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ABSTRACT

We apply the averaging method of first order to study the maximum number of limit cycles of the
ordinary differential systems of the form

{ i+ =€(f1($,y)y+f2 (xay))v
i+y=c(a(r,y)r+g(2,y)),

where fi(z,y) and g1 (x, y) are real cubic polynomials; fo(z,y) and g2(x, y) are real quadratic polynomials.
Furthermore ¢ is a small parameter.
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1 INTRODUCTION AND STATEMENT OF THE MAIN RESULT

At the Paris International Congress of Mathematics in 1900, Hilbert presented twenty-three problems
in mathematics. Some problems are still unsolved so far, they were a challenge for all mathematicians
of that era. The second part of the well-known Hilbert’s 16th problem is to find the maximum number
of limit cycles and their position for an ordinary differential planar system of degree n of the form

{ z = 1,[1(337y),

1
v =n(z,y), W

where n is a positive integer, the dot above the variables represents the first derivative with respect to
the variable ¢, )(x,y) and n(x,y) are real polynomials, see for instance [13,14,17]. This problem has so
far remained unresolved, for n > 2. Let us denote by H(n) the maximum number of limit cycles of
differential system (1) which is usually called a Hilbert number. For example, Chen and Wang in [3],
Shi in [22]| gave the best result up to now about the lower bounds of H(2), which is H(2) > 4. Li, Liu,
and Yang in [15] proved #H(3) > 13, Li and Li in [16] proved #(3) > 11, also Han, Wu and Bi in [10]
and Han, Zhang and Zang in [12| proved H(3) > 11. For more results about the Hilbert number, see,
for example, the paper |9] and the references therein.

There are many papers that studied number of limit cycles using several methods, including the
Poincaré—Melnikov integrals, see for instance [11]; the Poincaré return map, see for example [1]; the
Abelian integrals, see for example [4]; the averaging method, see [5,6]; the inverse integrating factor,
see for instance [8].

In [19], Llibre and Teixeira used the averaging method of first-order for study the existence of limit
cycles of the system of second-order differential equations

{ i+z=cf(zy),
j+y=cg(z,y),
where f(x,y) and g (x,y) are real cubic polynomials and ¢ is a small parameter.

In this paper, we apply the averaging method of first-order for study the existence of limit cycles of
system of second-order differential equations

{ Lf'+$:€(f1(l',y)y+f2($,y)), (2)
j+y=c(g(z,y)r+g2(2,y)),

where f1(z,y) and g1 (z,y) are real cubic polynomials, fo(x,y) and g2(x, y) are real quadratic polynomials
such that f;(0,0) = ¢;(0,0) = 0, for ¢ = 1,2, and ¢ is a small parameter. These polynomials are
expressions of the form

= @z +ay+ a3$2 + aqgxy + a5y2 + a6m3 + a7x2y + agxyz + a9y3,

fiz,y)

fo(z,y) = Az + Ay + Asa® + Ayxy + Asy?,

g1(z,y) = biw+boy + bsx® + bywy + bsy® + bex® + bya®y + bsay® + boy®,
g2(z,y) = Biz + Byy+ Bsz? + Byzy + Bsy®.

The system of second order differential equations (2) can be expressed as the following system of
first-order differential equations in the usual way:

.’jﬁzua
U = —x+€(f1($7y)y+f2 (Iﬂ,y)); (3)
i=v

0=—y+e(g(z,y)z+g2(x,y)).
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Note that system (3) when € =0, is

T =u,

U= —u,

. (4)
Yy=v,

U= —y.

We notice that the system (4) have a global isochronous center at the the origin, i.e. all orbits different
from the origin are 27-periodic, for more detail see [18|.

The main result of our work is the following.
Theorem 1. Using the first-order averaging method, system of second-order differential equations
(3), where fi(z,y) and gi(x,y) are real cubic polynomials; fa(x,y) and ga(z,y) are real quadratic
polynomials, has at most four limit cycles bifurcating from the periodic orbits of the linear center

T=u,ut=—x,y=0v,0=—y. Here € is a small parameter. Moreover if ay = 0 and a3 = 0, the system
(3) has at most two periodic solutions.

The first-order averaging method theory, that we summarize in the sequel, can be found in a more
extended way in |2|. Similar works where the perturbations via polynomials play an important role are
for instance [7] and [20].

2 THE FIRST-ORDER AVERAGING METHOD FOR COMPUTING PERIODIC
ORBITS

Theorem 2. We consider the following two problems
i(t) = eF(t,x(t)) + *R(t, 2(t),¢), (5)
and

y(t) = ef(y(t)), (6)

where t € [0,4+00), x and y in some open D of R™ and € € (—ep,c0) is a small parameter. Moreover,
we suppose that the vector functions F(t,z) and R(t,z,e) are T—periodic in the first variable and we
consider the first-order averaging function

T
()= 7 | Flas

Suppose that F, R, D,F, and D2F are continuous and bounded by a constant M in [0,00) x D
X (—ep,€0) where M is independent of €. Then, the statements (I) and (II) satisfied:

(I) If there exists an equilibrium point o € D of (6) such that

9 (f(y))

det
e By

#0,

Yy=p

then, for € > 0 sufficiently small, there exists an isolated T'—periodic solution ¢(t) of system
(5) such that ¢-(t) — 0 when £ — 0.

(II) If y = « ( the equilibrium point ) of (6) is hyperbolic. Then, for ¢ > 0 sufficiently small, the
corresponding periodic solution of system (5) is unique, hyperbolic and of the same stability type
as o.

The proof of this theorem can be seen in [21,23].
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3 PROOF OF THEOREM 1

In this work, we consider p > 0, s > 0 and writing differential system (3) in the new variables (6, p, s,w)
given by

x = pcos(),

u = psin(0),

y = scos(f+ w),

v = ssin(f+ w).
we get )

0=—-1+eG(0,p,s,w),

p=¢eF1(0,p,s,w),

$=c¢eFy(0,p,s,w),

w =¢eF3(0,p, s,w),
where

G(8,p,s,w) :; cos(#) [Alp cos(6) + Azp? cos*(0)
+ scos(6 + w) (A2 + (a1 + Ag)pcos(8) + azp® cos®(0) + agp® cos3(9))
+ 5% cos?(0 + w) <a2 + As + agpcos(d) + arp? c082(9)>
+ 5% cos®(0 + w) <a5 + agp cos(@))

+ 5% cos* (0 + w)ag}

F1(6, p, s,w) =sin(0) [Alp cos(0) 4 Azp? cos?(6)
+ scos(f + w) (Ag + (a1 + Ag)pcos(8) + azp? cos®(0) + agp® cos3(0))
+ s cos?(6 4 w) (ag + As + agpcos(d) + arp? 6052(9))
+ 53 cos®(6 4 w) (as + agp cos(9)>

+ 5% cos? (0 + w)ag]

Fa(0, p, s,w) =sin(0 + w) [Blp cos(6) 4 (by + B3)p? cos*(0) + bzp® cos®(6) + bgp cos*(0)
+ scos(0 + w) (Bg + (by + By)pcos() + byp? cos®(0) + brp® cos3(0))
+ 5% cos?(0 + w) <B5 + bsp cos(6) + bgp? 0082(9))

+ 5% cos®(0 + w)bgp cos(G)}
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Fa0.p.5.6) == SO [ 41pcos(9) + 3% cos?(0)
+ scos(f +w) (Ag + (a1 + Ay)pcos() + azp® cos®(0) + agp® cos3(9)>
+ 5% cos?(A + w) (az + As + agpcos() + arp? cos2(9))
+ 53 cos®(6 4 w) <a5 + agp cos(ﬂ))
+ st cos’ (0 + w)ag]
+cos(08—|—w) [Blp cos() + (by + B3)p? cos?(0) + byp® cos(0) 4 bgp® cos(8)

+ scos(f + w) (BQ + (ba + By)pcos(0)
+ byp? cos® () + brp® 0083(0))
+ 5% cos?(6 4 w) <B5 + bsp cos(0) + bgp? 0082(0))

+ 5% cos® (0 + w)bgp cos(@)}

The previous differential system in the new independent variable § becomes as follows

d

£ = _5F1(‘9a/775aw) + 52R1(0,p78,w,€),

ds 2

@ = 75F2(9apa57w) +e€ R2(9)pa57w76>7 (7)
d

di{; - _€F3(9ap737w) + €2R3(9,p,8,w,5),

We observe that this system is into the normal form of the averaging method (5), with ¢t = 6 and
x = (p, s,w) that the all assumptions of the Theorem 2 are satisfied for the system (7). We compute
the average functions of the first-order associated with the system (7)

1 21
fi(p737w) = 27T/0 Fi(gvpasaw)dea

for i = 1,2, 3, we obtain

ssin (w)

3 (3 s2a5 + 4 Ay + 2 sa4p cos (w) + a3p2>,

fi(p, s,w) =

fa(p, s,w) = —pSlI;M<2pb4scos (w) +4 By +3p%bs + b582>,

f3(p, s,w) = — 2 53ayp cos?(w) + pPbys — 3 stas cos(w)

_87)3(
+ 4 p? By cos(w) + 2 pPbys cos?(w) — 4 52 Ay cos(w)
+ 3 p?b55% cos(w) — 3 s2azp? cos(w) + 3 ptbs cos(w)

+4pBos —4sAi1p— s3a4p>.

If (po, so,wo) is a zero of the system

fi(p,s,w) =0, fori=1,2,3, (8)
such that (f b f
det 2L f2:15) £0, (9)
8(/)’ S7w) (p0y807wO)
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then Theorem 2 assures that the system (3) has a periodic solutions. So, in particular a zero of (8)
must be isolated in the set of all zeros of (8). We note that the zeros of (8) having sin(w) = 0 are
non-isolated, so we cannot apply to them the averaging theory for obtaining limit cycles. Moreover,
since the differential system (7) is only well defined when s > 0 and p > 0, in the rest of this section we
will assume that p > 0, s > 0 and sin(w) # 0, and consequently we can restrict to look for the zeros of

gl(pa S, (,U) = 07
§2(p,s,w) =0, (10)
53(97 S, W) = O)
satisfying (9), where
8f1
gl(pa S7w) - Ssin(w)v
—8fy
&(p,s,w) = psT(w)’
63(075,‘*)) = _8P5f3-
\

The rest of the proof of Theorem 1 is divided into the following cases and subcases.

Case 1 If a4 # 0. Then, by solving the first equation &; = 0 with respect to cos (w) we get

_a3p2 +4 Ay +382a5

cos (w) = Dsasp

Substituting the expression of cos (w) in the second equation, £, = 0, we obtain
—b4a3,02 —4b4A9 — 3 b4s2a5 + 4 Biag + 3b3p2a4 + b5$2a4 =0. (11)

Subcase 1.1 If byjaz — 3bgay # 0. Then, from (11) we get

4Bla4 — 4b4A2 — 3[)482(15 + b532a4
p= :
b4a3 -3 b3a4

Substituting the expressions of p and cos(w) in the third equation, {3 = 0, we obtain an equation
of the form
s(A +Bs? + Cs?)
\/(b4a3 — 3b3a4)2((b5a4 — 3[)4&5)82 — 4bsAg + 4Bla4)

where A, B, C are constants. From now onwards, we are going to denote by A, B, C this kind of
generic constants. As A + Bs? 4+ Cs? is a quadratic polynomial in s?, which can have at most two
positive solutions for s, in this subcase we get two values for p, s and cos(w). Observe that each
value of (p, s) provides at most two solutions for w. Hence, assuming that in these four solutions
the determinant (9) is not zero, by Theorem 2, it follows that in this subcase we have at most
four periodic solutions of system (3).

=0,

Example 1. Let us consider the system of differential equations:

T =u,

- 5 2 1 Lo 3 3 9 3

u = x+€(<2x+w +2my 5V + 5z me—i-y Y

1
+z + 2% + y2> )

2 (12)
y =v,
3 1 3
O:—y+5<<4y+x2—2xy—2y2+x3—my2—y3>x
L +2y+ﬂ:2fxy+y2).
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Then, it can be checked that

2
(p,s,w) \/ A 37

2 117r
(p,s,w) \/ A 3=

6v'3
are zeros of system (12) with determinant (9) equals to il?:g)’ respectively. So, this system has

two periodic solutions coming from periodic orbits of the center (4) .

Subcase 1.2 If byag —3bsay = 0, then by = asby/(3a4), and we need to consider the following subcases.

Subcase 1.2.1 If bsay — 3bsas # 0, then, from (11) we obtain that

=9 —Bjag + by As
"V bsag — 3bgas

We must consider that —Bjag 4+ by As # 0, otherwise s = 0 and we cannot get periodic solutions.
If we substitute the expressions of cos(w) and s in & = 0, we get an equation of the form
p(A + Bp? + Cp*) = 0. Since p must be positive, again in this subcase we get two values for p, s
and cos(w); and consequently at most four periodic solutions of system (3).

Subcase 1.2.2 bsas —3bgas = 0. Therefore, from (11) we must have that —Bjas+byAs = 0, otherwise
we do not have solutions. That is, b5 = 3 byas/ay. Substituting now cos(w) in {3 = 0, we get a
continum of solutions for p and s. So, in this case we cannot apply Theorem 2.

Case 2 a4 = 0. Again we need to consider the following subcases.

Subcase 2.1 a3 # 0. Therefore, from the first equation, &, = 0, we get

\/—ag (3 s2as + 4A2)
as '

p =
Of course we suppose —as (3 s2a5 + 4 Ag) = 0, otherwise p = 0. Now, we substitute the expression
of p in the second equation & = 0.

Subcase 2.1.1 by # 0. Therefore, from the second equation, & = 0, we get that

(b5a3 -9 b3a5) s —12b3A9 + 4B1a3
2bys\/—a3 (3 s2a5 + 4 As)

cos(w) =

Substituting the expressions of p and cos(w) in {3 = 0, we get an equation of the form

S

A+Bs*+Cs') =0
a3b4\/fa3 (3 S2CL5 + 4A2) ( )

Since the first factor cannot be zero, as in the previous subcases, we can get at most four periodic
solutions of system (3).

Subcase 2.1.2 b4 = 0.
Subcase 2.1.2.1 If bsas — 9asbs # 0, then, from the second equation, & = 0, we obtain
3 bgAQ - B1a3
s=24) 221
b5a3 -9 a5b3
substituting the expressions of p and s in £5 = 0, we arrive to an equation of the form A +

B cos(w) + Ccos?(w) = 0. So, once again, we can obtain at most four solutions for p, s and w,
and, consequently, we obtains at most four periodic solutions for system (3).

32| https://doi.org/10.17993 /3ctecno.2022.v11n2e42.25-36
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9asb
Subcase 2.1.2.2 If bsaz — 9asbs = 0, then, b5 = 5 3. Now, from & = 0, it follows that Biag —
as
3b3 A
3b3As = 0, otherwise we have no solutions. Therefore, B; = 372 Substituting the expression
as
of p in &3 = 0, we get a continuum of solutions. So, again, we are not in the assumptions of

Theorem 2.

Subcase 2.2 a3 = 0. Looking at equation & = 0, we see that as cannot be zero, otherwise &1 = 0
reduces to Ay = 0, and either we do not have solutions or we have a continuum of solutions.

Then, from & = 0 we get
/A
s=2 /-2,
3a5

Substituting the expression of s in the second equation £ = 0, we must consider the subcases:

Subcase 2.2.1 If by # 0, then, by solving the equation & = 0 with respect to cos (w) we get

12 Bias + 9 p2b3a5 —4b5A9
4p b4\/ -3 a5A2 '

Substituting the expressions of cos(w) and s in {3 = 0, we obtain an equation of the form
p(A + Bp?) = 0. Hence, as in previous subcases, system (3) has at most two periodic solutions.

cos(w) =

Subcase 2.2.2 Assume by = 0. Then, the second equation & = 0 is of the form A + Bp? = 0, so,
there is at most one positive solution for p. Hence, by substituting the value of s and p in €5 = 0,
we obtain an equation of the form A + B cos(w) = 0. Therefore, we get at most one solution for
p and cos(w). In short, putting aside those subcases where we obtain a continuum of solutions,
there is at most one solution for s, p and cos(w) and so, there are at most two periodic solutions
for system (3).

In the previous case, we gave a particular solution obtained from the subcase 1.1, that is the
most general one. Now we are going to see the general solution of subcase 2.2.2, characterized by
a3z = a4 = b4 =0.

Corollary 1. If a3 = a4 = by = 0 then

a) If b5 = 0 the system (10) has no solution or it has a continuum of solutions.

b) If bs # 0, the solutions of system (10) are given by:

o 4B +bss

3b3
a4
3&5
_ 2(A; — By)
cos(w) = baps

Demonstragao. a) If bs = 0, the system (10) reduces to
4A9 + 3a5s2 =0,
4B + 3b3p® =0,
4ps(By — A1) + cos(w) (82(—4A2 — 3ass?) + p*(4By + 3b3p2)) =0

that is
4A2 + 3&552 = 0,
4By + 3b3p® =0,
4ps(Ba — A1) = 0.

33 https://doi.org/10.17993 /3ctecno.2022.v11n2e42.25-36
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This system of equations does not depend on w, hence either has no solution or has a continuum
of solutions.

b) If b5 # 0, we have the system:
445 + 3azs® = 0
4B + 3b3p2 + b582 =0
4ps(By — A1) + cos(w) (32(—4A2 — 3a5s?) + p* (4B1 + 3b3p* + 3b55?) ) =0.

From the first equation, &; = 0, we obtain that s? = —%7 and, by substituting this value in the
4B +bs s2

second equation, & = 0, it follows that p? = b3

Finally, the equation &3 = 0 reduces to

ps <2(Bg — Ay) + bsps cos(w)> =0,

hence,
2(A; — B
cos(w) = M
bsps
This three equalities provides all the possible solutions of this subcase. O
Example 2. In the previous corollary, if we take Ay = Bs, we have that w = 5 or w = 37“,

and if we take the values a5 = —1,bs = —1,b5 =1, Ay = 9, By = 1, we obtain the following two

solutions: A
T
, S, W) = = 2\/§7 o 9
(.5 = (253 )

(p,s,w) = (\%,2\/5, 32”) :

Observe that this subcase does not depend on the constants not listed in this example, so, we can
choose any value for them.

4  CONCLUSIONS

This paper shows that the application of averaging method of first-order it is useful for study the
existence of limit cycles of perturbated system of second-order differential equations.

We have proved that, using Theorem 2, we can obtain at most four periodic solutions of system (3)
when fi(z,y) and g1(z,y) are real cubic polynomials, and fo(x,y) and go(x,y) are real quadratic
polynomials. Moreover, if ay = 0 and ag = 0, the system (3) has at most two periodic solutions.
We have also obtained the general solution in the case ag = a4 = by = 0.
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