

Source: Own elaboration. 

 

It will be convenient to denote 

 

𝑟̂ = {
0  𝑖𝑓 0 < 𝑟 ≤ 𝑅0 
𝑟   𝑖𝑓 𝑅0 < 𝑟 ≤ 𝑅1

. 
( 66 ) 

 



We consider the class ℋ(1)(Ω1
(1)

) of sources in the brain which are supported and harmonic in 

Ω1 (vanishing outside). It is easy to see that this sources 𝑓 can be represented in the form 

(Tijonov & Samarsky, 1980, p. 772): 

 

𝑓(𝑟, 𝜃, 𝜙) = ∑ ∑ (𝑎𝑛𝑚√
2𝑛 + 3

𝑅1
2𝑛+3 − 𝑅0

2𝑛+3 𝑟̂𝑛

𝑛

𝑚=−𝑛

∞

𝑛=1

+ 𝑏𝑛𝑚√
2𝑛 − 1

𝑅0
−2𝑛+1 − 𝑅1

−2𝑛+1 𝑟̂−(𝑛+1)) 𝑌𝑛𝑚(𝜃, 𝜙), 

( 67 ) 

 

Where the corresponding series of Fourier coefficients 

 

∑ ∑ |𝑎𝑛𝑚|2

𝑛

𝑚=−𝑛

∞

𝑛=1

, ∑ ∑ |𝑏𝑛𝑚|2

𝑛

𝑚=−𝑛

∞

𝑛=1

, 
( 68 ) 

 

should converge. 

Next, we solve the auxiliary contour problem ( 8 ), which in view of ( 17 ) means 

compute 𝐴(𝑓). Since operator 𝐴 is linear and continuous, it is enough to compute 

𝐴(𝑟̂𝑛𝑌𝑛𝑚(𝜃, 𝜙)) and 𝐴 (𝑟̂−(𝑛+1)𝑌𝑛𝑚(𝜃, 𝜙)). In order to find:  

 

𝐴(𝑟̂𝑛𝑌𝑛𝑚(𝜃, 𝜙)), ( 69 ) 

 

it is necessary to solve the associated contour problem  

 

−𝜎1𝛥𝑤1(𝑟, 𝜃, 𝜙) = 𝑟̂𝑛𝑌𝑛𝑚(𝜃, 𝜙) en Ω1, ( 70 ) 

𝜕𝑤1

𝜕𝑛1
|
𝑆1

= 0 on 𝑆1, ( 71 ) 

 

whose solution is imposed to take the form 



 

𝑤1 = 𝑎(𝑟)𝑌𝑛𝑚(𝜃, 𝜙). ( 72 ) 

 

It is easy to see that 𝑎(𝑟) satisfies the equation 

𝑑

𝑑𝑟
(𝑟2

𝑑(𝑎(𝑟))

𝑑𝑟
) − 𝑎(𝑟)𝑛(𝑛 + 1) = −

𝑟̂𝑛+2

𝜎1
. 

( 73 ) 

 

If we denote by 𝑎0(𝑟), 𝑤1
(0)

 and 𝑎1(𝑟), 𝑤1
(1)

 the corresponding restrictions of 𝑎(𝑟) and 𝑤1 to Ω1
(0)

 

and Ω1
(1)

, respectively, and consider the compatibility conditions on 𝑆0, 

 

𝑤1
(0)

|
𝑟=𝑅0

= 𝑤1
(1)

|
𝑟=𝑅0

  on 𝑆0, ( 74 ) 

𝜕𝑤1
(0)

𝜕𝑟
|

𝑟=𝑅0

=
𝜕𝑤1

(1)

𝜕𝑟
|

𝑟=𝑅0

 on 𝑆0, 
( 75 ) 

 

we arrive to functions 𝑎0(𝑟) and 𝑎1(𝑟) satisfy 

 

𝑑

𝑑𝑟
(𝑟2 𝑑(𝑎0(𝑟))

𝑑𝑟
) − 𝑎0(𝑟)𝑛(𝑛 + 1) = 0, for 0 < 𝑟 ≤ 𝑅0, ( 76 ) 

𝑑

𝑑𝑟
(𝑟2 𝑑(𝑎1(𝑟))

𝑑𝑟
) − 𝑎1(𝑟)𝑛(𝑛 + 1) = −

𝑟𝑛+2

𝜎1
, for  𝑅0 < 𝑟 ≤ 𝑅1, ( 77 ) 

 

and the contour conditions at 𝑟 = 𝑅0 

 

𝑎0(𝑅0) = 𝑎1(𝑅0), ( 78 ) 

𝑑𝑎0

𝑑𝑟
(𝑅0) =

𝑑𝑎1

𝑑𝑟
(𝑅0). 

( 79 ) 

 

Also, the following additional conditions must be added: 

 

|𝑎0(0)| < ∞, ( 80 ) 



𝑑𝑎1

𝑑𝑟
(𝑅1) = 0. 

( 81 ) 

 

Solving this problem for 𝑎0(𝑟) and 𝑎1(𝑟) gives us 

 

𝑎0(𝑟) =
1

𝜎1
(−

𝑛 + 1

𝑛(2𝑛 + 1)(2𝑛 + 3)

𝑅0
2𝑛+3

𝑅1
2𝑛+3 +

(𝑛 + 2)𝑅1
2

2𝑛(2𝑛 + 3)
−

𝑅0
2

2(2𝑛 + 1)
) 𝑟𝑛, 

( 82 ) 

𝑎1(𝑟) = (−
𝑛 + 1

𝜎1𝑛(2𝑛 + 1)(2𝑛 + 3)

𝑅0
2𝑛+3

𝑅1
2𝑛+3 +

(𝑛 + 2)𝑅1
2

2𝜎1𝑛(2𝑛 + 3)
) 𝑟𝑛

− (
𝑅0

2𝑛+3

𝜎1(2𝑛 + 1)(2𝑛 + 3)
) 𝑟−(𝑛+1) −

1

𝜎12(2𝑛 + 3)
𝑟𝑛+2. 

( 83 ) 

 

Thus, we finally get  

 

𝐴(𝑟̂𝑛𝑌𝑛𝑚(𝜃, 𝜙)) = (−
(1 + 𝑛(1 + 𝑅1

2)) 𝑅0
2𝑛+3

𝜎1𝑛(2𝑛 + 1)(2𝑛 + 3)𝑅1
𝑛+3 +

𝑅1
𝑛+2

𝜎1𝑛(2𝑛 + 3)
) 𝑌𝑛𝑚(𝜃, 𝜙). 

( 84 ) 

 

In a similar fashion one obtains 

 

𝐴 (𝑟̂−(𝑛+1)𝑌𝑛𝑚(𝜃, 𝜙)) = (
𝑅1

−𝑛+1 − 𝑅0
2𝑅1

−𝑛−1

2𝜎1𝑛
) 𝑌𝑛𝑚(𝜃, 𝜙). 

( 85 ) 

 

Equipped with ( 84 ) and ( 85 ), we can easily write the resulting formula for 𝐴(𝑓): 

 



𝐴𝑓 = ∑ ∑ (𝑎𝑛𝑚√
2𝑛 + 3

𝑅1
2𝑛+3 − 𝑅0

2𝑛+3 (−
𝑅0

2𝑛+3(1 + 𝑛(1 + 𝑅1
2))

𝜎1𝑛(2𝑛 + 3)(2𝑛 + 1)𝑅1
𝑛+3

𝑛

𝑚=−𝑛

∞

𝑛=1

+
𝑅1

𝑛+2

𝜎1𝑛(2𝑛 + 3)
)

+ 𝑏𝑛𝑚√
2𝑛 − 1

𝑅0
−2𝑛+1 − 𝑅1

−2𝑛+1 (
𝑅1

−𝑛+1 − 𝑅0
2𝑅1

−𝑛−1

2𝜎1𝑛
)) 𝑌𝑛𝑚(𝜃, 𝜙). 

(86) 

 

Finally, we must equate (86) and ( 45 ) and apply the coefficients unicity in order to obtain  

 

(𝑎𝑛𝑚√
2𝑛 + 3

𝑅1
2𝑛+3 − 𝑅0

2𝑛+3 (−
(1 + 𝑛(1 + 𝑅1

2))𝑅0
2𝑛+3

𝑛(2𝑛 + 1)(2𝑛 + 3)𝑅1
𝑛+3 +

𝑅1
𝑛+2

𝑛(2𝑛 + 3)
)

+ 𝑏𝑛𝑚√
2𝑛 − 1

𝑅0
−2𝑛+1 − 𝑅1

−2𝑛+1 (
(𝑅1

−𝑛+1 − 𝑅0
2𝑅1

−𝑛−1)

2𝜎1𝑛
))

=
(𝑛 + 1)

(2𝑛 + 1)
{(

𝑅1

𝑅2
)

𝑛

(1 −
𝜎2

𝜎1
) + (

𝑅2

𝑅1
)

𝑛+1

(
𝑛

𝑛 + 1
+

𝜎2

𝜎1
)} 𝑉𝑛𝑚. 

 

( 87 ) 

Let us define 𝛼𝑛, 𝛽𝑛, and 𝛾𝑛 by 

 

𝛼𝑛 = √
2𝑛 + 3

𝑅1
2𝑛+3 − 𝑅0

2𝑛+3 (
𝑅1

𝑛+2

𝑛(2𝑛 + 3)
−

(1 + 𝑛(1 + 𝑅1
2))𝑅0

2𝑛+3

𝑛(2𝑛 + 3)(2𝑛 + 1)𝑅1
𝑛+3), 

( 88 ) 

𝛽𝑛 =
(𝑅1

2 − 𝑅0
2)√2 −

1
𝑛

2√𝑛𝑅1√𝑅1√(
𝑅1

𝑅0
)

2𝑛−1

− 1

, 

( 89 ) 

𝛾𝑛 =
𝑛 + 1

2𝑛 + 1
{(

𝑅1

𝑅2
)

𝑛

(1 −
𝜎2

𝜎1
) + (

𝑅2

𝑅1
)

𝑛+1

(
𝑛

𝑛 + 1
+

𝜎2

𝜎1
)}. 

( 90 ) 

 



It is easy to see that 

 

𝑙𝑖𝑚
𝑛→∞

𝛼𝑛

𝑛−
3
2

=
√𝑅1

√2
, 

( 91 ) 

𝑙𝑖𝑚
𝑛→∞

𝛽𝑛

𝑛−
1
2 (

𝑅0

𝑅1
)

𝑛 =
𝑅1

2 − 𝑅0
2

𝑅1√2𝑅0

, 
( 92 ) 

𝑙𝑖𝑚
𝑛→∞

𝛾𝑛

(
𝑅2

𝑅1
)

𝑛 =
1

2
(

𝑅2

𝑅1
) (1 +

𝜎2

𝜎1
). 

( 93 ) 

 

Let us write ( 87 ) in the form  

𝛼𝑛𝑎𝑛𝑚 + 𝛽𝑛𝑏𝑛𝑚 = 𝛾𝑛𝑉𝑛𝑚, ( 94 ) 

 

or equivalently 

 

𝑎𝑛𝑚 +
𝛽𝑛

𝛼𝑛
𝑏𝑛𝑚 =

𝛾𝑛

𝛼𝑛
𝑉𝑛𝑚. 

( 95 ) 

 

This yields 

 

𝑎𝑛𝑚
2 + 𝑏𝑛𝑚

2
𝛽𝑛

2

𝛼𝑛
2

+ 2𝑎𝑛𝑚𝑏𝑛𝑚

𝛽𝑛

𝛼𝑛
=

𝛾𝑛
2

𝛼𝑛
2

𝑉𝑛𝑚
2 . 

( 96 ) 

 

Finally, have the sum for any positive integer 𝑛 and 𝑚 from −𝑛 to 𝑛. If we take into account that 

𝑓 is harmonic in Ω1, we have the following conclusions:  

 

1. ∑ ∑ |𝑎𝑛𝑚|2𝑛
𝑚=−𝑛

∞
𝑛=1  converges, since 𝑎𝑛𝑚 are the Fourier coefficients of 𝑓. 

2. Consider the series with general term the second term of the left side of ( 96 ), which is 

equivalent to 𝑛2 (
𝑅0

𝑅1
)

2𝑛
|𝑏𝑛𝑚|2. Since 𝑛2 (

𝑅0

𝑅1
)

2𝑛
⟶

𝑛→∞
0 and 𝑏𝑛𝑚 are Fourier coefficients, 

this series converges. 



3. Then the series with general term the right side of ( 96 ) also converges, whose terms are 

equivalent to 𝑛3 (
𝑅2

𝑅1
)

2𝑛
|𝑉𝑛𝑚|2. 

 

In this way, we arrive to the equivalent condition:  

 

∑ 𝑛3 (
𝑅2

𝑅1
)

2𝑛

∑ |𝑉𝑛𝑚|2

𝑛

𝑚=−𝑛

∞

𝑛=1

< +∞, 
( 97 ) 

 

which turns to be the necessary and sufficient condition previously obtained for 𝑉 to be 

reproducible by an harmonic source defined in Ω1. That is, if there is an harmonic source 

𝑓 ∈ ℋ(1)(Ω1
(1)

) which reproduces 𝑉, then ( 97 ) is fulfilled. In other words, ( 97 ) is a necessary 

condition.  

Next, we will characterize the admissible data set corresponding to harmonic sources in a 

neighborhood of the cortex. By Theorem 2 we have that, if 𝑓 ∈ ℋ(1)(Ω1
(1)

) and ℎ0 ∈ ℋ(1)(Ω1) 

both reproduce 𝑉, then 𝑓 − ℎ0 ∈ ℋ(1)(Ω1)⊥, so   

 

〈𝑓 − ℎ0, 𝑟𝑛𝑌𝑛𝑚(𝜃, 𝜙)〉 = 0, ( 98 ) 

 

for 𝑛 ≥ 1, −𝑛 ≤ 𝑚 ≤ 𝑛 , where 〈, 〉 denotes the inner product in 𝐿2(Ω1). Now, from ( 67 ) and 

since 𝑟̂𝑛𝑌𝑛𝑚(𝜃, 𝜙) and 𝑟̂−(𝑛+1)𝑌𝑛𝑚(𝜃, 𝜙) are orthogonal in 𝐿2(Ω1
(1)

), it follows 

 

〈𝑓, 𝑟𝑛𝑌𝑛𝑚(𝜃, 𝜙)〉 = 𝑎𝑛𝑚
√

𝑅1
2𝑛+3 − 𝑅0

2𝑛+3

2𝑛 + 3
. 

( 99 ) 

 

On the other hand, we have 

 



ℎ0 = ∑ ∑ √
1

(2𝑛 + 3)𝑅1

𝑛

𝑚=−𝑛

∞

𝑛=1

𝑛(𝑛 + 1)(2𝑛 + 3)

(2𝑛 + 1)
{(

𝑅1

𝑅2
)

𝑛

(1 −
𝜎2

𝜎1
)

+ (
𝑅2

𝑅1
)

𝑛+1

(
𝑛

𝑛 + 1
+

𝜎2

𝜎1
)} 𝑉𝑛𝑚√

2𝑛 + 3

𝑅1
2𝑛+3 𝑟𝑛𝑌𝑛𝑚(𝜃, 𝜙), 

( 100 ) 

 

So 

 

〈ℎ0, 𝑟𝑛𝑌𝑛𝑚(𝜃, 𝜙)〉 =
𝑅1

𝑛+1𝑛(𝑛 + 1)

(2𝑛 + 1)
((

𝑅1

𝑅2

)
𝑛

[1 −
𝜎2

𝜎1

] + (
𝑅2

𝑅1

)
𝑛+1

[
𝑛

𝑛 + 1
+

𝜎2

𝜎1

]) 𝑉𝑛𝑚. 
( 101 ) 

 

Thus, from ( 98 ), ( 99 ) and ( 101 ) we get 

 

𝑎𝑛𝑚 = √
2𝑛 + 3

𝑅1
2𝑛+3 − 𝑅0

2𝑛+3

𝑛(𝑛 + 1)

(2𝑛 + 1)
𝑅1

𝑛+1 ((
𝑅1

𝑅2

)
𝑛

[1 −
𝜎2

𝜎1

] + (
𝑅2

𝑅1

)
𝑛+1

[
𝑛

𝑛 + 1
+

𝜎2

𝜎1

]) 𝑉𝑛𝑚 . 
( 102 ) 

 

also, from ( 94 ) we get 

 

𝑏𝑛𝑚 =
𝛾𝑛

𝛽𝑛
𝑉𝑛𝑚 −

𝛼𝑛

𝛽𝑛
𝑎𝑛𝑚. ( 103 ) 

 

Making the computations, from ( 102 ) and ( 103 ) we get that |𝑎𝑛𝑚| and |𝑏𝑛𝑚| are equivalent to 

𝑛
3

2 (
𝑅2

𝑅1
)

𝑛
|𝑉𝑛𝑚| and √𝑛 (

𝑅0

𝑅1
)

𝑛

(
𝑅2

𝑅1
)

𝑛
|𝑉𝑛𝑚|, respectively, and then |𝑎𝑛𝑚|2 + |𝑏𝑛𝑚|2 is equivalent to 

𝑛3 (
𝑅2

𝑅1
)

2𝑛

[1 +
1

𝑛2 (
𝑅0

𝑅1
)

2𝑛

] |𝑉𝑛𝑚|2. Consequently, ( 97 ) is necessary and sufficient for 𝑉 to be 

reproducible by a source in ℋ(1)(Ω1
(1)

).  

However, these classes ℋ(1)(Ω1
(1)

) are not unicity classes. In fact, if 𝑓1 and 𝑓2  are 

sources in this class generating the same measurement 𝑉 in ℳ (ℋ(1)(Ω1
(1)

)), thus 𝑓1 − 𝑓2 ∈

𝐾𝑒𝑟𝐴, so  

 



〈𝑓1 − 𝑓2, 𝑟𝑛𝑌𝑛𝑚〉 = 0, 1 ≤ 𝑛 < ∞, −𝑛 ≤ 𝑚 ≤ 𝑛. ( 104 ) 

 

Then, we get 𝑎𝑛𝑚
(1)

= 𝑎𝑛𝑚
(2)

, but nothing can be said about  𝑏𝑛𝑚
(1)

  and 𝑏𝑛𝑚
(2)

. From this it can be 

deduced that an unicity subclass contained in ℋ(1)(Ω1
(1)

) is obtained considering harmonic 

functions given by series with respect only the first terms; i.e., those of the following form: 

 

𝑓 = ∑ ∑ 𝑎𝑛𝑚√
2𝑛 + 3

𝑅1
2𝑛+3 − 𝑅0

2𝑛+3 𝑟̂𝑛𝑌𝑛𝑚(𝜃, 𝜙).

𝑛

𝑚=−𝑛

∞

𝑛=1

 

( 105 ) 

 

Starting from this development, and computing their coefficients via the equation 𝐴𝑓 = 𝑔 as 

before, we get  

 

𝑓 = ∑ ∑

(1 +
1
𝑛

) √2 +
3
𝑛

√𝑅1 (1 − (
𝑅0
𝑅1

)
2𝑛+3

)

[2 +
1
𝑛 −

1
𝑛 (

1
𝑅1

2 [1 − 𝑛] − 1) (
𝑅0
𝑅1

)
2𝑛+3

]

𝑛
3
2 {(

𝑅1

𝑅2
)

𝑛

(1 −
𝜎2

𝜎1
)

𝑛

𝑚=−𝑛

∞

𝑛=1

+ (
𝑅2

𝑅1
)

2𝑛+1

(
𝑛

𝑛 + 1
+

𝜎2

𝜎1
)} √

2𝑛 + 3

𝑅1
2𝑛+3 − 𝑅0

2𝑛+3 𝑟̅𝑛𝑉𝑛𝑚𝑌𝑛𝑚(𝜃, 𝜙). 

( 106 ) 

 

From now, this subclass of harmonic sources will be denoted by 

 

ℋ0
(1)

(Ω1
(1)

). ( 107 ) 

 

Note that sources class ( 107 ) precisely matches the set of sources that equal harmonic sources in 

𝛺1 when restricted at 𝛺1
(1)

, and vanish at 𝛺1
(0)

. 

The following result summarizes these results. 



Theorem 5. If 0 < 𝑅0 < 𝑅1, then the admissible data sets ℳ (ℋ(1)(𝛺1
(1)

)) and 

ℳ (ℋ0
(1)

(𝛺1
(1)

)) coincide with the admissible data set ℳ (ℋ(1)(𝛺1)). These sets are the 

potential distributions measurements 𝑉 on the scalp whose Fourier coefficients satisfy 

 

∑ 𝑛3 (
𝑅2

𝑅1
)

2𝑛

∑ |𝑉𝑛𝑚|2

𝑛

𝑚=−𝑛

< ∞

∞

𝑛=1

. 
( 108 ) 

 

In addition, the class ℋ0
(1)

(Ω1
(1)

) is an unicity class, while ℋ(1)(Ω1
(1)

) is not. 

This last statement could result a little bit confusing; let us clarify this point. By making 

use of the unicity of extension of harmonic functions, one can identify a harmonic source in 

ℋ0
(1)

(Ω1
(1)

)  with its harmonic extension to Ω1. In this sense, the classes ℋ(1)(Ω1) and 

ℋ0
(1)

(Ω1
(1)

) coincide as sets, while that ℋ(1)(Ω1
(1)

) strictly contains ℋ(1)(Ω1). 

 

 

Conclusions 

 

 

In this article, a methodology for solving the inverse bioelectric source estimation problem in the 

brain, starting from instantaneous electroencephalographic measurements on the whole scalp, is 

proposed. We make use of a volume conductor model, in which the head and the brain are 

represented by means of concentric spheres outlining conducting layers with different but 

constant conductivities.  

The main product of this work is the proposal of a general methodology for solving the 

inverse electroencephalographic source estimation problem. Given an arbitrary sources class ℱ 

satisfying unicity condition for the inverse problem, a general method for determining the source 

in ℱ which best approximates a potential measurement on the scalp is developed.  



The process is basically as follows. First of all, one obtains the harmonic source which 

reproduces approximately the measurement, via the Admissible Data Method. Later, the specific 

source in a given class which best approximates the measurement is determined by using 

additional information provided by the harmonic source. The representing functions sets 

generating series development solutions and the computational approach depend on the geometric 

head model. 

All this methodology can be extended to the case of time-dependent measurements 

(EEG), and provides algorithms for directly identifying time-dependent sources which do not 

depend on previous time discretizations. For the sake of clarity, this is out of the scope of the 

current work.  

Finally, we want to make emphasis on the importance of Theorem 5. As a consequence, 

we find that any measurement 𝑉 in 𝑆2 can be reproduced by a harmonic source concentrated as 

close as wanted to the cortex 𝑆1 . Furthermore, although these sources extend in a unique way to 

Ω1, these specific extensions need not to reproduce the same measurement 𝑉, when the 

corresponding support is contained into a different neighborhood (of the cortex) from that 

corresponding to the original source. 
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