
INGE CUC, Vol. 19, No. 1, Enero – Junio, 2023 (IN PRESS)

© The author; licensee Universidad de la Costa - CUC.

INGE CUC Vol. 19. No. 1, Enero - Junio, 2023.

Barranquilla. ISSN 0122-6517 Impreso, ISSN 2382-4700 Online

Modelo de red neuronal artificial para la generación

automática de código en aplicaciones de interfaces

gráficas

Artificial neural network model for automatic code

generation in graphical interface applications

DOI: http://doi.org/10.17981/ingecuc.19.1.2023.04

Artículo de Investigación Científica. Fecha de Recepción: 13/09/2022, Fecha de Aceptación: 14/12/2022

Daniel Esteban Arenas-Varela
Corporación Universitaria Comfacauca – Unicomfacauca - Research group MIND. Popayán, (Colombia)

danielarenas@unicomfacauca.edu.co

Julián Fernando Muñoz-Ordóñez
Corporación Universitaria Comfacauca – Unicomfacauca - Research group MIND. Popayán, (Colombia)

jfmunoz@unicomfacauca.edu.co

To cite this paper

D. Arenas Varela, J. Muñoz Ordóñez “Artificial neural network model for automatic code generation in graphical

interface applications” DOI: http://doi.org/10.17981/ingecuc.19.1.2023.04

Resumen

Introducción: En la actualidad, la industria del desarrollo de software vive su época dorada debido al avance en áreas relacionadas

con el aprendizaje máquina el cual es parte de las técnicas de IA, estos avances han permitido que tareas consideradas exclusivamente

del ser humano sean resueltas utilizando un equipo de cómputo. Sin embargo, la complejidad y la extensa área que están abarcando los

nuevos proyectos que deben ser desarrollados utilizando lenguajes de programación han generado que los tiempos de entrega de los

proyectos se vean ralentizados y la productividad de la empresa afectada.

Objetivo: Esta investigación presenta la metodología que se llevó a cabo para la construcción de un modelo de red neuronal recurrente

para la generación automática de código fuente relacionado con interfaces gráficas de usuario utilizando lenguaje de programación

Python.

Metodología: Mediante la construcción de un conjunto de datos relacionado con el lenguaje natural para la descripción de interfaces

gráficas programadas en Python se construye un modelo de red neuronal profunda para generar código fuente automático.

Resultados: El modelo entrenado logra alcanzar valores de pérdida y perplejidad de 1.57 y 4.82 respectivamente en la etapa de

validación evitando el sobreajuste en el entrenamiento del modelo.

Conclusiones: Un modelo de red neuronal es entrenado logrando procesar el lenguaje natural relacionado con la petición de creación

de interfaces gráficas utilizando el lenguaje de programación Python para generar automáticamente código fuente que puede ser

ejecutado a través del intérprete de Python.

Palabras clave

Aprendizaje automático; procesamiento de lenguaje natural; interfaz gráfica; transformadores; Tkinter; aprendizaje profundo;

generación automática de código.

mailto:danielarenas@unicomfacauca.edu.co
mailto:jfmunoz@unicomfacauca.edu.co
http://doi.org/10.17981/ingecuc.19.1.2023.04
https://orcid.org/%200000-0003-2308-0720
https://orcid.org/%200000-0002-0885-8699

INGE CUC, Vol. 19, No. 1, Enero – Junio, 2023 (IN PRESS)

2

Abstract

Introduction: Currently, the software development industry is living in its golden age due to the progress in areas related to machine

learning, which is part of AI techniques. These advances have allowed tasks considered exclusively human to be solved using a

computer. However, the complexity and the extensive area covered by new projects that must be developed using programming

languages have slowed down project delivery times and affected the company's productivity.

Objective: This research presents the methodology carried out for constructing a recurrent neural network model for the automatic

generation of source code related to graphical user interfaces using Python programming language.

Method: By constructing a natural language-related dataset for describing graphical interfaces programmed in Python, a deep neural

network model is built to generate automatic source code.

Results: The trained model achieves loss and perplexity values of 1.57 and 4.82, respectively, in the validation stage, avoiding

overfitting in the model's training.

Conclusions: A neural network model is trained to process the natural language related to the request to create graphical interfaces

using the Python programming language to automatically generate source code that can be executed through the Python interpreter.

Key Words

Machine learning; Natural language processing; Graphical interface; Transfotmers; Tkinter; Deep learning; Automatic code generation;

Automatic code generation.

I. INTRODUCCIÓN

Trends in software development have shown that its growth and change are compared to technological advances. Areas

such as artificial intelligence, the internet of things, advanced web applications, and languages for application

development, among many others [1] have a high application in different areas of computing and are currently generating

that the software development industry is living a golden age in the resolution of essential tasks for the world [2]. Artificial

intelligence has shown that the dream of human beings to replicate their way of learning in a computer is getting closer

and closer; tasks that were exclusive to humans are already being performed by computational algorithms that obtain

similar or superior results. Nowadays, improving code programming tasks is a necessity [3], Every day, the tasks to be

solved by developers are bigger and more complex. Usually, each project has repetitive tasks that revolve around the

problem's solution; these tasks tend to slow delivery times since they entail a more significant effort in the development

stage, affecting productivity, simplification, portability, and consistency [4]. Having these repetitive code tasks generate

that developers lose the focus of the application and the context of the logic producing unnecessary delays in achieving

the objective [5].

Currently, the solutions that seek to help developers are mainly focused on the creation of development editors, which

allow them to add code fragments that speed up the creation process. [5], However, this tool does not have any associated

machine learning model. Automatic code generation is the branch of computer science that seeks to assist programmers

in the automatic and intelligent creation of code based on input and output variables [6] allowing to detection or building

of executable source code using a programming language and natural language processing, thus speeding up application

implementation processes. In this work, we intend to deepen the Big Code research area. [6] Which joins machine learning

models together with deep neural network architectures to create software applications that are robust and scalable,

speeding up the development processes that are currently in such high demand. Therefore, this project seeks to answer

the following question: Is it possible to create a model based on artificial intelligence that automatically generates source

code related to graphic interface generation applications?

Automatic code generation represents the future in software engineering and development, creating applications that

favor productivity: referred to the generation of code only once and its reuse in other projects; simplification: which seeks

to create source code of some abstract description; portability: refers to the adaptation of the generated source code to

multiple development platforms, specifically to programming languages; and finally consistency: generating repeatability

in the results obtained by the code generator, are considered key aspects that all development based on programming must

contain. On the other hand, advances in automatic code generation will have a direct impact on the performance and

INGE CUC, Vol. 19, No. 1, Enero – Junio, 2023 (IN PRESS)

3

productivity of companies because their objectives are focused on predicting explicit code or program structure by

receiving as input variables multimodal data sources such as incomplete program codes, codes in different programming

languages and descriptions based on natural language [6]. With respect to software developers, the benefit of automatic

source code generation will be to assist professionals in the generation of repetitive code structures that solve tasks based

on the description of the input requirements and the corresponding output, maximizing productivity in development and

ensuring that the professional does not lose focus of the application and the initial logic to have more robust programs

that meet quality standards: productivity, reusability, simplification, and portability.

II. STATE OF THE ART

The main applications for generating source code in programming language-related topics have been studied in various

types of research. In 2017, Ling et at. [7], present a novel approach based on a neural network architecture that generates

an output sequence dependent on several input functions; this is done to address the issue related to the dependency of

language generation tasks mediated by the production of structured and unstructured text; its development allows to

generate a mixture between natural language and a structured specification. Rabinovich et al. [8], proposes that code

generation tasks comprise processes that receive unstructured or partially structured inputs and produce executable

outputs; in their work, they obtain a model with 79.2 in BLEU on the Hearthstone dataset; their model consists of abstract

syntax networks whose output is represented by abstract syntax trees (ASTs). Yin et al. [9] consider the transformation

of natural language descriptions to code written in Python; they propose a neural network architecture driven by a

grammatical model to shape the input data to the model and consider it as prior knowledge; their results far exceed the

approaches that existed to date related to semantic analysis and code generation. In 2018, Stehnii continued in the line of

generating code focused on the Python programming language; its development focuses on the premise that software

development requires multiple skills and that it is unlikely to know all existing solutions by the development community;

this allows him to consider the idea of creating a sequence by sequence model with a recursive coder, also presents as a

novel point working with syntactic trees instead of a simple sequence in the model input data. [10]. Yin et al. present

TRANX [11], a neural semantic parser based on changing natural language expressions into formal representations of

meaning; their results show that TRANX is highly accurate, and its generalization capability with different tasks such as

semantic analysis and code generation is reliable and significant. Finally, in 2020, Zhu et al. [3], state that with the

progress in the field of deep learning, code generation from natural language is relevant to research; in their research, they

state that although there are many code generators, most of them use BLEU as evaluation metric, in addition, the data sets

used lack diversity, for such reasons, the research focuses its efforts on tracking a more robust data set and evaluate it

with five new aspects: lexical similarity, tree similarity, syntactic legality, semantic legality, and functional correctness.

With the latter, they seek to give a greater analysis capacity to the methods or algorithms in the state of the art regarding

automatic code generation. The previously analyzed works can be framed in 4 traditional approaches to handle the

syntactic and semantic part of the source code, namely: domain-specific language-guided models, probabilistic grammars,

simple probabilistic language models and simple neural language models [6]. Concerning domain-specific language-

guided models (DSLs), research such as [12][13][14] have studied such algorithms and have succeeded in reducing the

search space to suggest expressions that allow source code completion from succinct type computations and higher-order

functions. On the probabilistic grammar side, some authors [15][16] argue that the production of rules can generate all

possible source code instructions and that these models can find patterns that generate more complex code structures. The

n-gram language models are another approach that enables automatic code construction, from Hindle et al. [17] who built

a language model for source code using n-grams in a novel way to [18] who used n-grams for language mining tasks.

Finally, simple neural program models consist of neural networks that embed models that use the one-hot encoding of a

word to transform it into an intermediate vector of words with a shorter length than the initial word. These algorithms are

known as distributed word representations [6]. In this research, an algorithm will be developed for the automatic

generation of source code based on the Python programming language, with datasets recognized as state of the art and

using the metrics proposed in [3], the innovative part of the project will be the construction of simple graphical user

interface programs using a case study related to a web component.

III. MATERIALS AND METHODS

The main task in the development of the project was the creation of 7 graphical interfaces using the Python Tkinter

library, which were used to implement the data capture tool, as follows, the Python code of each GUI and its respective

representation (See Figures 1-2).

Graphic Interface Code 1

from tkinter import *

root = Tk()

INGE CUC, Vol. 19, No. 1, Enero – Junio, 2023 (IN PRESS)

4

root.columnconfigure(0, weight=0)

root.columnconfigure(1, weight=1)

root.rowconfigure(2, weight=1)

Label(root, text= "Nombre").grid(row=0, columna=0)

Label(root, text= "Apellido").grid(row=1, columna=0)

Entry(root).grid(row=0, column=1, sticky=E+W)

Entry(root).grid(row=1, column=1, sticky=E+W)

Button(root, text="Aceptar”).grid(pady=10, padx=10,

row=3, columna=0, columnspan=2,sticky=S+N+E+W)

root.mainloop()
Table I Source code of graphical interface related to Figure 1. Source: self-made.

Fig. 1 Graphical interface 1: two labels, two text boxes, and one button. Source: self-made.

Graphic Interface Code 2

import tkinter as tk

class Application(tk.Frame):

 def _init_(self, master=None):
 super()._init_(master)

 self.master = master

 self.pack()
 self.create_widgets()

def create_widgets(self):

 self.hi_there = tk.Button(self)
 self.hi_there = ["text"] = "haz clic"

 self.hi_there = ["command"] = self.say_hi

 self.hi_there.pack(side="top")
 self.quit = tk.Button(self, text="Salir", fg="red"),

command=self.master.destroy

 self.quit.pack(side="bottom")
def say_hi(self):

 print("Hola mundo")

root = tk.Tk()
app = Application(master=root)

app,mainloop()

Table II Source code of graphical interface related to Figure 2. Source: self-made.

Fig 2 Graphical interface 2: two buttons.

In addition, other graphical interfaces built to feed the dataset are shown; the GUIs can be seen in Figures 3-7.

INGE CUC, Vol. 19, No. 1, Enero – Junio, 2023 (IN PRESS)

5

Fig 3 Graphical interface with widgets: labels, text boxes, radio buttons, and buttons. Source: self-made.

Fig 4 Graphical interface with widgets: labels, text boxes, buttons. Source: self-made.

Fig 5 Graphical interface with widgets: text labels, buttons, and text box. Source: self-made.

Fig 6 Graphical interface with widgets: radio buttons and buttons. Source: self-made.

Fig 7 Graphical interface with widgets: labels, textboxes, check buttons. Source: self-made.

INGE CUC, Vol. 19, No. 1, Enero – Junio, 2023 (IN PRESS)

6

The dataset was constructed by applying a data capture tool to a group of Systems Engineering students from different

semesters; the dataset is composed of two essential bases: a natural language text and a python code text. The first version

of the dataset comprises 722 records describing each of the interfaces created (see Figure 8).

Fig 8 Dataset Version 1, result provided by the data capture tool. Source: self-made.

The final version of the dataset is composed of a sentence in Spanish describing the graphic interface to be created;

this process will be expanded in the chapter on results and analysis. Once the data for training and its natural language

processing had been constructed, an algorithm for the automatic generation of code for the generation of graphical

interfaces was built by applying artificial intelligence techniques related to deep neural networks.

Transformers are the predominant architecture in most state-of-the-art NLP applications today; the following explains

the transformer architecture that was applied to a sequence-to-sequence learning problem. The transformer can be

understood in terms of its three components:

1. An encoder that encodes an input sequence into state representation vectors.

2. An attention mechanism that allows our transformer model to focus on the correct aspects of the sequential input

stream. This is used repeatedly in both the encoder and decoder to help them contextualize the input data.

3. A decoder decodes the state representation vector to generate the target output sequence.

The encoder in this research accepts a batch of source sequences and sequence masks as input. The source mask

contains one at locations where the input sequence has valid values and 0 where the input sequence has <pad> values.

This ensures that the attention mechanism within the encoder does not pay attention to the <pad> values; the complete

transformer is shown in Figure 9.

Fig 9 The complete architecture of a Transformer. Source: Wolfram Computation Meets Knowledge. Source: self-made.

IV. ANALYSIS AND RESULTS

A Google Forms form was built where the graphical interfaces created were assembled, and a simple textual

description of each one was requested using natural language, which was applied in the Artificial Intelligence & Big Data

INGE CUC, Vol. 19, No. 1, Enero – Junio, 2023 (IN PRESS)

7

(IA&BD) seedbed of the Corporación Universitaria Comfacauca – Unicomfacauca, which resulted in 722 records (See

Figure 10).

Fig 10 Data capture tool applied to Systems Engineering students from different semesters. Source: self-made.

The captured information is recorded as follows: in a .xlsx file containing 722 records (See Figure 11).

Fig 11 Captured records. Source: self-made.

People described the graphical interfaces using natural language processing; it was applied to 115 students, and 722

answers were recorded, then a filtering process was performed to eliminate erroneous answers, and finally, the final

version of the dataset was built, which is composed of a sentence in Spanish with the description of the graphical interface

and Python code (See Figure 12).

Fig 12 Dataset final version. Source: self-made.

Figure 12 shows the dataset filtered and stored in a spreadsheet; however, the format required for training the dataset

using recurrent neural network architectures must be modified; Figure 13 shows the result obtained by making the change:

INGE CUC, Vol. 19, No. 1, Enero – Junio, 2023 (IN PRESS)

8

Fig 13 Two records compose the training dataset for the automatic generation of source code for graphical interfaces.

In Figure 13, the first line with the pound sign shows the description of the GUI by the user using natural language,

and the following lines show the source code that meets the requirements requested by the user. Once the construction of

the dataset is finished, deep neural network training is carried out to obtain a model that processes the natural language

related to the GUI description to be converted to Python code using the Tkinter module. The training was tested with a

recurrent neural network architecture on the dataset allowing for evaluation accuracy metrics both in training and

validation: loss metric (function loss metric) yielding a value of 1.64 in the training stage and a value of 1.57 in the

validation stage. Another metric that was evaluated is the perplexity generating values of 5.15 in the training stage and a

value of 4.82 in the validation stage; this metric allows for measuring how well a probability distribution or probability

model predicts a sample. The values achieved by the metrics in both the training and validation processes allow us to

affirm that the model avoided overfitting since a decrease in the two metrics is observed in these stages. Other

hyperparameters of interest that were applied in the training of the neural network were: 50 epochs, three encoding layers,

and three decoding layers. The training took 10 minutes and was executed through the Google Colab tool (See Figure

14).

Fig 14 Results of training on Jupyter notebooks in Google Colab.

Finally, Figures 15 and 16 show the operation and testing of the trained model for the automatic generation of source

code for the generation of graphical interfaces in Python using the Tkinter module. Figure 15 shows the sentence sent to

the neural network, which constitutes the request to create a graphical interface: "The interface has two text boxes and a

button" when executing the model, it can be observed how the neural network responds with a Python code that when

executed on an interpreter its result is visualized in Figure 15.

INGE CUC, Vol. 19, No. 1, Enero – Junio, 2023 (IN PRESS)

9

Fig 15 Testing of the trained model on a user request for the creation of a graphical user interface.

Fig 16 Result of running the code generated by the neural network model on a Python interpreter.

V. CONCLUSIONS

A neural network model is trained by managing to process the natural language related to the request for creating

graphical interfaces using the Python programming language to automatically generate source code that can be executed

through the Python interpreter. The model achieves loss and perplexity values in the validation stage of 1.57 and 4.82,

respectively; furthermore, these values are lower than those achieved in the training stage, thus corroborating that the

model avoided overfitting.

A dataset was constructed using the help of 115 Systems Engineering students from different semesters, who described

graphical interfaces using natural language. Subsequently, the dataset feeds a recurrent neural network model to create a

model for automatic source code generation. In future work, the authors propose to enrich the dataset with more robust

graphical interfaces and to take the trained neural network architecture to generate source code in web components. To

strengthen the research results, it is recommended to enrich the dataset with more robust graphical interfaces; in the

project, GUIs use a maximum of four widgets.

ACKNOWLEDGEMENTS

We thank the Corporación Universitaria Comfacauca – Unicomfacauca, Faculty of Engineering, MIND Research

Group - Popayán.

REFERENCES

[1] “10 Breakthrough Software Development Trends in Coming Years | Computools.” https://computools.com/software-

development-trends/ (accessed Nov. 28, 2020).

[2] “7 Software Development Trends 2020 Revealed | Hacker Noon.” https://hackernoon.com/software-development-

trends-2020-revealed-spi305m (accessed Nov. 28, 2020).

INGE CUC, Vol. 19, No. 1, Enero – Junio, 2023 (IN PRESS)

10

[3] J. Zhu and M. Shen, “Research on Deep Learning Based Code Generation from Natural Language Description,” in

2020 IEEE 5th International Conference on Cloud Computing and Big Data Analytics, ICCCBDA 2020, Apr. 2020,

pp. 188–193, doi: 10.1109/ICCCBDA49378.2020.9095560.

[4] “A Guide to Code Generation | Java Code Geeks - 2020.” 2018, Accessed: Nov. 28, 2020. [Online]. Available:

https://tomassetti.me/code-generation/.

[5] S. Shim, P. Patil, R. R. Yadav, A. Shinde, and V. Devale, “DeeperCoder: Code Generation Using Machine Learning,”

in 2020 10th Annual Computing and Communication Workshop and Conference, CCWC 2020, Jan. 2020, pp. 194–

199, doi: 10.1109/CCWC47524.2020.9031149.

[6] T. H. M. Le, H. Chen, and M. A. Babar, “Deep Learning for Source Code Modeling and Generation: Models,

Applications, and Challenges,” ACM Comput. Surv., vol. 53, no. 3, Feb. 2020, doi: 10.1145/3383458.

[7] L. Wang et al., “Latent predictor networks for code generation,” in 54th Annual Meeting of the Association for

Computational Linguistics, ACL 2016 - Long Papers, Mar. 2016, vol. 1, pp. 599–609, doi: 10.18653/v1/p16-1057.

[8] M. Rabinovich, M. Stern, and D. Klein, “Abstract syntax networks for code generation and semantic parsing,” in

ACL 2017 - 55th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference

(Long Papers), Apr. 2017, vol. 1, pp. 1139–1149, doi: 10.18653/v1/P17-1105.

[9] P. Yin and G. Neubig, “A syntactic neural model for general-purpose code generation,” in ACL 2017 - 55th Annual

Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers), 2017, vol.

1, pp. 440–450, doi: 10.18653/v1/P17-1041.

[10] A. Stehnii and R. Hryniv, “Generation of code from text description with syntactic parsing and Tree2Tree model,”

2018.

[11] P. Yin and G. Neubig, “TRANX: A transition-based neural abstract syntax parser for semantic parsing and code

generation,” in EMNLP 2018 - Conference on Empirical Methods in Natural Language Processing: System

Demonstrations, Proceedings, Oct. 2018, pp. 7–12, doi: 10.18653/v1/d18-2002.

[12] S. Gulwani, “Dimensions in Program Synthesis,” in PPDP’10 - Proceedings of the 2010 Symposium on Principles

and Practice of Declarative Programming, 2010, pp. 13–24, doi: 10.1145/1836089.1836091.

[13] M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu, “Spatial transformer networks,” in Advances in

Neural Information Processing Systems, Jun. 2015, vol. 2015-Janua, pp.

Daniel Esteban Arenas-Varela, Systems Engineer. Member of the Artificial Intelligence & Big Data Research Group.

https://orcid.org/0000-0002-8576-5381

Julián Fernando Muñoz-Ordóñez Physical Engineer, Master in Computer Science, PhD student at University of Cauca.

Auxiliar Professor Corporación Universitaria Comfacauca – Unicomfacauca. Popayán, Colombia. Director of the

Artificial Intelligence & Big Data Research Group, Junior Researcher. https://orcid.org/0000-0001-9393-6139

