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Resumen 

Introducción: En la actualidad, la industria del desarrollo de software vive su época dorada debido al avance en áreas relacionadas 

con el aprendizaje máquina el cual es parte de las técnicas de IA, estos avances han permitido que tareas consideradas exclusivamente 

del ser humano sean resueltas utilizando un equipo de cómputo. Sin embargo, la complejidad y la extensa área que están abarcando los 

nuevos proyectos que deben ser desarrollados utilizando lenguajes de programación han generado que los tiempos de entrega de los 

proyectos se vean ralentizados y la productividad de la empresa afectada. 

Objetivo: Esta investigación presenta la metodología que se llevó a cabo para la construcción de un modelo de red neuronal recurrente 

para la generación automática de código fuente relacionado con interfaces gráficas de usuario utilizando lenguaje de programación 

Python. 

Metodología: Mediante la construcción de un conjunto de datos relacionado con el lenguaje natural para la descripción de interfaces 

gráficas programadas en Python se construye un modelo de red neuronal profunda para generar código fuente automático. 

Resultados: El modelo entrenado logra alcanzar valores de pérdida y perplejidad de 1.57 y 4.82 respectivamente en la etapa de 

validación evitando el sobreajuste en el entrenamiento del modelo.  

Conclusiones: Un modelo de red neuronal es entrenado logrando procesar el lenguaje natural relacionado con la petición de creación 

de interfaces gráficas utilizando el lenguaje de programación Python para generar automáticamente código fuente que puede ser 

ejecutado a través del intérprete de Python.     
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Abstract 

Introduction: Currently, the software development industry is living in its golden age due to the progress in areas related to machine 

learning, which is part of AI techniques. These advances have allowed tasks considered exclusively human to be solved using a 

computer. However, the complexity and the extensive area covered by new projects that must be developed using programming 

languages have slowed down project delivery times and affected the company's productivity. 

Objective: This research presents the methodology carried out for constructing a recurrent neural network model for the automatic 

generation of source code related to graphical user interfaces using Python programming language.  

Method: By constructing a natural language-related dataset for describing graphical interfaces programmed in Python, a deep neural 

network model is built to generate automatic source code. 

Results:  The trained model achieves loss and perplexity values of 1.57 and 4.82, respectively, in the validation stage, avoiding 

overfitting in the model's training. 

Conclusions: A neural network model is trained to process the natural language related to the request to create graphical interfaces 

using the Python programming language to automatically generate source code that can be executed through the Python interpreter. 
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Machine learning; Natural language processing; Graphical interface; Transfotmers; Tkinter; Deep learning; Automatic code generation; 

Automatic code generation. 

      

      

I. INTRODUCCIÓN 

Trends in software development have shown that its growth and change are compared to technological advances. Areas 

such as artificial intelligence, the internet of things, advanced web applications, and languages for application 

development, among many others [1] have a high application in different areas of computing and are currently generating 

that the software development industry is living a golden age in the resolution of essential tasks for the world [2]. Artificial 

intelligence has shown that the dream of human beings to replicate their way of learning in a computer is getting closer 

and closer; tasks that were exclusive to humans are already being performed by computational algorithms that obtain 

similar or superior results. Nowadays, improving code programming tasks is a necessity [3], Every day, the tasks to be 

solved by developers are bigger and more complex. Usually, each project has repetitive tasks that revolve around the 

problem's solution; these tasks tend to slow delivery times since they entail a more significant effort in the development 

stage, affecting productivity, simplification, portability, and consistency [4]. Having these repetitive code tasks generate 

that developers lose the focus of the application and the context of the logic producing unnecessary delays in achieving 

the objective [5]. 

Currently, the solutions that seek to help developers are mainly focused on the creation of development editors, which 

allow them to add code fragments that speed up the creation process. [5], However, this tool does not have any associated 

machine learning model. Automatic code generation is the branch of computer science that seeks to assist programmers 

in the automatic and intelligent creation of code based on input and output variables [6] allowing to detection or building 

of executable source code using a programming language and natural language processing, thus speeding up application 

implementation processes. In this work, we intend to deepen the Big Code research area. [6] Which joins machine learning 

models together with deep neural network architectures to create software applications that are robust and scalable, 

speeding up the development processes that are currently in such high demand. Therefore, this project seeks to answer 

the following question: Is it possible to create a model based on artificial intelligence that automatically generates source 

code related to graphic interface generation applications? 

Automatic code generation represents the future in software engineering and development, creating applications that 

favor productivity: referred to the generation of code only once and its reuse in other projects; simplification: which seeks 

to create source code of some abstract description; portability: refers to the adaptation of the generated source code to 

multiple development platforms, specifically to programming languages; and finally consistency: generating repeatability 

in the results obtained by the code generator, are considered key aspects that all development based on programming must 

contain. On the other hand, advances in automatic code generation will have a direct impact on the performance and 
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productivity of companies because their objectives are focused on predicting explicit code or program structure by 

receiving as input variables multimodal data sources such as incomplete program codes, codes in different programming 

languages and descriptions based on natural language [6]. With respect to software developers, the benefit of automatic 

source code generation will be to assist professionals in the generation of repetitive code structures that solve tasks based 

on the description of the input requirements and the corresponding output, maximizing productivity in development and 

ensuring that the professional does not lose focus of the application and the initial logic to have more robust programs 

that meet quality standards: productivity, reusability, simplification, and portability. 

II. STATE OF THE ART 

The main applications for generating source code in programming language-related topics have been studied in various 

types of research. In 2017, Ling et at. [7], present a novel approach based on a neural network architecture that generates 

an output sequence dependent on several input functions; this is done to address the issue related to the dependency of 

language generation tasks mediated by the production of structured and unstructured text; its development allows to 

generate a mixture between natural language and a structured specification. Rabinovich et al. [8], proposes that code 

generation tasks comprise processes that receive unstructured or partially structured inputs and produce executable 

outputs; in their work, they obtain a model with 79.2 in BLEU on the Hearthstone dataset; their model consists of abstract 

syntax networks whose output is represented by abstract syntax trees (ASTs). Yin et al. [9] consider the transformation 

of natural language descriptions to code written in Python; they propose a neural network architecture driven by a 

grammatical model to shape the input data to the model and consider it as prior knowledge; their results far exceed the 

approaches that existed to date related to semantic analysis and code generation. In 2018, Stehnii continued in the line of 

generating code focused on the Python programming language; its development focuses on the premise that software 

development requires multiple skills and that it is unlikely to know all existing solutions by the development community; 

this allows him to consider the idea of creating a sequence by sequence model with a recursive coder, also presents as a 

novel point working with syntactic trees instead of a simple sequence in the model input data. [10]. Yin et al. present 

TRANX [11], a neural semantic parser based on changing natural language expressions into formal representations of 

meaning; their results show that TRANX is highly accurate, and its generalization capability with different tasks such as 

semantic analysis and code generation is reliable and significant. Finally, in 2020, Zhu et al. [3], state that with the 

progress in the field of deep learning, code generation from natural language is relevant to research; in their research, they 

state that although there are many code generators, most of them use BLEU as evaluation metric, in addition, the data sets 

used lack diversity, for such reasons, the research focuses its efforts on tracking a more robust data set and evaluate it 

with five new aspects: lexical similarity, tree similarity, syntactic legality, semantic legality, and functional correctness. 

With the latter, they seek to give a greater analysis capacity to the methods or algorithms in the state of the art regarding 

automatic code generation. The previously analyzed works can be framed in 4 traditional approaches to handle the 

syntactic and semantic part of the source code, namely: domain-specific language-guided models, probabilistic grammars, 

simple probabilistic language models and simple neural language models [6]. Concerning domain-specific language-

guided models (DSLs), research such as [12][13][14] have studied such algorithms and have succeeded in reducing the 

search space to suggest expressions that allow source code completion from succinct type computations and higher-order 

functions. On the probabilistic grammar side, some authors [15][16] argue that the production of rules can generate all 

possible source code instructions and that these models can find patterns that generate more complex code structures. The 

n-gram language models are another approach that enables automatic code construction, from Hindle et al. [17] who built 

a language model for source code using n-grams in a novel way to [18] who used n-grams for language mining tasks. 

Finally, simple neural program models consist of neural networks that embed models that use the one-hot encoding of a 

word to transform it into an intermediate vector of words with a shorter length than the initial word. These algorithms are 

known as distributed word representations [6]. In this research, an algorithm will be developed for the automatic 

generation of source code based on the Python programming language, with datasets recognized as state of the art and 

using the metrics proposed in [3], the innovative part of the project will be the construction of simple graphical user 

interface programs using a case study related to a web component. 

III. MATERIALS AND METHODS 

The main task in the development of the project was the creation of 7 graphical interfaces using the Python Tkinter 

library, which were used to implement the data capture tool, as follows, the Python code of each GUI and its respective 

representation (See Figures 1-2). 

Graphic Interface Code 1 

from tkinter import * 

root = Tk() 
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root.columnconfigure(0, weight=0) 

root.columnconfigure(1, weight=1) 

root.rowconfigure(2, weight=1) 

Label(root, text= "Nombre").grid(row=0, columna=0) 

Label(root, text= "Apellido").grid(row=1, columna=0) 

Entry(root).grid(row=0, column=1, sticky=E+W) 

Entry(root).grid(row=1, column=1, sticky=E+W) 

Button(root, text="Aceptar”).grid(pady=10, padx=10, 

row=3, columna=0, columnspan=2,sticky=S+N+E+W) 

root.mainloop() 
Table I Source code of graphical interface related to Figure 1. Source: self-made. 

 

Fig. 1 Graphical interface 1: two labels, two text boxes, and one button. Source: self-made. 

Graphic Interface Code 2 

import tkinter as tk 

class Application(tk.Frame): 

         def _init_(self, master=None): 
         super()._init_(master) 

         self.master = master 

         self.pack() 
         self.create_widgets() 

def create_widgets(self): 

         self.hi_there = tk.Button(self) 
         self.hi_there = ["text"] = "haz clic" 

         self.hi_there = ["command"] = self.say_hi 

         self.hi_there.pack(side="top")     
         self.quit = tk.Button(self, text="Salir", fg="red"),                     

command=self.master.destroy 

         self.quit.pack(side="bottom") 
def say_hi(self): 

      print("Hola mundo") 

root = tk.Tk() 
app = Application(master=root) 

app,mainloop() 

Table II Source code of graphical interface related to Figure 2. Source: self-made. 

 

Fig 2 Graphical interface 2: two buttons. 

In addition, other graphical interfaces built to feed the dataset are shown; the GUIs can be seen in Figures 3-7. 
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Fig 3 Graphical interface with widgets: labels, text boxes, radio buttons, and buttons. Source: self-made. 

 

Fig 4 Graphical interface with widgets: labels, text boxes, buttons. Source: self-made. 

 

Fig 5 Graphical interface with widgets: text labels, buttons, and text box. Source: self-made. 

 

Fig 6 Graphical interface with widgets: radio buttons and buttons. Source: self-made. 

 

Fig 7 Graphical interface with widgets: labels, textboxes, check buttons. Source: self-made. 
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The dataset was constructed by applying a data capture tool to a group of Systems Engineering students from different 

semesters; the dataset is composed of two essential bases: a natural language text and a python code text. The first version 

of the dataset comprises 722 records describing each of the interfaces created (see Figure 8). 

 

Fig 8 Dataset Version 1, result provided by the data capture tool. Source: self-made. 

The final version of the dataset is composed of a sentence in Spanish describing the graphic interface to be created; 

this process will be expanded in the chapter on results and analysis. Once the data for training and its natural language 

processing had been constructed, an algorithm for the automatic generation of code for the generation of graphical 

interfaces was built by applying artificial intelligence techniques related to deep neural networks. 

Transformers are the predominant architecture in most state-of-the-art NLP applications today; the following explains 

the transformer architecture that was applied to a sequence-to-sequence learning problem. The transformer can be 

understood in terms of its three components: 

1. An encoder that encodes an input sequence into state representation vectors. 

2. An attention mechanism that allows our transformer model to focus on the correct aspects of the sequential input 

stream. This is used repeatedly in both the encoder and decoder to help them contextualize the input data. 

3. A decoder decodes the state representation vector to generate the target output sequence. 

The encoder in this research accepts a batch of source sequences and sequence masks as input. The source mask 

contains one at locations where the input sequence has valid values and 0 where the input sequence has <pad> values. 

This ensures that the attention mechanism within the encoder does not pay attention to the <pad> values; the complete 

transformer is shown in Figure 9. 

 

Fig 9 The complete architecture of a Transformer. Source: Wolfram Computation Meets Knowledge. Source: self-made. 

IV. ANALYSIS AND RESULTS 

A Google Forms form was built where the graphical interfaces created were assembled, and a simple textual 

description of each one was requested using natural language, which was applied in the Artificial Intelligence & Big Data 
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(IA&BD) seedbed of the Corporación Universitaria Comfacauca – Unicomfacauca, which resulted in 722 records (See 

Figure 10). 

 

Fig 10 Data capture tool applied to Systems Engineering students from different semesters. Source: self-made. 

The captured information is recorded as follows: in a .xlsx file containing 722 records (See Figure 11). 

 

Fig 11 Captured records. Source: self-made. 

People described the graphical interfaces using natural language processing; it was applied to 115 students, and 722 

answers were recorded, then a filtering process was performed to eliminate erroneous answers, and finally, the final 

version of the dataset was built, which is composed of a sentence in Spanish with the description of the graphical interface 

and Python code (See Figure 12). 

 

Fig 12 Dataset final version. Source: self-made. 

Figure 12 shows the dataset filtered and stored in a spreadsheet; however, the format required for training the dataset 

using recurrent neural network architectures must be modified; Figure 13 shows the result obtained by making the change: 
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Fig 13 Two records compose the training dataset for the automatic generation of source code for graphical interfaces. 

In Figure 13, the first line with the pound sign shows the description of the GUI by the user using natural language, 

and the following lines show the source code that meets the requirements requested by the user. Once the construction of 

the dataset is finished, deep neural network training is carried out to obtain a model that processes the natural language 

related to the GUI description to be converted to Python code using the Tkinter module. The training was tested with a 

recurrent neural network architecture on the dataset allowing for evaluation accuracy metrics both in training and 

validation: loss metric (function loss metric) yielding a value of 1.64 in the training stage and a value of 1.57 in the 

validation stage. Another metric that was evaluated is the perplexity generating values of 5.15 in the training stage and a 

value of 4.82 in the validation stage; this metric allows for measuring how well a probability distribution or probability 

model predicts a sample. The values achieved by the metrics in both the training and validation processes allow us to 

affirm that the model avoided overfitting since a decrease in the two metrics is observed in these stages. Other 

hyperparameters of interest that were applied in the training of the neural network were: 50 epochs, three encoding layers, 

and three decoding layers. The training took 10 minutes and was executed through the Google Colab tool (See Figure 

14). 

 

Fig 14 Results of training on Jupyter notebooks in Google Colab. 

Finally, Figures 15 and 16 show the operation and testing of the trained model for the automatic generation of source 

code for the generation of graphical interfaces in Python using the Tkinter module. Figure 15 shows the sentence sent to 

the neural network, which constitutes the request to create a graphical interface: "The interface has two text boxes and a 

button" when executing the model, it can be observed how the neural network responds with a Python code that when 

executed on an interpreter its result is visualized in Figure 15. 
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Fig 15 Testing of the trained model on a user request for the creation of a graphical user interface. 

 

Fig 16 Result of running the code generated by the neural network model on a Python interpreter. 

 

V. CONCLUSIONS 

A neural network model is trained by managing to process the natural language related to the request for creating 

graphical interfaces using the Python programming language to automatically generate source code that can be executed 

through the Python interpreter. The model achieves loss and perplexity values in the validation stage of 1.57 and 4.82, 

respectively; furthermore, these values are lower than those achieved in the training stage, thus corroborating that the 

model avoided overfitting. 

A dataset was constructed using the help of 115 Systems Engineering students from different semesters, who described 

graphical interfaces using natural language. Subsequently, the dataset feeds a recurrent neural network model to create a 

model for automatic source code generation. In future work, the authors propose to enrich the dataset with more robust 

graphical interfaces and to take the trained neural network architecture to generate source code in web components. To 

strengthen the research results, it is recommended to enrich the dataset with more robust graphical interfaces; in the 

project, GUIs use a maximum of four widgets. 

ACKNOWLEDGEMENTS 

We thank the Corporación Universitaria Comfacauca – Unicomfacauca, Faculty of Engineering, MIND Research 

Group - Popayán.  

REFERENCES 

      

[1] “10 Breakthrough Software Development Trends in Coming Years | Computools.” https://computools.com/software-

development-trends/ (accessed Nov. 28, 2020). 

[2] “7 Software Development Trends 2020 Revealed | Hacker Noon.” https://hackernoon.com/software-development-

trends-2020-revealed-spi305m (accessed Nov. 28, 2020). 



INGE CUC, Vol. 19, No. 1, Enero – Junio, 2023 (IN PRESS)  
 

 
10 

 

 

[3] J. Zhu and M. Shen, “Research on Deep Learning Based Code Generation from Natural Language Description,” in 

2020 IEEE 5th International Conference on Cloud Computing and Big Data Analytics, ICCCBDA 2020, Apr. 2020, 

pp. 188–193, doi: 10.1109/ICCCBDA49378.2020.9095560. 

[4] “A Guide to Code Generation | Java Code Geeks - 2020.” 2018, Accessed: Nov. 28, 2020. [Online]. Available: 

https://tomassetti.me/code-generation/. 

[5] S. Shim, P. Patil, R. R. Yadav, A. Shinde, and V. Devale, “DeeperCoder: Code Generation Using Machine Learning,” 

in 2020 10th Annual Computing and Communication Workshop and Conference, CCWC 2020, Jan. 2020, pp. 194–

199, doi: 10.1109/CCWC47524.2020.9031149. 

[6] T. H. M. Le, H. Chen, and M. A. Babar, “Deep Learning for Source Code Modeling and Generation: Models, 

Applications, and Challenges,” ACM Comput. Surv., vol. 53, no. 3, Feb. 2020, doi: 10.1145/3383458. 

[7] L. Wang et al., “Latent predictor networks for code generation,” in 54th Annual Meeting of the Association for 

Computational Linguistics, ACL 2016 - Long Papers, Mar. 2016, vol. 1, pp. 599–609, doi: 10.18653/v1/p16-1057. 

[8] M. Rabinovich, M. Stern, and D. Klein, “Abstract syntax networks for code generation and semantic parsing,” in 

ACL 2017 - 55th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference 

(Long Papers), Apr. 2017, vol. 1, pp. 1139–1149, doi: 10.18653/v1/P17-1105. 

[9] P. Yin and G. Neubig, “A syntactic neural model for general-purpose code generation,” in ACL 2017 - 55th Annual 

Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers), 2017, vol. 

1, pp. 440–450, doi: 10.18653/v1/P17-1041. 

[10] A. Stehnii and R. Hryniv, “Generation of code from text description with syntactic parsing and Tree2Tree model,” 

2018. 

[11] P. Yin and G. Neubig, “TRANX: A transition-based neural abstract syntax parser for semantic parsing and code 

generation,” in EMNLP 2018 - Conference on Empirical Methods in Natural Language Processing: System 

Demonstrations, Proceedings, Oct. 2018, pp. 7–12, doi: 10.18653/v1/d18-2002. 

[12] S. Gulwani, “Dimensions in Program Synthesis,” in PPDP’10 - Proceedings of the 2010 Symposium on Principles 

and Practice of Declarative Programming, 2010, pp. 13–24, doi: 10.1145/1836089.1836091. 

[13] M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu, “Spatial transformer networks,” in Advances in 

Neural Information Processing Systems, Jun. 2015, vol. 2015-Janua, pp. 

 

      
  

Daniel Esteban Arenas-Varela, Systems Engineer. Member of the Artificial Intelligence & Big Data Research Group. 

https://orcid.org/0000-0002-8576-5381  

Julián Fernando Muñoz-Ordóñez Physical Engineer, Master in Computer Science, PhD student at University of Cauca. 

Auxiliar Professor Corporación Universitaria Comfacauca – Unicomfacauca. Popayán, Colombia. Director of the 

Artificial Intelligence & Big Data Research Group, Junior Researcher. https://orcid.org/0000-0001-9393-6139  

 

 


