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ABSTRACT

Consider the discrete Laplacian operator A acting on l2(Z). It is well known from the classical literature
that the essential spectrum of A is a compact interval. In this article, we give an elementary proof for
this result, using the finite-dimensional truncations An of A. We do not rely on symbol analysis or
any infinite-dimensional arguments. Instead, we consider the eigenvalue-sequences of the truncations
An and make use of the filtration techniques due to Arveson. Usage of such techniques to the discrete
Schrödinger operator and to the multi-dimensional settings will be interesting future problems.
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1 INTRODUCTION

In this short article, we consider the discrete Laplacian operator A defined on l2(Z), as follows:

A(x(n)) = (x(n− 1) + x(n+ 1));x = (x(n)) ∈ l2(Z), n ∈ Z.

This operator arises naturally in many physical situations. For example, when we approximate a partial
differential equation by finite differences, such bounded operators come into the picture. This operator
is widely used in image processing, particularly in edge detection problems. There are extensions of the
discrete Laplacian to various settings, such as multi-dimensional operator (on Zn) and Laplacian on
graphs, etc. An operator close to this example is the discrete Schrödinger operator. This operator can
be considered as a perturbation of the discrete Laplacian, defined as follows;

H(x(n)) = (x(n− 1) + x(n+ 1) + v(n)x(n));x = (x(n)) ∈ l2(Z), n ∈ Z.

Here the sequence v = v(n) is a bounded sequence called the potential.

It is well-known from the classical theory that the spectrum of A is the compact interval [−2, 2]. In
this article, we use the filtration techniques developed by W. B. Arveson in [1] and some elementary
method to give a simple proof of this result. We plan to use such techniques in the computation of
the spectrum of the discrete Schrödinger operator. However, the spectrum of the discrete Schrödinger
operator can be very complicated, depending on the potential function. For example, if you choose the
almost Mathieu potential, the spectrum will be a Cantor-like set (The Ten-Martini Conjecture, see [2]
for, eg.).

The article is organized as follows. In the next section, we describe some essential results from [1, 3]
in connection with the spectral approximation of an infinite-dimensional bounded self-adjoint operator.
In the third section, we use these techniques to give an elementary proof of the connectedness of the
essential spectrum of A. A possible application to the spectral computation of some special class of
discrete Schrödinger operators is mentioned at the end of this article.

2 OPERATORS IN THE ARVESON’S CLASS

"How to approximate spectra of linear operators on separable Hilbert spaces?"is a fundamental question
and was considered by many mathematicians. One of the successful methods is to use the finite-
dimensional theory in the computation of the spectrum of bounded operators in an infinite dimensional
space through an asymptotic way. In 1994, W.B. Arveson identified a class of operators for which the
finite-dimensional truncations are helpful in the spectral approximation [1]. We introduce this class of
operators here.

Let A be a bounded self-adjoint operator defined on a complex separable Hilbert space H and
{e1, e2, . . .} be an orthonormal basis for H. Consider the finite dimensional truncations of A, that is
An = PnAPn, where Pn is the projection of H onto the span of first n elements {e1, e2, . . . , en} of the
basis. We recall the notion of essential points and transient points introduced in [1].

Definition 1. Essential point: A real number λ is an essential point of A, if for every open set U
containing λ, limn→∞Nn(U) = ∞, where Nn(U) is the number of eigenvalues of An in U.

Definition 2. Transient point: A real number λ is a transient point of A if there is an open set U
containing λ, such that supNn(U) with n varying on the set of all natural number is finite.

Remark 3. Note that a number can be neither transient nor essential.

Denote Λ = {λ ∈ R;λ = limλn, λn ∈ σ(An)} and Λe as the set of all essential points. The following
spectral inclusion result for a bounded self-adjoint operator A is of high importance. Let σ(A), σess(A)
denote the spectrum and essential spectrum of A respectively.

https://doi.org/10.17993/3ctic.2022.112.52-59

Theorem 4. [1] The spectrum of a bounded self-adjoint operator is a subset of the set of all limit
points of the eigenvalue sequences of its truncations. Also, the essential spectrum is a subset of the set
of all essential points. That is,

σ(A) ⊆ Λ ⊆ [m,M ] and σess(A) ⊆ Λe.

W.B Arveson, generalized the notion of band limited matrices in [1], and achieved some useful
results in the case of some special class of operators. He used an arbitrary filtration Hn (an increasing
subsequence of closed subspaces with the union dense in H) and the sequence of orthogonal projections
onto Hn to introduce his class of operators. Here we consider only a special case.

Definition 5. The degree of a bounded operator A on H is defined by

deg(A) = sup
n≥1

rank(PnA−APn).

A Banach ∗−algebra of operators can be defined, which we call Arveson’s class, as follows.

Definition 6. A is an operator in the Arveson’s class if

A =
∞∑
n=1

An, where deg(An) < ∞ for every n and convergence is in the

operator norm, in such a way that

∞∑
n=1

(1 + deg(An)
1
2 )∥An∥ < ∞

The following gives a concrete description of operators in Arveson’s class.

Theorem 7. [1] Let (ai,j) be the matrix representation of a bounded operator A, with respect to {en},
and for every k ∈ Z let

dk = sup
i∈Z

|ai+k,i|

be the sup norm of the kth diagonal of (ai,j). Then A will be in Arveson’s class whenever the series∑
k |k|1/2dk converges.

Remark 8. In particular, any operator whose matrix representation (ai,j) is band-limited, in the sense
that ai,j = 0 whenever |i− j| is sufficiently large, must be in Arveson’s class. Therefore, the operator
under our consideration is in Arveson’s class, as we see that its matrix representation is tridiagonal.

The following result allows us to confine our attention to essential points while looking for essential
spectral values for certain classes of operators.

Theorem 9. [1] If A is a bounded self-adjoint operator in the Arveson’s class, then σess(A) = Λe and
every point in Λ is either transient or essential.

3 SPECTRUM OF DISCRETE LAPLACIAN

Consider the discrete Laplacian operator A defined on l2(Z), as follows:

A(x(n)) = (x(n− 1) + x(n+ 1));x = (x(n)) ∈ l2(Z), n ∈ Z.
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If we use the standard orthonormal basis on l2(Z), the truncations An will have the following matrix
representations:

An =




0 1 0 0 .
1 0 1 0 0 .
0 1 0 1 0 0 .
0 0 1 0 1 0 0 .

0 0 1 0 1 0 0 .
. 0 0 1 0 1 0 0

. 0 0 1 0 1 0 0
. 0 0 1 0 1 0

. 0 0 1 0 1
. 0 0 1 0




Now we recollect some properties of the discrete Laplacian operator below.

Lemma 1. λ ∈ σess (A) if and only if −λ ∈ σess (A) .

Proof. Notice that this operator A is in Arveson’s class, introduced in the last section. Therefore, we
have λ ∈ σess (A) if and only if λ is an essential point. That is exactly when Nn (U) → ∞ for every
neighborhood U of λ. The characteristic polynomials of An are Pn (z) = zn − an−2z

n−2 + . . . ± 1,
when n is even and Pn (z) = −zn + an−2z

n−2 − . . .± a1z, when n is odd. Here the coefficients can be
computed as follows. ak = (n−k+2)(n−k+4)...(n+k)

2k.k!

Therefore the eigenvalues of An are distributed symmetrically on both sides of 0 in the interval
[−2, 2] . Hence the number of truncated eigenvalues in any neighbourhood of −λ and λ are the
same if the neighbourhoods are of the same length. We can conclude that λ ∈ σess (A) if and only if
−λ ∈ σess (A) .

Lemma 2. The operator norm ∥A∥ = 2 and ±2 ∈ σess (A) .

Proof. For every x ∈ l2(Z), we have

∥Ax∥2 =
∞
−∞

(x(n− 1) + x(n+ 1))2 =

∞
−∞


(x(n− 1))2 + (x(n+ 1))2 + 2x(n− 1)x(n+ 1)


≤ 4 ∥x∥2 .

Therefore, ∥A∥ ≤ 2.

To prove the equality, consider the sequence xn =
�
...0, 0, 0, ... 1n ,

1
n ,

1
n ...

1
n , 0, 0, 0...


, where 1

n repeats
n2 times and all other entries are 0. Then xn has norm 1 and ∥Axn∥ increases to 2. Hence ∥A∥ = 2.
Since A is a bounded self-adjoint operator, either ∥A∥ or −∥A∥ is always a spectral value. That is 2 or
−2 is in the spectrum, σ (A). However, they are not eigenvalues of A, as we see below.

If ±2 is an eigenvalue of A, then 4 is an eigenvalue of A2 = B + 2I where B is defined by
B (en) = en−2 + en+2. (Observe that A2 is defined as A2 (en) = en−2 + 2en + en+2). This will imply
that 2 is eigenvalue of B. If Bx = 2x, for some nonzero x, then x(n+ 2) + x(n− 2) = 2x(n), for all n.
Let x(N) = p ≠ 0, for some N and x(N − 2) = q. Then x(n+ 2k) = (k + 1)p− kq for every kZ. Such
an element x will not be in l2 (Z).

Hence ±2 is an essential spectral value. By Lemma 1, both ±2 are in the essential spectrum, σess (A).
Therefore both 2 and -2 are in σess (A).

Theorem 10. The spectral gaps of A, if they exist, will appear symmetrically with respect to the origin.
That means corresponding to each spectral gap on the positive real axis, there exists a spectral gap on
the negative real axis. In particular, A cannot have an odd number of spectral gaps.

https://doi.org/10.17993/3ctic.2022.112.52-59

Proof. We noticed that A2 = B + 2I where B is defined by B (en) = en−2 + en+2. It is worthwhile
to notice further that ∥B∥ = 2. This follows easily from the following arguments.

∥Bx∥2 =
∞∑
−∞

(x(n− 2) + x(n+ 2))2 =

∞∑
−∞

[
(x(n− 2))2 + (x(n+ 2))2 + 2x(n− 2)x(n+ 2)

]
≤ 4 ∥x∥2 .

Therefore we have ∥B∥ ≤ 2. Now consider the sequence xn =
(
...0, 0, 0, ... 1n ,

1
n ,

1
n ...

1
n , 0, 0, 0...

)
where

1
n repeats n2 times and all other entries 0, has norm 1 and ∥Bxn∥ increases to 2. Hence ∥B∥ = 2.
Also as in the case of A, the truncated eigenvalues are distributed symmetrically on both sides of 0, so
that −2 and 2 are in the essential spectrum. Also, since A2 = B+2I, this implies that 0 is an essential
spectral value of A2, and hence of A. Hence any spectral gap of A can occur either to the right or left
side of 0. By Lemma 1, each spectral gap on the right side of 0 will also give a spectral gap on the left
side. Hence the proof.

Theorem 11. The essential spectrum of A is connected. The spectrum and the essential spectrum
coincide with the compact interval [−2, 2].

Proof. First, we show that A has no eigenvalues. This will imply that the spectrum and essential
spectrum coincide, as the essential spectrum consists of discrete eigenvalues of finite multiplicity. If
Ax = λx, for some nonzero x, then

x(n+ 1) + x(n− 1) = λx(n), for all n.

Let x(N) = p ≠ 0, for some N and x(N − 1) = q. Then a recursive argument similar to that in the
proof of Lemma 2 will show that such a vector will not lie in l2 (Z).

By Theorem 10, spectral gaps can occur symmetrically to the origin. Hence it suffices to show that
there is no spectral gap to the right side of the origin. We consider each possible case for the existence
of a spectral gap. We rule them out one by one. First consider the case when the spectral gap is of the
form (a, 2) , with 0 ≤ a ≤ 1. In this case, since the interval (a, 2) contains no essential points (as the
essential spectrum coincides with the set of all essential points), it will contain at most K eigenvalues of
truncations for infinitely many n. Let λn1, λn2, λn3, . . . λnK be those eigenvalues. From the expression
of characteristic polynomials, it is evident that the determinant of A′

ns is either 0 or ±1. Since the
eigenvalues are distributed symmetrically to both sides of 0, we have the product of positive eigenvalues
equal 1 for n even. Let sK :=

∏K
i=1 λni. Then 1

sK
> 1

2K
, since λni < 2 for i = 1, 2, . . .K.

But since 0 is in the essential spectrum, it is an essential point, and we can find an N such that
the interval

(
0, 12

)
contains at least K + 1 eigenvalues of An for every n ≥ N . For such an n ≥ N, let

αn1, αn2, αn3, . . . αnN−K be the eigenvalues of An, in (0, a). Therefore we have,

1

2K
<

1

sK
=

N−K∏
i=1

αni <
K+1∏
i=1

αni <
1

2K+1
<

1

2K
.

The first equality holds since the product of eigenvalues is 1, and the consequent inequality is because
a ≤ 1 (each additional αni we multiply will be a positive number below 1. Hence, the product will
satisfy this inequality). This contradiction leads to the fact that (a, 2) , with 0 ≤ a ≤ 1 is not a spectral
gap.

Now we see that (a, 2) , with a > 1 cannot be a spectral gap. For if (a, 2) , a > 1 is a gap, then it
will contain at most K eigenvalues of truncations for infinitely many n. Let λn1, λn2, λn3, . . . λnK be
those eigenvalues. As in the above case, let sK :=

∏K
i=1 λni. Then 1

sK
> 1

2K
Find an N such that the

interval
(
0, 1

2aN

)
contains at least K + 1 eigenvalues of AN . Now let αn1, αn2, αn3, . . . αnN−K be the

eigenvalues of AN , in (0, a). Therefore we have

1

sk
=

N−K∏
i=1

αni <

(
1

2aN

)K+1

aN−(2K+1) <

(
1

2

)K+1

<
1

2K
.
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B (en) = en−2 + en+2. (Observe that A2 is defined as A2 (en) = en−2 + 2en + en+2). This will imply
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Let x(N) = p ≠ 0, for some N and x(N − 2) = q. Then x(n+ 2k) = (k + 1)p− kq for every kZ. Such
an element x will not be in l2 (Z).

Hence ±2 is an essential spectral value. By Lemma 1, both ±2 are in the essential spectrum, σess (A).
Therefore both 2 and -2 are in σess (A).

Theorem 10. The spectral gaps of A, if they exist, will appear symmetrically with respect to the origin.
That means corresponding to each spectral gap on the positive real axis, there exists a spectral gap on
the negative real axis. In particular, A cannot have an odd number of spectral gaps.
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to notice further that ∥B∥ = 2. This follows easily from the following arguments.

∥Bx∥2 =
∞∑
−∞

(x(n− 2) + x(n+ 2))2 =

∞∑
−∞

[
(x(n− 2))2 + (x(n+ 2))2 + 2x(n− 2)x(n+ 2)

]
≤ 4 ∥x∥2 .

Therefore we have ∥B∥ ≤ 2. Now consider the sequence xn =
(
...0, 0, 0, ... 1n ,

1
n ,

1
n ...

1
n , 0, 0, 0...

)
where

1
n repeats n2 times and all other entries 0, has norm 1 and ∥Bxn∥ increases to 2. Hence ∥B∥ = 2.
Also as in the case of A, the truncated eigenvalues are distributed symmetrically on both sides of 0, so
that −2 and 2 are in the essential spectrum. Also, since A2 = B+2I, this implies that 0 is an essential
spectral value of A2, and hence of A. Hence any spectral gap of A can occur either to the right or left
side of 0. By Lemma 1, each spectral gap on the right side of 0 will also give a spectral gap on the left
side. Hence the proof.

Theorem 11. The essential spectrum of A is connected. The spectrum and the essential spectrum
coincide with the compact interval [−2, 2].

Proof. First, we show that A has no eigenvalues. This will imply that the spectrum and essential
spectrum coincide, as the essential spectrum consists of discrete eigenvalues of finite multiplicity. If
Ax = λx, for some nonzero x, then

x(n+ 1) + x(n− 1) = λx(n), for all n.

Let x(N) = p ≠ 0, for some N and x(N − 1) = q. Then a recursive argument similar to that in the
proof of Lemma 2 will show that such a vector will not lie in l2 (Z).

By Theorem 10, spectral gaps can occur symmetrically to the origin. Hence it suffices to show that
there is no spectral gap to the right side of the origin. We consider each possible case for the existence
of a spectral gap. We rule them out one by one. First consider the case when the spectral gap is of the
form (a, 2) , with 0 ≤ a ≤ 1. In this case, since the interval (a, 2) contains no essential points (as the
essential spectrum coincides with the set of all essential points), it will contain at most K eigenvalues of
truncations for infinitely many n. Let λn1, λn2, λn3, . . . λnK be those eigenvalues. From the expression
of characteristic polynomials, it is evident that the determinant of A′

ns is either 0 or ±1. Since the
eigenvalues are distributed symmetrically to both sides of 0, we have the product of positive eigenvalues
equal 1 for n even. Let sK :=

∏K
i=1 λni. Then 1

sK
> 1

2K
, since λni < 2 for i = 1, 2, . . .K.

But since 0 is in the essential spectrum, it is an essential point, and we can find an N such that
the interval

(
0, 12

)
contains at least K + 1 eigenvalues of An for every n ≥ N . For such an n ≥ N, let

αn1, αn2, αn3, . . . αnN−K be the eigenvalues of An, in (0, a). Therefore we have,

1

2K
<

1

sK
=

N−K∏
i=1

αni <
K+1∏
i=1

αni <
1

2K+1
<

1

2K
.

The first equality holds since the product of eigenvalues is 1, and the consequent inequality is because
a ≤ 1 (each additional αni we multiply will be a positive number below 1. Hence, the product will
satisfy this inequality). This contradiction leads to the fact that (a, 2) , with 0 ≤ a ≤ 1 is not a spectral
gap.

Now we see that (a, 2) , with a > 1 cannot be a spectral gap. For if (a, 2) , a > 1 is a gap, then it
will contain at most K eigenvalues of truncations for infinitely many n. Let λn1, λn2, λn3, . . . λnK be
those eigenvalues. As in the above case, let sK :=

∏K
i=1 λni. Then 1

sK
> 1

2K
Find an N such that the

interval
(
0, 1

2aN

)
contains at least K + 1 eigenvalues of AN . Now let αn1, αn2, αn3, . . . αnN−K be the

eigenvalues of AN , in (0, a). Therefore we have

1

sk
=

N−K∏
i=1

αni <

(
1

2aN

)K+1

aN−(2K+1) <

(
1

2

)K+1

<
1

2K
.
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The inequality is a consequence of a > 1. This contradiction leads to the fact that (a, 2) , a > 1 is not
a gap.

Hence we have seen that there cannot have a spectral gap of the form (a, 2), with a being a non-
negative real number. The number 2 does not play any role in the proof. We can easily imitate the
proof techniques for intervals of the form (a, b), with 0 ≤ a < b ≤ 2.

Remark 12. We can have a different and straight forward argument to show that (a, 2) cannot be a
spectral gap. However, this method cannot be extended for arbitrary intervals (a, b), with 0 ≤ a < b ≤ 2.
For if (a, 2) is a gap, then 2 will be an isolated point in the essential spectrum. Since the interval (a, 2)
contains at most K eigenvalues of truncations, but 2 is an essential point, we need 2 is an eigenvalue of
An for large values of n with multiplicity increases to infinity. Nevertheless, 2 is not an eigenvalue of
An for any n. For if


0 1
1 0 1

1 0 1
1 0 1

1 0 1
. . .

. . .
. . .

1 0 1
1 0







x1
x2
x3
x4
.
.
.
.

xn




= 2




x1
x2
x3
x4
.
.
.
.

xn




then
x2 = 2x1
x3 = 3x1
x4 = 4x1, . . . xn−1 = (n− 1)x1, xn = nx1

Also xn−1 = 2xn = 2nx1
But this will hold only when x1 = 0 which makes x = 0 and hence 2 is not an eigenvalue. Hence we
conclude that (a, 2) is not a gap.

Remark 13. The eigenvalues of the matrices An are explicitly calculated to be 2cos(πk/n+ 1), k =
1, 2, 3...n. We may arrive at some conclusions from that information also.

Remark 14. An important question is whether we can approximate the eigenvalues of A using the
eigenvalues of truncation. Since the operator we considered has no eigenvalues, it is interesting to see
from the truncations itself whether the operator has an eigenvalue or not. In general, we observe the
following; If λ = limλn, λn ∈ σ (An) and if the sequence of eigenvectors xn corresponding to λn, is
Cauchy in H, then λ is an eigenvalue of A. This can easily be seen as follows.

Let xn converges to some x in H. λ = limλn, x = limxn together imply λx = limλnxn Also
limAnxn = Ax. Hence for any ϵ > 0, there is an N such that ∥λ− λNxN∥ < ε

2 , ∥Ax−ANxN∥ < ε
2

Hence for any ϵ > 0, ∥Ax− λx∥ < ε. That is λ is an eigenvalue of A.

4 CONCLUDING REMARKS

We used only elementary tools and the filtration techniques due to Arveson to prove the connectedness
of the essential spectrum. When we consider the Discrete Schrödinger operator H defined by

H(x(n)) = (x(n− 1) + x(n+ 1) + v(n)x(n));x = (x(n)) ∈ l2(Z), n ∈ Z,

with the potential sequence v = v(n) being periodic, there will be spectral gaps unless when v is constant
(see [4, 5] for example). However, if we write the matrix representation with respect to the standard
orthonormal basis, it is tridiagonal; hence, Arveson’s techniques are available. Here the spectral analysis
depends on the nature of the potential. The spectral gap issues of such operators were studied with the
linear algebraic techniques in [6]. The spectral gap issues of arbitrary bounded self-adjoint operators
can be found in the literature (see [7, 8] for example).
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Another interesting point is to carry over such techniques to the multi-dimensional case by replacing
Z by Zn.
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The inequality is a consequence of a > 1. This contradiction leads to the fact that (a, 2) , a > 1 is not
a gap.

Hence we have seen that there cannot have a spectral gap of the form (a, 2), with a being a non-
negative real number. The number 2 does not play any role in the proof. We can easily imitate the
proof techniques for intervals of the form (a, b), with 0 ≤ a < b ≤ 2.

Remark 12. We can have a different and straight forward argument to show that (a, 2) cannot be a
spectral gap. However, this method cannot be extended for arbitrary intervals (a, b), with 0 ≤ a < b ≤ 2.
For if (a, 2) is a gap, then 2 will be an isolated point in the essential spectrum. Since the interval (a, 2)
contains at most K eigenvalues of truncations, but 2 is an essential point, we need 2 is an eigenvalue of
An for large values of n with multiplicity increases to infinity. Nevertheless, 2 is not an eigenvalue of
An for any n. For if


0 1
1 0 1

1 0 1
1 0 1

1 0 1
. . .

. . .
. . .

1 0 1
1 0







x1
x2
x3
x4
.
.
.
.

xn
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= 2
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x1
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x3
x4
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.
.
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conclude that (a, 2) is not a gap.
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1, 2, 3...n. We may arrive at some conclusions from that information also.

Remark 14. An important question is whether we can approximate the eigenvalues of A using the
eigenvalues of truncation. Since the operator we considered has no eigenvalues, it is interesting to see
from the truncations itself whether the operator has an eigenvalue or not. In general, we observe the
following; If λ = limλn, λn ∈ σ (An) and if the sequence of eigenvectors xn corresponding to λn, is
Cauchy in H, then λ is an eigenvalue of A. This can easily be seen as follows.

Let xn converges to some x in H. λ = limλn, x = limxn together imply λx = limλnxn Also
limAnxn = Ax. Hence for any ϵ > 0, there is an N such that ∥λ− λNxN∥ < ε

2 , ∥Ax−ANxN∥ < ε
2

Hence for any ϵ > 0, ∥Ax− λx∥ < ε. That is λ is an eigenvalue of A.

4 CONCLUDING REMARKS

We used only elementary tools and the filtration techniques due to Arveson to prove the connectedness
of the essential spectrum. When we consider the Discrete Schrödinger operator H defined by

H(x(n)) = (x(n− 1) + x(n+ 1) + v(n)x(n));x = (x(n)) ∈ l2(Z), n ∈ Z,

with the potential sequence v = v(n) being periodic, there will be spectral gaps unless when v is constant
(see [4, 5] for example). However, if we write the matrix representation with respect to the standard
orthonormal basis, it is tridiagonal; hence, Arveson’s techniques are available. Here the spectral analysis
depends on the nature of the potential. The spectral gap issues of such operators were studied with the
linear algebraic techniques in [6]. The spectral gap issues of arbitrary bounded self-adjoint operators
can be found in the literature (see [7, 8] for example).
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