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ABSTRACT 
Microgrid technology is a key solution to improve distributed power consumption, 
complementary utilization of multiple energy sources, and power supply reliability. To 
guarantee the reliability of the microgrid system, a realistic strategy must be created. 
This work takes the microgrid as an object and uses simulation technology to 
construct a microgrid system. Then, using this simulation system and the double deep 
Q-learning, the goal is to minimize the 24-hour electricity consumption cost from the 
external power grid to meet the requirements of voltage deviation. Power balancing 
and energy storage loads for microgrid systems. Under the constraints of the electrical 
state and other constraints, the control variable is the energy storage's capacity for 
charging and discharging, and the optimization strategy of energy storage control is 
obtained through training. The results demonstrate that the DDQN algorithm will save 
26.95% of the electricity purchase cost, which is significantly more than the MPPT 
algorithm's 12.43% savings. As a result, this work examines the efficacy of the 
charging and releasing approach for energy storage and confirms the potential of the 
suggested approach to reduce the cost of purchasing electricity. 
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1. INTRODUCTION 
The power system's development of the energy structure has advanced 

significantly in recent years toward a clean and sustainable development due to the 
widespread availability of renewable energy. Because of structural changes on the 
energy supply side and the 2030 carbon peaking target, the amount of renewable 
energy in the power grid will increase even more[1]. The grid-connected use of large-
scale renewable energy is faced with a significant problem because distributed 
renewable energy is highly volatile and intermittent due to the influence of natural 
factors [2]. A microgrid is a compact power generation [3]. Configuring an energy 
storage device is important to preserve the microgrid's power balance and lessen the 
effect that distributed energy output uncertainty has on the microgrid. A typical 
microgrid so typically consists of a variety of power-producing equipment, energy 
storage devices, loads, and other components [4]. At present, there are many studies 
on the microgrid, and the energy storage control strategy has attracted much attention 
as a hot spot for optimal regulation of energy dispatch. 

Microgrid scheduling is a popular topic in research connected to microgrids and is a 
crucial tool for ensuring the safe, dependable, and cost-effective operation of 
microgrids [5]. Traditional microgrid optimization scheduling is usually based on 
optimization theories and methods. First, each component in the microgrid is 
modeled, then the model is simplified and processed, and finally, the model is solved 
by researching the related solution algorithm. Typically, the model's primary goal is to 
minimize operational costs, and there are also related studies that comprehensively 
consider the economic, environmental, and social benefits to establish a multi-
objective optimization model [6]. Commonly used model modeling methods include 
mixed integer programming [7, 8], dynamic programming [9], model predictive control 
[10, 11], distributed optimization [12], Lyapunov optimization, etc.; commonly used 
model solving algorithms include Genetic algorithm [13, 14], particle swarm algorithm 
[15, 16], active evolution algorithm [17], Lagrangian relaxation method, etc. 

The uncertainty of microgrid operation has greatly increased during the past few 
years because of the rising number of renewable energy sources. The common 
solution to such problems is to convert uncertain problems into deterministic problems 
for modeling and solving, mainly including scene-based stochastic optimization[18], 
Opportunity Constrained Optimization [19], Robust optimization [20], etc. However, 
these methods all have certain limitations, which are mainly reflected in: the refined 
modeling of each component of the microgrid is difficult, and the simplified model is 
difficult to describe the physical characteristics of the actual operation of the 
components, resulting in the optimization results may be sub-optimal; the established 
model It is generally nonlinear and non-convex, and its solution is a typical non-
deterministic polynomial problem, and the solution efficiency is low; the establishment 
of the model needs to be completed according to the topology structure and operation 
mode, and the adaptability to the change of topology structure and the access of new 
power equipment Not strong; the pre-planned control based on "offline calculation and 
online matching" is difficult to adapt to complex and changeable system conditions. 
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Artificial intelligence has developed rapidly in recent years. As a typical timing 
control problem, the microgrid energy control problem conforms to the deep 
reinforcement learning solution framework, and there are many outstanding works at 
present. Hua et al. [21] used a deep learning algorithm with asynchronous advantages 
to solve the multi-microgrid energy dispatch control problem. Zhang et al. [22] gave 
the composite energy storage coordination control strategy of the microgrid through 
the deep reinforcement learning algorithm. Liu et al. [23] established a microgrid 
framework model based on energy buses and compared the advantages of a deep Q-
learning algorithm in energy scheduling control problems compared with the heuristic 
algorithm. Du et al. [24] gave retail pricing strategies through Monte Carlo 
reinforcement learning algorithms to reduce the demand-side peak ratio and protect 
user privacy. Mocanu et al.[25] explored the use of deep learning to refine the usability 
of building energy management systems in a smart grid environment and was 
successfully validated on a large database. 

When addressing the energy storage charging and releasing control technique with 
deep learning, in contrast to prior work, the training data is real-time data occurring 
while the microgrid simulation environment is running. By adding state information 
about voltage, current, phase angle, and other state information in the simulation 
environment to achieve a simulation that is closer to the real state, the results are 
more reliable. This paper firstly presents the composition of the microgrid objects 
studied, and then mainly introduces the deep reinforcement learning algorithm 
framework used and its application process in the energy storage control problem. 
Finally, the comparison with the existing method illustrates the usefulness of the 
algorithm flow in this research. 

2. SYSTEM MODEL 

2.1. MICROGRID COMPONENTS 
A significant component of distributed energy in the microgrid system is 

photovoltaic power generation. The photovoltaic power can be given by equation (1) 

S is the area of the placed solar panels, and R(t) is the amount of solar radiation at 
time t, expressed in W/m2. The power of photovoltaic energy generation at time t is 
calculated by multiplying the solar radiation power by the conversion efficiency , 
which is the product of the solar radiation power and the panel area. 

The battery is a popular kind of high-efficiency energy storage, and its internal 
energy state satisfies the equation (2) 

(1)( ) ( )PV PVP t R t Sη=

 ηPV

(2)( ) ( ) ( )1
Δ

bat bat batE t E t P t t= − +
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 is the battery's charging and discharging capacity at time t; Δt is the time 
interval between two charging and discharging operations.  

Load. Load is the general term for the part that consumes electric energy in a 
microgrid system. For a fixed microgrid system, the load demand is determined by the 
local climate environment and the properties of the microgrid, so it is usually not 
adjustable. In the energy scheduling problem in this paper, the load curve is input to 
the microgrid as a fixed quantity. network system. 

The external power supply used in this paper is replaced by the three-phase AC 
power supply module that comes with Simulink. The parameter settings of the module 
need to be given according to the actual simulation requirements. Then, it is 
connected with the internal module of the microgrid system through the varistor 
module to provide the required power for the system. In this study, a microgrid system 
that uses grid connectivity is taken into account. The three-phase dynamic load is also 
used to produce the PQ control effect since the energy storage system model that 
needs to be developed can be modified. In the simulation experiment, due to the 
randomness of the load, the microgrid load usually consists of two parts, one of which 
is a variable load and the other is a fixed load, which is directly acted by the 
resistance module in Simulink in the simulation model. The simulation modules of 
each distributed energy source are regulated by the PQ control strategy to guarantee 
the stability and controllability of the interaction between the microgrid system and the 
external power. Based on the simulation model, this paper conducts deep 
reinforcement learning training. As a result, the energy storage system's charging and 
releasing control approach is optimized. Compared to traditional reinforcement 
learning training based on mathematical formulas, the influence of more abundant 
state variables on the control objective can be comprehensively considered. 

2.2. DEEP REINFORCEMENT LEARNING ALGORITHM 
Reinforcement learning is aimed at maximizing the expected return. The mapping 

relationship between the environment's state variable and the agent's action variable 
is discovered through the agent and the environment's ongoing interaction. The agent 
provides an optimized action policy. Deep reinforcement learning uses deep neural 
networks to create a correspondence between state variables and action variables. 
Due to the powerful expressive ability of deep neural networks, deep reinforcement 
learning can deal with more complex and practical policy decision-making problems. 
In the disciplines of optimum control, robot control, and autonomous driving, deep 
reinforcement learning has made significant strides in recent years. Deep 
reinforcement learning is derived from MDP. The traditional MDP process consists of 4 
elements, consisting of (S, A, R, µ), which stand for the set of environmental 
conditions, the set of actions the agent is capable of taking, the reward function, and 
the policy set, respectively. 

Solving algorithms for reinforcement learning optimization strategies includes three 
categories: value function-based solutions, policy gradient-based solutions, and 
search and supervision-based solutions [26]. This paper focuses on the solution 

Pbat(t)
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method based on the value function. Among them, the dynamic programming 
algorithm is suitable for solving the situation with models and dimensions. The Monte 
Carlo technique has the drawback of requiring entire state sequences, which is 
challenging in many systems. Without the entire state sequence, the time series 
difference approach can estimate the value function. The classic time series 
difference methods include the SARSA and the Q-Learning algorithm. Both 
approaches keep a Q-table to address tiny reinforcement. The size of the Q-table that 
needs to be kept increases when the state and action spaces are continuous or 
discrete at very large scales, which will bring difficulties to storage. However, the 
development of deep neural networks has solved this problem. Using a deep neural 
network instead of Q-table results in a deep reinforcement learning algorithm that is 
more suitable for complex problems. A typical algorithm is the deep Q-Learning (deep 
Q network, DQN) algorithm. 

The Q-Learning algorithm is responsible for formula-based updates to the defined 
Q function (3). 

is a function of action value; α is the learning rate. When the update 
formula converges, the optimal control strategy for reinforcement learning can be 
obtained. 

DQN replaces the Q function in Q-Learning with a deep neural network . 

Formula (3) is then used to determine the current goal Q value, and the Q network 
updates the parameter ω of the neural network. 

The DDQN algorithm is based on DQN with two improvements. The first is to 

introduce two networks, one is the target network to calculate the target Q 

value, and the other is the update network to update the Q value, which 
can reduce the Dependencies between small target Q-values and updated network 
parameters. The target network has the same structure as the Q-value network, and 
the timing is synchronized with the parameters from the Q-value network. 

The second is to decouple the action selection of the target Q and the calculation 
process of the target Q in the target formula (3), thereby reducing the overestimation 
caused by the greedy algorithm. The specific method is that when calculating the 
target Q, the maximum Q corresponding to the action is no longer found in the target 
Q network, but the action corresponding to the maximum Q value is first found in the 
update network: 

Then use this action  to calculate the target Q value: 

(3)( ) ( ) ( ) ( )( ), , , ,Q S A Q S A R maxQ S a Q S Aα γ ʹ= + + −

( ),Q S A

( ), |
ω

Q S A

( )' , |
ω'

Q S A

( ), |
ω

Q S A

(4)( ) ( )' |
ω , | ω

aeAa S argmax Q S A=�

( )' |
ω

a S�
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Through the above two improvements, the DDQN algorithm solves the strong 
dependence and overestimation problems of the traditional DQN algorithm, and other 
algorithm processes are the same as DQN. 

3. RESULTS AND DISCUSSION 

3.1. NETWORK SETTINGS 
The implementation of the DDQN algorithm in solving the microgrid energy storage 

control problem is demonstrated in this part, along with a comparison to the MPPT 
control to demonstrate the efficacy of the DDQN method. 

To speed up the simulation speed, in the simulation experiment verification, this 
paper does not consider other distributed generation modules such as wind power 
generation. 

The upper and lower bound constraints in constraint (8) are set as:  

 

Another important setting is the setting of the Q-value estimation neural network in 
the DDQN algorithm. According to experience and continuous debugging and 
verification, the neural network used in this paper is a fully connected layer with 4 
layers and 24 nodes, and the relu function is employed as the middle layer activation 
function. 

3.2. NUMERICAL RESULTS 
When training the DDQN algorithm, it is necessary to normalize each component of 

the state variable and then substitute it into the target network of DDQN for training. 
Given that the control objective of this paper is to reduce the cost of purchasing 
electricity, this paper multiplies the electricity price state variable by a 2-fold 
amplification factor during training to increase the impact of electricity price 
fluctuations on the control objective. The training time step is 300s, so a training cycle 
is 288 steps. The results of this experiment were obtained under 100,000 training 
cycles (Table 1). 

Table 1. Hyperparameter settings for target network training 

(5)( )( , ' |
ω | ω')

Q R Q S a Sγʹ ʹ= + ʹ �

5 54 10 4 10 0.19 0.85min max min max
bat bat soc socP W P W S S= − × = × = =，

， ，

Hyperparameter value

Batch size 300

Learning rate 0.001

No. of training epochs 100000

No. of layers 4
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Combined with the real-time electricity price table in Fig.1, it can be seen that in 24 
hours, the electricity price from 16 to 21 hours is the highest, followed by the electricity 
price from 5 to 6 hours. The energy storage charging and discharging strategy 
obtained by the DDQN algorithm is, between 0 and 2h, when the photovoltaic power 
generation does not work, the energy storage is discharged first, from 50% to below 
20%, after the SOC of the energy storage reaches the lower limit, the External grid 
power generation. The energy storage begins to charge around 7 to 11 hours after the 
photovoltaic system starts to produce power, at which point any excess power is 
stored and the SOC rises from 20% to roughly 80%. The energy storage will stop 
working after being fully charged between 11 and 17 hours, and the excess 
photovoltaic power generation will be fed back to the external power grid. Then at a 
peak time of electricity consumption from 17 to 22 hours, when the electricity price 
increases, the cost of electricity increases, the energy storage is discharged during 
this period for the use of the microgrid load, and the SOC of the energy storage at this 
time is similar to that at 5 hours. level, that is, below 20%. In summary, this control 
strategy is to store solar energy during the day for use at night, to achieve the purpose 
of saving electricity purchase costs. Therefore, logically, this control strategy is 
reasonable. Compared with the control strategy obtained by the DDQN algorithm, the 
control strategy obtained by the DQN algorithm in the same training period is to 
discharge the energy storage in 0-1h, and then the energy storage has been in an idle 
state until about 14h to start charging the energy storage, and the same charging To a 
similar level to DDQN, that is, the SOC is about 80%, and when the price of electricity 
starts to increase in 18 hours, the energy storage is then released. The data results 
showed that the control strategy obtained by the DDQN algorithm, compared with the 
DQN algorithm, considers the power consumption characteristics at different times in 
more detail, and allocates the charge and discharge capacity more reasonably, thus 
achieving a better control effect than the DQN algorithm. 

No. of neurons 24

Optimization Adaptive Moment Estimation (Adam)
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.  

Fig.1 Comparison of energy storage SOC and real-time electricity price 

The previous results give a qualitative analysis of the energy storage control 
strategy, and Fig. 2 and Table 2 give quantitative data results to illustrate that the 
control strategy trained by the DDQN algorithm is more optimized than the traditional 
control method and the DQN algorithm. The traditional MPPT control based on 
photovoltaic power generation is a simple state machine control method, that is, it 
judges the positive or negative power difference between the load and the power in 
the microgrid, and when the energy storage meets the given SOC state, according to 
the photovoltaic maximum power tracking principle. It is possible to obtain the energy 
storage's charging and discharging power. See the literature [27] for more information 
on the specific algorithm process. 

Fig. 2 and Table 2 show the purchased electricity and the corresponding expenses 
in different situations. For the case without energy storage, when the electricity 
purchased is 4344.6 kWh, the cost is $840.1; for the MPPT control method, when the 
electricity purchased is 4003.6 kWh, the cost is $735.7; for the DQN control method, 
when the electricity purchased for 3833.5 kWh, the cost is $626.9; for the DDQN 
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control method, when the purchased electricity is 3762.4 kWh, the cost is $613.7. 
From the data in Fig. 2 and Table 2, compared with the MPPT algorithm, the control 
strategy obtained by the reinforcement learning algorithm training saves the electricity 
purchase cost, and under the same training period, the DDQN algorithm is cheaper 
than the DQN algorithm[28-29]. Compared with the microgrid operation without 
energy storage, the DDQN algorithm will save 26.95% of the electricity purchase cost, 
which is much greater than 12.43% of the MPPT algorithm, which fully demonstrates 
the effectiveness of the DDQN algorithm. 

 

Fig 2. Comparison results of DDQN, DQN, MPPT, and no energy storage. 
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Table 2 Data results for DDQN, DQN, MPPT, and no energy storage 

4. CONCLUSION 
This research presents an optimum method for the microgrid energy storage 

control problem based on the simulation model and the deep learning algorithm. The 
specific conclusions of this study are as includes:  

(1) Due to the advantages of deep reinforcement learning in solving model-free 
problems, this study does not need to know the link between the control objectives, 
control variables, and state information of grid-connected microgrids. The Q-value 
function approximated by the neural network can be trained to identify the correlation 
between the control goal and the state variables using the micro-state network's data.  

(2) In the same operation cycle, the energy storage discharge time of the control 
strategy of the DQN algorithm is 0-1h and 18-22h, while the discharge time of DDQN 
is 0-2h and 17-22h. The data results demonstrated that the DDQN algorithm's control 
strategy effect is superior to that of the DQN algorithm. 

(3) The results of numerical verification show that the DDQN algorithm will save 
26.95% of the electricity purchase cost, which is much greater than 12.43% of the 
MPPT algorithm, which fully demonstrates the effectiveness of the DDQN algorithm. 
The method proposed can be extended to a variety of microgrid energy control 
scenarios, such as adding or deleting different distributed generation modules in the 
simulation model, changing different control objectives, setting different control 
variables, and so on. 

REFERENCES 
(1) Yunhui, J., Optimal Allocation of Distributed Energy Storage Capacity in 

Power Grid With High Proportion of New Energy. IOP Conference Series: 
Earth and Environmental Science, 2021. 827(1). 

(2) Na, L., W. Chengdong and G. Cailian, Research and Application of Energy 
Storage Battery on Stabilizing Fluctuation Characteristics of Photovoltaic 
Power System. International Journal of Hybrid Information Technology, 2016. 
9(5). 

(3) LvZhipeng, Y.X.S.J., Overview on micro-grid technology. Proceedings of the 
CSEE, 2014. 1(31): p. 57-70(in Chinese). 

(4) Amjad, A., et al., Overview of Current Microgrid Policies, Incentives and 
Barriers in the European Union, United States and China. Sustainability, 
2017. 9(7): p. 1146. 

Method Electricity purchased/(kW.h) Cost / $

No energy storage 4344.6 840.1

MPPT 4003.6 735.7

DQN 3833.5 626.9

DDQN 3762.4 613.7

https://doi.org/10.17993/3cemp.2023.120151.37-49
47

3C Empresa. Investigación y pensamiento crítico. ISSN: 2254-3376 Ed. 51 Iss.12 N.1  January - March, 2023 



(5) Domínguez-Barbero, D., et al., Optimising a Microgrid System by Deep 
Reinforcement Learning Techniques. Energies, 2020. 13(11): p. 2830. 

(6) Liheng Liu, Miaomiao Niu, Dongliang Zhang, Li Liu and Dietmar Frank. Optimal 
allocation of microgrid using a differential multi-agent multi-objective 
evolution algorithm. Applied Mathematics and Nonlinear Sciences, 2021. 6(2): 
p. 111-124. 

(7) Energy; Data on Energy Detailed by Researchers at Department of Energy 
(Optimization Models for Islanded Micro-Grids: A Comparative Analysis 
between Linear Programming and Mixed Integer Programming). Energy & 
Ecology, 2017. 

(8) Dolara, A., et al., Optimization Models for Islanded Micro-Grids:A 
Comparative Analysis between Linear Programming and Mixed Integer 
Programming. Energies, 2017. 10(2). 

(9) Gazijahani, F.S. and J. Salehi, Stochastic multi-objective framework for 
optimal dynamic planning of interconnected microgrids. IET Renewable 
Power Generation, 2017. 11(14). 

(10) Energy - Renewable Energy; New Renewable Energy Study Findings 
Reported from Shenzhen University (Optimal Scheduling of Multiple Multi-
energy Supply Microgrids Considering Future Prediction Impacts Based 
On Model Predictive Control). Journal of Robotics & Machine Learning, 2020. 

(11) Duchaud, J., et al., Trade-Off between Precision and Resolution of a Solar 
Power Forecasting Algorithm for Micro-Grid Optimal Control. Energies, 
2020. 13(14). 

(12) Wang, Y., et al., A Wasserstein based two-stage distributionally robust 
optimization model for optimal operation of CCHP micro-grid under 
uncertainties. International Journal of Electrical Power and Energy Systems, 
2020. 119(C). 

(13) Fossati, J.P., et al., Optimal scheduling of a microgrid with a fuzzy logic 
controlled storage system. International Journal of Electrical Power and 
Energy Systems, 2015. 68. 

(14) Provata, E., et al., Development of optimization algorithms for the Leaf 
Community microgrid. Renewable Energy, 2015. 74. 

(15) Fengdao, Z., B. Siyu and W. Dan, Optimal Dispatching of Microgrid Based on 
Improved Particle Swarm Optimization. Journal of Physics: Conference 
Series, 2021. 1871(1). 

(16) Yuvaraja, T. and G. M, Artificial intelligence and particle swarm optimization 
algorithm for optimization problem in microgrids. Asian Journal of 
Pharmaceutical and Clinical Research, 2015. 8(3). 

(17) Bifei, T. and C. Haoyong, Stochastic Multi-Objective Optimized Dispatch of 
Combined Cooling, Heating, and Power Microgrids Based on Hybrid 
Evolutionary Optimization Algorithm. IEEE Access, 2019. 7. 

(18) Luo, Y., et al., Optimal configuration of hybrid-energy microgrid considering 
the correlation and randomness of the wind power and photovoltaic 
power. IET Renewable Power Generation, 2020. 14(4). 

(19) Sefidgar-Dezfouli, A., M. Joorabian and E. Mashhour, A multiple chance-
constrained model for optimal scheduling of microgrids considering 

https://doi.org/10.17993/3cemp.2023.120151.37-49

3C Empresa. Investigación y pensamiento crítico. ISSN: 2254-3376 Ed. 51 Iss.12 N.1  January - March, 2023 

48



normal and emergency operation. International Journal of Electrical Power 
and Energy Systems, 2019. 112. 

(20) Energy - Electric Power; Study Findings on Electric Power Are Outlined in 
Reports from North China Electric Power University (A Wasserstein Based 
Two-stage Distributionally Robust Optimization Model for Optimal 
Operation of Cchp Micro-grid Under Uncertainties). Energy Weekly News, 
2020. 

(21) Hua, H., et al., Optimal energy management strategies for energy Internet 
via deep reinforcement learning approach. Applied Energy, 2019. 
239(APR.1): p. 598-609. 

(22) Dongxia, Z.Z.Q.C., A coordinated control method for hybrid energy storage 
system in microgrid based on deep reinforcement learning. Power System 
Technolog, 2019. 6(43): p. 1914-1921(in Chinese). 

(23) Xiaosheng, L.J.C.J., Energy management and optimization of multi-energy 
grid based on deep reinforcement learning. Power System Technology, 2020. 
10(44): p. 3794-3803(in Chinese). 

(24) Du, Y. and F. Li, Intelligent Multi-Microgrid Energy Management Based on 
Deep Neural Network and Model-Free Reinforcement Learning. IEEE 
Transactions on Smart Grid, 2019. PP(99): p. 1-1. 

(25) Mocanu, E., et al., On-line Building Energy Optimization using Deep 
Reinforcement Learning. IEEE Transactions on Smart Grid, 2017: p. 1-1. 

(26) Xionglin, L.J.G.F., Survey of deep reinforcement learning based on value 
function and policy gradient. Chinese Journal of Computers, 2019. 6(42): p. 
1406-1438(in Chinese). 

(27) Xiong, L., W. Peng and P.C. Loh, A Hybrid AC/DC Microgrid and Its 
Coordination Control. IEEE Transactions on Smart Grid, 2011. 2(2): p. 
278-286. 

(28) Medina, R., Breña, J. L., y Esenarro, D. (2021). Efficient and sustainable 
improvement of a system of production and commercialization of 
Essential Molle Oil (Schinus Molle).3C Empresa. Investigación y pensamiento 
crítico, 10(4), 43-75. https://doi.org/10.17993/3cemp.2021.100448.43-75 

(29) Meng Siyu & Zhang Xue.(2021).Translog function in government 
development of low-carbon economy. Applied Mathematics and Nonlinear 
Sciences (1). https://doi.org/10.2478/AMNS.2021.2.00138

https://doi.org/10.17993/3cemp.2023.120151.37-49
49

3C Empresa. Investigación y pensamiento crítico. ISSN: 2254-3376 Ed. 51 Iss.12 N.1  January - March, 2023 


