
Manuel García Domínguez

César Domínguez Pérez y Jonathan Heras Vicente

Facultad de Ciencia y Tecnología

Matemáticas y Computación

Título

Director/es

Facultad

Titulación

Departamento

TESIS DOCTORAL

Curso Académico

Democratizing Deep Learning methods by means of
AutoML tools

Autor/es

© El autor
© Universidad de La Rioja, Servicio de Publicaciones, 2022

publicaciones.unirioja.es
E-mail: publicaciones@unirioja.es

Democratizing Deep Learning methods by means of AutoML tools, tesis doctoral
de Manuel García Domínguez , dirigida por César Domínguez Pérez y Jonathan Heras

Vicente (publicada por la Universidad de La Rioja), se difunde bajo una Licencia Creative
Commons Reconocimiento-NoComercial-SinObraDerivada 3.0 Unported.

 Permisos que vayan más allá de lo cubierto por esta licencia pueden solicitarse a los
titulares del copyright.

Tesis presentada como compendio de publicaciones. La edición en abierto de la misma NO
incluye las partes afectadas por cesión de derechos

Democratizing Deep Learning methods
by means of AutoML tools

Manuel Garcı́a Domı́nguez

Supervisors: Dr. D. César Domı́nguez Pérez
Dr. D. Jónathan Heras Vicente

A thesis submitted in fulfillment of the requirements

for the degree of Doctor of Philosophy

Universidad de La Rioja
Departamento de Matemáticas y Computación

Logroño, September 2022

This work was partially supported by Ministerio de Economı́a, Industria y Competi-

tividad [MTM2017-88804-P], Ministerio de Ciencia e Innovación [PID2020-115225RB-

I00 / AEI / 10.13039/501100011033], Agencia de Desarrollo Económico de La Rioja

[ADER-2017-I-IDD-00018] and a FPI grant from Community of La Rioja 2018.

Agradecimientos

Este trabajo está dedicado a todas las personas que me han acompañado a lo largo de

estos años.

Para comenzar, quiero dar las gracias a Jónathan Heras y César Domı́nguez, quienes

me han acompañado y orientado durante esta etapa. Gracias por vuestra comprensión y

empatı́a, por tener siempre vuestra puerta abierta y ayudarme a ver el camino cuando

era difuso.

También quiero agradecer a mi grupo de investigación, que me recibieron con los

brazos abiertos y han sido un gran apoyo.

No me olvido de mis compañeros y compañeras de doctorado, que sin duda han

sabido entenderme durante todo este tiempo y que se han convertido en grandes amigos

y amigas.

Agradezco también toda la ayuda recibida por el departamento de Matemáticas y

Computación, que siempre me ha facilitado las herramientas necesarias para hacer mi

trabajo lo más cómodo posible.

Por último, y no por ello menos importante, doy las gracias a mi familia, amigos

y amigas; que aun sin saber entender en qué consistı́a mi trabajo, siempre han sabido

como ayudarme. Especialmente, a mi madre, a Andrea y a mis gatos.

A todas y todos, gracias.

iii

Resumen

Las técnicas de Inteligencia Artificial, y en concreto de aprendizaje profundo, o en

inglés Deep Learning, se han convertido en el estado del arte para lidiar con problemas

de Visión por Computador en casi cualquier ámbito. Este crecimiento se debe a la gran

cantidad de imágenes que se capturan diariamente, el incremento de la capacidad de

cálculo gracias al desarrollo de hardware especı́fico, y el acceso libre a las herramientas

necesarias para crear modelos de Deep Learning. A pesar de su éxito, los métodos

de Deep Learning presentan una serie de problemas. Esta tecnologı́a no es sencilla

de utilizar y requiere de cierta experiencia y conocimientos técnicos. Además, no hay

siempre un algoritmo, o una librerı́a, que consiga los mejores resultados para cualquier

situación, por lo que es necesario conocer y probar múltiples de ellos. Otro problema

añadido es la necesidad de obtener un gran número de imágenes anotadas para poder

construir modelos precisos. Esto puede ser un reto en contextos como el biomédico

donde puede ser difı́cil conseguir un número suficiente de imágenes, y donde el proceso

de anotación es costoso y requiere de conocimiento experto. Por último, una vez que

un modelo de Deep Learning se ha construido, este debe ser capaz de generalizar a

contextos no previstos en el momento de su construcción; sin embargo, en muchas

ocasiones los modelos no funcionan correctamente cuando se usan imágenes de un

dominio, o estilo, diferente al que se usó originalmente para entrenar dichos modelos.

Este problema se conoce como el problema del cambio de dominio.

El objetivo de nuestro trabajo ha sido dar solución a los problemas mencionados

anteriormente mediante el desarrollo de técnicas y herramientas que sean accesibles a la

mayor cantidad de usuarios posibles. En primer lugar hemos desarrollado herramientas

que permiten crear de manera sencilla modelos precisos de Deep Learning para la

clasificación y la detección de objetos en imágenes. Para ello se han empleado técnicas

de AutoML que buscan de forma automática el mejor modelo para un conjunto de

imágenes dadas. Además, hemos desarrollado un método para aplicar aumento de datos

a distintos problemas de Visión por Computador. Este método ha sido implementado en

una herramienta que permite generar datasets de imágenes lo suficientemente grandes

para alimentar a los modelos de Deep Learning en distintas tareas de Visión por Com-

putador como son la clasificación, la detección de objetos o la segmentación semántica

de imágenes y vı́deos. Además de herramientas para facilitar la creación de modelos de

Deep Learning, se ha desarrollado una herramienta que mediante técnicas de traducción

desparejada de imágenes (en inglés, unpaired image-to-image translation) y transfer-

encia de estilos (en inglés, style transfer), permite lidiar con el problema del cambio

de dominio en cualquier problema de Visión por Computador. Es importante notar que

v

vi

no solo hemos desarrollado métodos y herramientas desde un punto de vista teórico,

sino que todo el conocimiento adquirido durante el desarrollo de dichas herramientas

ha servido para abordar problemas biomédicos realeas como son la segmentación de

esferoides, la clasificación y segmentación de imágenes de motilidad, o la predicción

de enfermedades de la retina a partir de imágenes del fondo del ojo. Finalmente, los

conocimientos obtenidos al resolver estos problemas biomédicos nos han servido para

mejorar las herramientas desarrolladas.

Abstract

Artificial Intelligence, and specifically Deep Learning, methods have become the state-

of-the-art approach to deal with Computer Vision problems in almost any field. This

growth is due to the large amount of images that is produced in a daily basis, the

increment of calculation capacity thanks to the development of specific hardware, and

the open-source nature of the tools that allow us to build Deep Learning models. Despite

their success, Deep Learning methods have several drawbacks. This technology might

be difficult to use and requires some experience and technical knowledge. In addition,

there is not always an algorithm, or library, that produces the best results for all the

situations; hence, it is necessary to know and try different alternatives. Moreover,

Deep Learning methods require a large number of labeled images to produce accurate

models. This might be a challenge in contexts like biomedicine where it is difficult to

acquire large enough datasets of images, and the annotation of those images require

expert knowledge. Finally, once Deep Learning models are built, they should be able to

generalize to contexts that were unforeseen during their construction. However, in many

cases, models do not work properly when they are used with images from a domain, or

style, different to the one used for training those models — this is known as the domain

shift problem.

The goal of our work has been to tackle the aforementioned problems by means of

techniques and tools that are user-friendly. First of all, we have developed tools that

allow users to create accurate Deep Learning models for image classification and object

detection tasks. To this aim, we have applied AutoML techniques that automatically

search the best model for a given dataset of images. Moreover, we have developed

a method to apply data augmentation to several Computer Vision problems. Such a

method has been implemented in a tool that allows users to generate large enough

datasets of images to feed Deep Learning models in several Computer Vision tasks such

as image and video classification, object detection or semantic segmentation. In addition

to tools that simplify the construction of Deep Learning models, we have developed

a tool that tackles the domain shift problem by means of unpaired image-to-image

translation methods and style transfer techniques. It is worth noting that we have not

only developed methods and tools from a theoretical point of view, but all the knowledge

acquired during the development of those tools has been applied to deal with actual

biomedical problems such as spheroid segmentation, the classification and segmentation

of motility images, or the diagnosis of retinal diseases from fundus images. Finally, the

experience provided by tackling actual problems has served to improve the developed

tools.

vii

Contents

Publications 1

1 Introduction 3
1.1 Motivation . 3

1.2 Objectives . 11

2 Results and discussion 13
2.1 Objective 1: Facilitating the construction of Deep Learning models . . 13

2.2 Objective 2: A General Image Augmentation Library 23

2.3 Objective 3: Dealing with the Domain Shift Problem 29

2.4 Objective 4: Applications to biomedical problems 36

3 Contributions 45
3.1 FrImCla: A Framework for Image Classification Using Traditional and

Transfer Learning Techniques . 46

3.2 UFOD: An AutoML Framework for the Construction, Comparison, and

Combination of Object Detection Models 47

3.3 CLoDSA: a tool for augmentation in classification, localization, detec-

tion, semantic segmentation and instance segmentation tasks 48

3.4 Neural Style Transfer and Unpaired Image-to-Image Translation to deal

with the Domain Shift Problem on Spheroid Segmentation 49

3.5 Prediction of Epiretinal Membrane from Retinal Fundus Images Using

Deep Learning . 50

3.6 MotilityJ: An open-source tool for the classification and segmentation

of bacteria on motility images . 51

4 Conclusions and further work 53

5 Conclusiones y trabajo futuro 57

ix

Publications

This memoir is made up of a compendium of scientific papers. These papers are attached

as appendexes of this document and are listed as follows.

• A. Casado-Garcı́a, C. Domı́nguez, M. Garcı́a-Domı́nguez, J. Heras, A. Inés, E.

Mata, and V. Pascual. “CLoDSA: A Tool for Augmentation in Classification, Lo-

calization, Detection, Semantic Segmentation and Instance Segmentation Tasks”.

BMC Bioinformatics 20(323). 2019. DOI: 10.1186/s12859-019-2931-1.

• M. Garcı́a-Domı́nguez, C. Domı́nguez, J. Heras, E. Mata, and V. Pascual. “FrIm-

Cla: A Framework for Image Classification using Traditional and Transfer Learn-

ing Techniques”. IEEE Access. 2020. DOI: 10.1109/ACCESS.2020.2980798.

• M. Garcı́a-Domı́nguez, C. Domı́nguez, J. Heras, E. Mata, and V. Pascual. “UFOD:

An AutoML Framework for the Construction, Comparison, and Combination of

Object Detection Models”. Pattern Recognition Letters 145, pp. 135-140, 2021,

DOI: 10.1016/j.patrec.2021.01.022

The rest of this memoir is organized as follows. In the first chapter, we present the

motivation of our work, the problems that have been addressed, and the objectives that

we would like to achieve with this work. In the second chapter, we show and discuss

the results that we obtained with our work, and in Chapter 3 we summarize our main

contributions. To conclude, we present the conclusions of this work and future lines of

research. The code associated with this memoir can be found in the following repository:

https://github.com/ManuGar/Thesis.

1

Chapter 1

Introduction

In this chapter, we provide the necessary background to understand the motivation of our

work. Namely, we introduce what is Deep Learning, present some drawbacks of Deep

Learning methods for Computer Vision tasks, and review the works in the literature that

have addressed those limitations. Finally, we establish the goals that have driven our

research.

1.1 Motivation

In the last decade, we have seen a revolution in several fields thanks to the application

of Artificial Intelligence, and, more concretely thanks to, Deep Learning methods [1].

Artificial Intelligence is a field of Computer Science that is focused on designing

intelligent systems [2]. The main goal of Artificial Intelligence is the creation of systems

that are autonomous and adaptable. Among Artificial Intelligence techniques, we can

highlight a subset of them called Machine Learning methods that, instead of being

explicitly programmed, learn from data [3]. The impact of Machine Learning methods

has considerably grown thanks to the huge amount of data that is produced in a daily

basis, the increase of the calculation capacity, and the fact that the community makes,

in general, its algorithms and models freely available for use [1]. There are several

kinds of Machine Learning techniques such as reinforcement, unsupervised or semi-

supervised learning methods; however, the most well-known procedures in this field

are supervised learning methods. In supervised learning methods, there are two main

ingredients: a labeled dataset (that consists of pairs of input and expected output),

and an algorithm (for instance, a decision tree or a neural network) that has a set of

configurable parameters, also known as weights. During the learning process, elements

of the labeled dataset are shown to the algorithm and its parameters are modified to

produce the expected output thanks to an optimization algorithm [4]. The result of

the learning process is a model; that is, an algorithm with a fixed set of weights, that

can be used for inference. Among supervised learning algorithms, we can highlight

neural networks since they are the basis for Deep Learning models. Neural networks

are based on a collection of artificial neurons that are connected. Each connection can

3

4 CHAPTER 1. INTRODUCTION

transmit a signal to other neurons. An artificial neuron receives signals then processes

them and can signal neurons connected to it. Deep Learning is a subset of Machine

Learning where the “deep” comes from the number of layers that form those neural

networks and are responsible for extracting the information from the data to learn a

useful representation [5]. The main difference between Machine Learning and Deep

Learning methods is that in Machine Learning methods the representation of the data

is fixed by the developer; and, on the contrary, Deep Learning methods learn the data

representation that is useful for a given task without human intervention. Among the

fields that have taken advantage of the advances produced thanks to Deep Learning, we

can highlight Computer Vision.

Computer Vision is a field of Artificial Intelligence that is focused on extracting and

analyzing information from images and videos to solve real life problems [6]. Roughly

speaking, the objective of Computer Vision techniques is to teach computers to “see”.

Deep Learning methods have been successfully used in Computer Vision tasks because

these methods learn a hierarchical representation of images, similar to the human, to

solve tasks such as image classification within X-ray baggage security [7] or in the

classification of gastrointestinal diseases [8].

Among Computer Vision tasks, we can highlight three tasks that have lots of

applications: image classification, object detection and semantic segmentation (see

Figure 1.1). Image classification consists of determining the class to which an image

belongs. Object detection is a more complex task since it is focused on locating the

position of the objects in an image and determining their classes. The last task, semantic

segmentation, is the most complex. In semantic segmentation, each pixel of the image

is classified using a fixed set of categories. Currently, the state-of-the-art approach

to tackle these tasks are Deep Learning models, and namely Convolutional Neural

Networks (CNNs) [1].

Figure 1.1: Common Computer Vision tasks. The images are available under a Creative Commons

License

In spite of its success, the application of Deep Learning methods for image classi-

fication, object detection and semantic segmentation is not straightforward [1]. Deep

learning methods need some experience and knowledge of the underlying technology

because it is complex and difficult to use. Moreover, there are several Deep Learning

libraries and algorithms that can be used to solve the same problem, and there is not a

single algorithm that always gets the best results [3]. In addition, Deep Learning algo-

rithms also need huge datasets to get good results [9] and, they fail to generalize when

1.1. MOTIVATION 5

applied to out-of-domain data distributions [10, 11]. In the next sections, we provide a

detailed description of these problems and the solutions that have been proposed in the

literature.

1.1.1 Democratization of Deep Learning tools

The construction of Deep Learning models requires some knowledge about their training

methods, and the tools that implement them [1]. In addition, there are different libraries

and algorithms that address the same problem (for instance, CNNs such as ResNet [12]

or Efficientnet [13] can be used for tackling images classification tasks, or YOLO [14]

and FasterRCNN [15] can be used for object detection problems). Moreover, Deep

Learning algorithms have a set of parameters known as hyperparameters that are not

learned, but must be fixed by the user. So, it is convenient to try several configurations

and alternatives to find the best approach for each problem [16]. As there are many

different alternatives, and users from different disciplines normally are not experts in

these technologies, AutoML systems have been developed to democratize the use of

Machine Learning methods [17]. AutoML tools try to simplify the construction and

usage of Machine Learning models for domain experts that have a limited Machine

Learning background [18].

There are two different types of AutoML tools: AutoML tools for structured data,

and AutoML for non-structured data (for instance, images, text or videos). AutoML

tools for structured data are focused on hyperparameter tuning, trying to find the best

combination of hyperparameters and classical Machine Learning algorithms. In the

literature, we can find several AutoML tools for structured data like SMAC [19], Auto-

Weka [20] or Auto-sklearn [21]. These systems select the algorithm which produces the

best results after performing several tests on the problem that is studied. AutoML tools

for structured data have the drawback that they cannot be used directly with images or

texts; therefore, other kinds of tools must be used.

AutoML techniques for non-structured data are mainly focused on automatically

designing neural deep architectures [22]. This is known as Neural Architecture Search

(NAS), and it is used to find new Deep Learning architectures optimized for a given

problem. NAS methods have improved the results on problems such as image classifica-

tion or object detection [23], and there are several tools that can apply those methods;

for instance, Auto-Keras [24], AutoML cloud services [25] or Google AutoML [26].

Most of these tools are mainly oriented towards image classification tasks, which limits

their use. In addition, these tools require a high number of images to train the models

and take too much time; for instance, 500 Graphics Processing Unit, or GPUs, were

used during 4 days to train a model for the CIFAR-10 dataset [27]. Another aspect to

take into account in the case of AutoML cloud services is the privacy of our projects

since we have to upload the images to servers that are not under our control. Therefore,

in order to facilitate the construction of Deep Learning models for Computer Vision

tasks, it is necessary the development of tools that can be applied to different problems,

are easy to use, and produce effective models in a reasonable amount of time and using

a limited amount of resources. In addition, we have to provide these AutoML tools a

sufficient amount of images.

6 CHAPTER 1. INTRODUCTION

Figure 1.2: Transfer learning approaches for image classification. LEFT. (1) The source dataset

is used to train the model. (2) The trained model is used but removing the last layer. (3) We

use the model to generate a feature vector dataset from the target dataset. (4) A classic machine

learning model is trained with the feature vector dataset. RIGHT. (1) The source dataset is used

to train the model. (2) We use the model by replacing the last layer. (3) The target dataset is used

to retrain the model.

1.1.2 The amount of available images

Deep Learning algorithms need millions of images to be trained from scratch [28]. In

some cases, getting such an amount of images can be really difficult because of a tight

budget to obtain more samples, the need to perform invasive medical procedures, or

destructive image processes that limit the images that can be acquired. An additional

problem arises since these images need to be annotated; a manual process that might

require an expert, and takes a considerable amount of time. For example, in the COCO

dataset, that includes 80K images manually annotated for semantic segmentation, it

took 22 worker hours per 1,000 segmentations [29].

One approach to solve the lack of enough images is transfer learning [30]. This

technique uses a model trained in a source task in a new target task [31–34]. There are

two different approaches to use transfer learning for image classification: either as a

feature extractor or by using fine-tuning. Using transfer learning as feature extractor

for image classification consists in using a network pre-trained on a big source dataset,

like ImageNet [35], and using the output of the last but one layer of such a pretrained

network as input of classical Machine Learning algorithm. Hence, each image of

the target dataset is fed to the source network and a feature vector is extracted, and

then it is possible to use all classical Machine Learning algorithms. The fine-tuning

approach also starts from a pre-trained network but the model architecture is modified

by changing the last layer, and providing a new layer adapted to our particular task.

1.1. MOTIVATION 7

Figure 1.3: Transfer learning on semantic segmentation tasks. (1) The network is trained on

an image classification task. (2) The backbone of this network is used in a new target dataset

as part of the new network. (3) The new network with the backbone is trained on a semantic

segmentation problem.

With this “new” network, the model is retrained with the target dataset to obtain the new

model, see Figure 1.2. In both transfer learning approaches, there are not any tool that

facilitates their use by non-expert users since all of them require some knowledge about

specialized libraries like Keras [36], PyTorch [37] or fastai [38]. Moreover, there are

several architectures that can be used as source models, and it might be worth exploring

several of them. In order to use transfer learning in other problems, like object detection

or segmentation, we can use a model pre-trained for image classification as the backbone

of the network that will be employed to extract relevant features for the given problem,

see Figure 1.3. Namely, a backbone that has been trained on the source dataset will be

used in a new dataset to make it easier to abstract new patterns. In this way, the new

network, by using the backbone trained on a previous task, is able to obtain patterns

faster and improve the training results.

Another way to solve the problem of the lack of images for Deep Learning methods

is data augmentation [9, 39]. This technique is based on increasing the number of

available images through transformations such as rotations or color changes. It is worth

noting that some transformations do not make sense in some contexts; for instance if we

modify the color of a cat we do not modify the content of the image, but if we make

the same color change in a medical image, we could modify the interpretation of such

an image. In addition, for Computer Vision tasks such as object detection or semantic

segmentation, the annotation of the image also changes when some transformations

are applied, see Figure 1.4. Over the years, several tools have been developed for

data augmentation. Initially they were basic tools that could only be used for image

classification. Moreover, some of these tools did not work with all annotation formats or

did not work with videos. But they have been upgraded over the years and most libraries

8 CHAPTER 1. INTRODUCTION

have solved those problems. Some of those libraries are Imgaug [40], Augmentor [41],

Albumentations [42] and autoaugment [43].

Figure 1.4: Data augmentation example for object detection. The images are available under a

Creative Commons License.

Most transformations provided by data augmentation libraries are either geometric

or color transformations. A different kind of data augmentation method is based on

Generative Adversarial Networks (GANs) [44]. This technology is a bit peculiar since

it is based on the fact we build a model that it is formed by two neural networks that

“compete” with each other (see Figure 1.5). The first network, called the generator, is

focused on the creation of realistic images. The second network, called the discriminator,

is focused on deciding whether an image is real or was created by the generator. In

the training process, we see a “competition”, where the generator improves the images

it creates to deceive the discriminator, that in turn is improved to detect fake images.

GANs can be used to change the style of images [45] and generate new images that

can be used in combination with little datasets for data augmentation [46]. The main

disadvantage of GANs is that they need huge datasets to be trained to generate images

with good quality. Moreover GANs like other Deep Learning techniques are difficult to

train and need a lot of execution time to train them [47].

In order to facilitate the training process of GANs for generating new images,

an approach called image-to-image translation has emerged [48]. Image-to-image

translation methods take images from one domain and transform them so they have the

style of a different domain, see Figure 1.6. This approach has the drawback that needs

paired data from source and target domains, but this issue has been fixed with unpaired
image-to-image translation methods [50], see Figure 1.7. This new technology does

not require paired images and can translate images from domain A to domain B, and

vice versa. This method uses a dataset from domain A to learn the style of the images

and then uses a dataset from domain B to translate the images of such a dataset into the

style of domain A and vice versa. Among unpaired image-to-image translation methods

we can highlight techniques like CycleGAN [49], DualGAN [51], ForkGAN [52],

GANILLA [53], CUT [50], and FASTCUT [50] that have been used successfully as

image augmentation methods [54]. The main limitation to use those techniques is the

lack of a library that facilitates the use of those techniques for non-expert users.

Up to now, we have presented the limitations for building Deep Learning models, but

1.1. MOTIVATION 9

Figure 1.5: GAN training process. Generator creates realistic images, whereas the discriminator

determines whether the image is real or generated by the generator.

Figure 1.6: Several image-to-image translation problems [48].

once we have trained them, we should check whether they are capable of generalizing;

that is, check whether the models can deal correctly with images that were not seen

during the training process.

1.1.3 Generalization of models
The last challenge of Deep Learning models that we are going to face in this work

is known as domain shift (also known as distribution shift) [10, 11]. This problem

arises when the data distribution of the dataset used for training is not the same to

the data that the model encounters when it is deployed, see Figure 1.8. This is a

common problem when working with domains that have a lot of variability, such as

autonomous driving, where we have different climatic conditions [55]; or in biomedical

domains, where there is a great variability in experimental conditions, the equipment

or settings (for instance, the microscope used, or the focus and colors used to obtain

the images) [56]. This generalization problem can be mitigated by combining several

10 CHAPTER 1. INTRODUCTION

Figure 1.7: Image style change example of using CycleGAN. Object transfiguration between

horses and zebras [49].

datasets from multiple sources [57] or by using data augmentation, but it is impossible

to include every distribution in the training dataset.

Figure 1.8: Generalization problem with images with a completely different domain or style

Another solution to the domain shift problem consists in applying transfer learning;

namely, by retraining a model with data from the new distribution, but this requires

an annotated dataset of the new distribution, and the resources and knowledge to train

the new model. A novel way to solve the domain shift problem is the application of

unpaired image-to-image translation methods [58], this is illustrated in Figure 1.9.

As we have previously mentioned, unpaired image-to-image translation methods

translate an image from a domain A to a domain B, and vice versa, in the absence

of paired examples. This approach has been already employed in several medical

segmentation tasks; for instance, CycleGAN was used to change the style of a test set of

magnetic resonance images for segmenting the left ventricle [59], it was also used to

modify the style of x-ray images in the segmentation of radiographs [60], and to generate

the medical images that are used in the development of a project for the segmentation

1.2. OBJECTIVES 11

of magnetic resonance imaging (MRI), abdominal CT and MRI, and mammography

X-rays [61]. All these works were based on variants of CycleGAN [49]. This approach

to deal with domain shift poses two challenges. First, both datasets (the dataset used

for training, and the dataset of the new domain) must be available, and this might be an

issue due to privacy concerns [62]; and, secondly, CycleGAN variants must be trained,

a process that demands the usage of GPUs and might be challenging for several users

due to the difficulties of training GAN models [47], therefore, other methods should be

studied.

Figure 1.9: Image to image translation workflow to deal with the domain problem shift.

1.2 Objectives
In the previous section, we have presented some limitations that are faced by Deep

Learning methods when applied to Computer Vision tasks. The aforementioned limita-

tions make it difficult for non-expert users to take advantage of Deep Learning methods.

Therefore, the main goal of our work is the democratization of Deep Learning techniques

by developing new methods and tools that help non-expert users in the construction and

usage of Deep Learning models for Computer Vision. To reach such a goal, we have

fixed the following objectives:

O.1. Develop AutoML tools that facilitate the construction and use of Deep Learning

models with limited resources for image classification and object detection, and

that can be generalized to other Computer Vision tasks like semantic segmentation.

O.2. Develop a tool that allows anyone to generate the number of images required to

train Deep Learning models in a wide variety of Computer Vision tasks.

O.3. Develop techniques and tools to address the domain shift problem in the context

of Computer Vision tasks.

O.4. Test the suitability of the tools and methods developed in the previous objectives

with real life problems.

Chapter 2

Results and discussion

In this chapter, we present how we have achieved the objectives introduced in the

previous section. A summary of our contributions is provided in Table 2.1.

Table 2.1: Results of this work

Nb Results Objective Publications

R1
Creation of a user-friendly tool for training and deploying image classifi-

cation models.
O.1 [63–65]

R2
Creation of a user-friendly tool for training and deploying of object

detection models.
O.1 [66, 67]

R3
Creation of a tool that helps in the task of data augmentation on computer

vision problems that are data demanding but have small image datasets.
O.2 [68]

R4
Creation of a tool that allows anyone to modify the style of a dataset to

the style of the dataset that the model was trained.
O.3 [69]

R5
Development of models for predicting epiretinal membrane using Deep

Learning.
O.4 [70]

R6
Development of a tool for the classification and segmentation of bacteria

on motility images.
O.4 [71]

2.1 Objective 1: Facilitating the construction of Deep
Learning models

The first objective of this work was the simplification of the process to construct Deep

Learning models for image classification and object detection tasks. This has been

achieved thanks to the development of two AutoML tools called: FrImCla and UFOD.

2.1.1 FrImCla: An AutoML tool for image classification
Currently, AutoML tools for building Deep Learning models for image classification

are based on the application of NAS methods. As we have previously mentioned, this

approach has several drawbacks since it is data demanding, time consuming and hard

13

14 CHAPTER 2. RESULTS AND DISCUSSION

Figure 2.1: Workflow of the FrImCla framework

to use for non-expert users [22]. On the contrary, we have approached this problem

inspired by tools like SMAC [19], Auto-Weka [20] or Auto-sklearn [21]. In particular,

we have built a tool, called FrImCla, that automatizes the construction of models for

image classification by using both Deep Learning models as feature extractors, and also

traditional Computer Vision feature extractors.

FrImCla (that stands for Framework for Image Classification) is an open-source

library that has been implemented in Python. This framework relies on several third-

party open-source libraries that have been employed and tested by large communities;

namely, scikit-learn [72], for machine learning methods and parallelization techniques;

scikit-multilearn [73], for multi-label classification algorithms; OpenCV [74], to extract

traditional computer vision features; Keras [36], to extract Deep Learning features; and

cPickle [75], to serialize objects.

The workflow of the FrImCla framework is depicted in Figure 2.1 and can be

summarized as follows. First of all, the user selects the image dataset to be studied and

some configuration parameters (mainly the feature extraction and Machine Learning

methods to be used). Subsequently, FrImCla extracts features from the dataset using

the set of fixed feature extractor methods given by the user; and a dataset of features

is created for each of them. On these datasets of features, FrImCla trains the selected

Machine Learning algorithms, and a statistical analysis is conducted to select the

best combination of features and Machine Learning algorithm. From such a winner

combination, a model is created for further usage. Apart from the first step — that is,

the selection of feature extraction methods and algorithms to be tried — the rest of the

process is carried out automatically by FrImCla without any user intervention. In the

rest of this section, we provide a brief overview of FrImCla’s features.

FrImCla description

FrImCla has been developed for different types of users. Non-expert users have at

their disposal tools that make its execution easier (in particular we have developed a

set of Jupyter notebooks [76] that provides a detailed explanation of each step that

must be executed to use FrImCla). More advanced users can integrate FrImCla in their

own programs as a standalone library. For all users, documentation is available in the

2.1. OBJECTIVE 1 15

project web page explaining the different parts of the framework, the dependencies of

the framework and so on.

FrImCla offers several feature extractor methods (employing both traditional and

transfer-learning techniques) to describe the dataset of images. In the case of traditional

Computer Vision feature extractors, FrImCla includes LAB and HSV histograms [77],

Haralick features [78] and HOG features [79] — this functionality has been implemented

using the OpenCV library. In the case of transfer learning methods, we employ the

output from the last layer of several deep learning networks, trained for the ImageNet

challenge [35], as feature extractors; namely, the user can select among VGG16 [80],

VGG19 [80], DenseNet [81], ResNet [12], Inception [82], GoogleNet [83], Overfeat [84]

and Xception [85] — moreover, FrImCla has been designed to easily include other

feature extraction methods. The features extracted from images are used to train the

classification models.

Similarly to the case of feature extraction methods, FrImCla users can select among

several supervised learning algorithms including SVM [86], KNN [87], Neural net-

works [88], Gradient Boost [89], Logistic Regression [90], Random Forest [91] and

Extremely Randomised Trees [92] for single-label datasets. In the case of multi-label

datasets (that is, datasets where the same image might have several labels), FrImCla

users can employ all the aforementioned algorithms through the binary relevance [93],

the classifier chain [94], and the label powerset [73] methods; and, additionally, the

ML-KNN [95] and the MLTSVM [96] methods are provided. In both cases, the list

of algorithms can be easily extended to incorporate other techniques. The Machine

Learning algorithms are trained using a stratified 10-fold cross validation, and the user

can also choose among several metrics (including accuracy, F1-score, recall, precision

and AUC) to measure the performance of the models. The information obtained from

the cross-validation is employed to select the best combination of feature extractor and

classification algorithm using a statistical analysis.

The 10-fold cross validation procedure explained previously is enough for selecting

the overall best combination of feature extractor and Machine Learning algorithm. In

addition, FrImCla provides a statistical method, that does not produce any computational

overhead, to find whether there are significant differences among the constructed models.

This procedure is widely employed in several fields [97].

FrImCla has two output modes: best classifier and ensemble of models. In the

former, once the results of the statistical analysis are obtained, FrImCla analyzes which

one is the best combination of feature extractor and classification algorithm. From

that combination, the algorithm is retrained with the whole dataset to be further used.

FrImCla generates the documentation about the choice of the best model using the

accuracy or the measure selected for the training process, and it also informs the user

about the time taken throughout the execution. In the latter mode, the best algorithm for

each feature extractor is retrained, and it is used as a component of an ensemble based

on the majority voting scheme [98] — this technique uses all the models to predict

the classes of the images; and, the class with the majority of the votes is the one that

results from the prediction. Normally, the ensemble mode gives better results than using

just one model for prediction [98]; however, it takes more time because it uses several

models to obtain the final result.

The models generated by FrImCla framework can be used in several ways. For

16 CHAPTER 2. RESULTS AND DISCUSSION

expert users, they can use the command line or the Python functions provided for such

an aim. These users can also exploit the models within their own libraries. Another

option to interact with the generated models is by using Jupyter notebooks. With this

option the user can read and learn what the models need to be used. The last option is a

simple web application. This option is focused on the users that only want to predict the

class of their images and do not want to bother about the peculiarities of the model.

A case study: MIAS

In order to test the suitability of FrImCla, we considered four different scenarios (MIAS

dataset, Malaria parasite dataset, single-label datasets and multi-label datasets). In this

memoir we only include the study of the MIAS dataset, the complete study is available

at [63]. The MIAS dataset consists of a set of 161 pairs of mammographic images [99].

The photos are in grayscale and they have an average size of 150× 150. The images

can be classified into two classes (normal or abnormal) or they can be classified into

three classes (normal, benign or malign) depending on the severity of the abnormality.

There are 113 abnormal images and 209 normal. The dataset is divided into 80% for

training and 20% for testing to know the performance of the framework.

Using FrImCla, we have performed a thorough study by combining all the available

feature extractors and Machine Learning models. Namely, we employed as featured ex-

tractors: VGG16, VGG19, Resnet, Inception, GoogleNet, Overfeat, DenseNet, LAB444,

LAB888, HSV444 and HSV888 (where LABXYZ and HSVXYZ are respectively

LAB and HSV histograms using X,Y,Z bins per channel); and as Machine Learning

algorithms: SVM, KNN, Multilayer perceptron (MLP), Gradient Boost (GB), Logistic

Regression (LR), Random Forest (RF), and Extremely Randomised Trees (ET).

In order to compare all the possible combinations, we analyzed the statistical study

performed by FrImCla. The analysis has two steps, the former serves to determine the

best Machine Learning algorithm for each feature extractor; whereas, the latter deter-

mines which is the best overall combination. From the first analysis, see Table 2.2, we

can observe that using transfer learning features, we can easily obtain an accuracy higher

than 80% but only with a few of them we can achieve an accuracy over 90%. On the

contrary, models trained using traditional features are far from the 80% accuracy. This

shows the importance of trying different models. In the second analysis, we compared

the best model for each feature extractor, and we check whether the three conditions

(independence, normality and heteroscedasticity) are fulfilled. As the conditions were

not fulfilled, a Friedman test was performed and gave us a ranking of the compared

models assuming as null hypothesis that all the models have the same performance. We

obtained differences (F = 11.36; p = 6.97 × 10−9) among the models, with a large

size effect η2 = 0.593969. As a result of the analysis, we see that the best combination

of feature extractor and Machine Learning algorithm was Overfeat with Logistic Re-
gression (although similar results are obtained with other methods) with an accuracy of

93.6%. The result with the test set is a 92.53% accuracy and a 90.95% AUC.

We compared our results with the state-of-the-art models for the MIAS dataset. The

best model in the literature for the MIAS dataset was presented in [100] and achieved

an accuracy of 98% using fine-tuning. In [100], they fine-tuned the networks VGG16,

Resnet50 and Inception v3 for the MIAS dataset; but, instead of applying transfer

2.1. OBJECTIVE 1 17

Table 2.2: Mean accuracy (and standard deviation) of the different studied models for the MIAS

dataset. The best result for each model in italics, the best result in bold face. ∗∗p < 0.01;∗∗∗p <
0.001; >: there are significant differences; �: there are not significant differences.

Network MLP SVM KNN LR GB RF ET Test
(ANOVA
or Fried-
man)

After post-hoc procedure

Densenet 77.3
(1.3)

82.0
(7.2)

77.7
(9.8)

83.6
(5.4)

81.2
(9.6)

82.4
(1.0)

86.0
(9.1)

0.43 ET � MLP, SVM, KNN,
LR, GB, RF

GoogleNet 74.8
(2.8)

84.5
(5.3)

82.8
(4.5)

88.4
(2.8)

84.4
(5.1)

86.0
(2.7)

86.0
(4.5)

4.37∗∗ LR � SVM, KNN, LR,
GB, RF; LR ¿ MLP

Inception v3 78.8
(2.6)

85.6
(2.3)

75.3
(6.6)

85.6
(3.4)

87.6
(2.9)

84.0
(5.6)

87.2
(4.6)

4.59∗∗ GB � SVM, LR, ET,
RF; GB ¿ KNN, MLP

Overfeat 88.4
(5.7)

93.2
(2.6)

82.4
(4.1)

93.6
(3.8)

87.2
(5.7)

87.6
(3.2)

88.4
(4.6)

2.95∗ LR � MLP, SVM, ET,
GB, RF; LR ¿ KNN

Resnet 50 83.6
(1.9)

84.0
(2.7)

80.4
(2.2)

85.2
(3.3)

86.9
(5.7)

88.4
(1.8)

89.2
(6.5)

2.42 ET � MLP, SVM, KNN,
LR, GB, RF

VGG16 82.4
(4.5)

84.4
(2.8)

82.4
(4.6)

83.6
(4.8)

82.4
(6.8)

83.2
(1.0)

86.8
(4.1)

0.51 ET � MLP, SVM, KNN,
LR, GB, RF

VGG19 82.4
(5.1)

87.2
(2.8)

83.6
(3.6)

88.0
(2.4)

86.4
(5.8)

84.4
(2.8)

88.8
(3.8)

1.44 ET � MLP, SVM, KNN,
LR, GB, RF

LAB444 69.3
(4.0)

68.9
(5.9)

70.5
(7.0)

69.7
(5.1)

68.1
(8.8)

68.9
(7.4)

70.9
(8.5)

0.07 ET � MLP, SVM, KNN,
LR, GB, RF

LAB888 70.1
(5.6)

72.0
(7.5)

68.9
(9.1)

72.1
(6.4)

69.3
(8.2)

74.0
(9.7)

72.9
(5.0)

0.26 RF � MLP, SVM, KNN,
LR, GB, ET

HSV444 70.0
(7.6)

71.7
(4.8)

69.3
(6.4)

72.5
(7.3)

69.3
(6.7)

70.1
(6.8)

67.7
(4.1)

0.18 SVM � MLP, LR, KNN,
RF, GB, ET

HSV888 72.1
(6.0)

73.6
(7.4)

71.7
(9.6)

73.6
(8.0)

70.5
(8.1)

68.9
(11.1)

73.6
(8.3)

0.24 LR � MLP, SVM, KNN,
RF, GB, ET

learning from natural images, they fine-tuned the networks in other mammographical

datasets. This shows the importance of transferring the knowledge from closer domains.

However, such an approach requires networks trained in similar datasets with more than

6100 images and the use of GPUs, two restrictions that are not always fulfilled.

Up to the best of our knowledge, the best model for the MIAS dataset built only

from images of this dataset was presented in [101], and also used transfer-learning

from natural images, as in our case. In [101], the networks Inception, Xception and

MobileNet were fine-tuned achieving an accuracy of 90% in the test set using the same

percentage split employed in our work. Such an accuracy is lower than ours, and was

obtained using GPUs.

Comparison with other AutoML tools

We finish by comparing the performance of FrImCla regarding other AutoML tools.

Namely we compare FrImCla with AutoKeras [24], Devol [102], Ludwig [103], and

WND-CHARM [104] by using 11 datasets from different types of image classification

problems (these datasets were studied in [105]). The accuracy achieved by each tool is

presented in Table 2.3. The execution environment used for the tests has been Google

Colab1 with the GPU option activated for AutoKeras and Devol; and for FrImCla,

Ludwig and WND-CHARM, the experiments were run in a computer under Linux OS

on a machine with CPU Intel Core i5-8250U 3.60GHz and 7.7 GiB of RAM.

1https://colab.research.google.com/

18 CHAPTER 2. RESULTS AND DISCUSSION

As we can see from Table 2.3, FrImCla obtained better results in most datasets, and

in several cases the improvement was very noticeable. There are only three datasets

where other tools achieved a better accuracy, and even in those cases, the best accuracy

and FrImClas accuracy were close. It is worth noting that in most datasets, AutoKeras,

Devol, and Ludwig tended to overfit, whereas the models constructed by FrimCla and

WND-CHARM generalized properly.

Table 2.3: Comparison of the performance of AutoKeras, Devol, FrImCla, Ludwig, and WND-

CHARM for constructing image classification models in 11 image classification problems. The

best results are highlighted in bold face

Binucleate C. elegans Cho Hela Liver Aging Liver Gender (AL) Liver Gender (CR) Lymphoma Pollen RNAi Terminal

FrImCla 1.00 0.85 0.98 0.82 0.87 0.98 1.00 0.86 0.96 0.69 0.59
AutoKeras 0.55 0.66 0.96 0.47 0.91 0.98 1.00 0.89 0.81 0.24 0.47

Devol 0.54 0.69 0.75 0.68 0.43 0.82 1.00 0.55 0.89 0.28 0.36

Ludwig 0.54 0.48 0.64 0.51 0.33 0.65 0.93 0.57 0.58 0 0.53

WndCharm 1.00 0.7 0.95 0.88 0.93 0.98 0.97 0.79 0.96 0.66 0.45

Conclusions

The first contribution of this work is FrImCla, an open-source framework that allows

users to easily create image classification models. This is achieved by automating all the

steps required to train an image classification model. Namely, FrImCla is able to select

the best combination of feature extractor and classification algorithm by conducting a

comprehensive statistical study. FrImCla can be framed in the context of AutoML tools,

but it has several advantages with respect to the existing tools. First of all, FrImCla

automatizes the whole pipeline to construct classification models from raw images. In

addition, it reduces the amount of data and computational resources that are required to

train those classification models thanks to the use of transfer learning. Furthermore, the

accuracy achieved by the models constructed with FrImCla is superior to the accuracy

obtained by using other AutoML tools. In fact, FrImCla models can achieve close results

to state-of-the-art models specific for concrete problems by using a general method that

can be applied to any dataset. This work has inspired us to create another AutoML tool

for object detection.

2.1.2 UFOD: An AutoML tool for object detection

Similar to image classification, Deep Learning methods for object detection have also

received a lot of attention in the last few years [5]. This is due to their applications in

contexts such as agriculture, manufacturing, robotics or medicine [5]. Deep Larning

methods for object detection can be classified into two groups: two-stage algorithms,

such as Faster R-CNN [15] or FPN [106], that include a step for generating object

proposals, and another step for classifying such proposals; and, one-stage algorithms,

such as RetinaNet [107], SSD [108] or YOLO [14], that conduct the detection process

without the step that generates object proposals. In both kinds of algorithms, there is a

trade-off between accuracy and speed; in general, one-stage detectors are faster but less

accurate than two-stage detectors; and, therefore, they are applied in different contexts.

2.1. OBJECTIVE 1 19

As we have mentioned in the introduction, the adoption of Deep Learning techniques

for object detection by users outside the Machine Learning community is a slow process

due to several factors. In addition to the challenges faced in general by Deep Learning

models [109], the constant flow of new Deep Learning architectures for object detection

makes it difficult to keep track of the best methods. In addition, even if there is a

trend of publishing the source code of the algorithms associated with research papers,

most algorithms are not prepared to train models with custom datasets, and it might

be challenging to use such a code in new projects. This issue has been faced with the

development of frameworks, such as the Tensorflow detection API [110], MXNet [111]

or IceVision [112], that provide several Deep Learning detection algorithms ready to be

trained with the users datasets.

The implementation of several algorithms in the same framework is an important

feature since there is not a silver bullet solution to solve all the detection problems [16];

and, hence, it is necessary to search for the most suitable algorithm and configuration of

hyperparameters for each particular problem. However, there is not a single framework

that provides all the existing detection algorithms, and each library uses its own format

for encoding datasets, and has its own training protocol, performance measures, and

preprocessing steps. Therefore, it is difficult to train and compare different methods

implemented in different frameworks, and conclude which one is the best for a particular

problem. We have tackled these challenges by developing UFOD, an automated Machine

Learning framework that aims to facilitate the construction and usage of Deep Learning

object detectors.

As in the case of FrImCla, UFOD is aligned with systems such as Auto-Sklearn or

Auto-Weka; that is, our framework is designed to help non-expert users by automati-

cally searching through the space of object detection algorithms (available in several

frameworks and libraries) to maximize their performance. This approach differs to most

AutoML methods for object detection since they are based on NAS methods [22], but

they suffer the same drawbacks mentioned in the case of NAS techniques for image

classification. In the rest of this section, we present the most relevant features of UFOD.

UFOD description

UFOD is an open-source library that has been implemented in Python, and has been

designed to simplify and automatize the process of training multiple object detection

models using different libraries, and select the best of them.

We have designed a workflow that captures all the necessary steps to train several

object detection models for custom datasets and select the best one. Such a workflow

can be summarized as follows, see Figure 2.2. First of all, the user selects the dataset of

images and some configuration parameters (mainly, the algorithms that will be trained

and the metric to evaluate them) — this information is provided by means of a JSON file,

see Figure 2.3. Subsequently, the dataset is split into a training set and a testing set (if

this division is not explicitly provided). The training set is employed to construct several

object detection models using fine-tuning, and the best of those models is selected based

on their performance on the testing set; if several models achieve the same performance,

the fastest model among them is returned. The output of the framework is either the

best model, or an ensemble of the models. In addition, an application, in the form of a

20 CHAPTER 2. RESULTS AND DISCUSSION

Figure 2.2: Workflow of the framework

> python3 taskLauncher.py -c config.json

Figure 2.3: Top. Example of a configuration file for UFOD. Bottom. Command to start the

training process.

Jupyter notebook is provided to employ such a model or ensemble of models. Apart

from the first step — that is, the selection of the models to be trained — the rest of the

process is conducted automatically without any user intervention in our framework.

Since, the final aim of UFOD is the construction of a unified framework for object de-

tection as complete as possible and that can be easily extensible with new algorithms, we

have designed a high-level API that allows the integration of object detection algorithms

independently of the framework or underlying library employed to implement them.

The API has been designed to easily include new algorithms independently of their

underlying library. Currently UFOD supports the following object detection algorithms

YOLO [14], TinyYolo [14] (Darknet [14]), EfficientDet [113] (Keras [114]), FCOS [115]

(FCOS Keras [115]), FSAF [116] (FSAF Keras [116]), MaskRCNN [117] (Mask RCNN

Keras [118]), SSD [108] (MxNet [119] and Tensorflow [120]), Faster RCNN [15]

(MMDetection [121] and Tensorflow), Cascade RCNN [122] (MMDetection), Reti-

nanet [107] (Retinanet Keras and MMDetection) and RFCN [123] (TensorFlow).

One of the challenges that we faced to integrate those algorithms was the particu-

larities of each library; and, namely the different formats employed by them. To deal

with this issue, UFOD’s high-level API includes the necessary methods to automatically

transform the provided images and annotations (in the Pascal VOC format [124]) to the

format required for each detection algorithm, and also sets the environment to train the

algorithm.

Once the environment for training each algorithms is set, the training process can

2.1. OBJECTIVE 1 21

start by applying transfer learning to the selected algorithms. UFOD can be run locally

(in a single computer with a GPU), using a cloud environment like Google Colab, or

in a cluster of computers. The reason to include the cluster execution mode is the

fact that training object detection algorithms is a time-consuming task. Therefore, if

several models must be trained, this task can take advantage of a distributed process to

train them at the same time — this feature is implemented using the cluster manager

SLURM [125]. Depending on the execution mode, some additional parameters must be

configured; for example, the number of available GPUs if working locally, or the time

that the tasks can be run in the cluster.

After training the object detection models, it remains the question of deciding which

model produces the best results. Each underlying library included in UFOD can compute

the performance of their own models; however, different frameworks employ different

evaluation metrics; and, therefore, it is difficult to compare the models produced with

different tools. To deal with this problem, we have included a two-step procedure to

evaluate algorithms independently of the underlying framework. Namely, given a folder

with the images and annotations that will be employed for testing a model, (1) the model

detects the objects in those images and stores the result in the Pascal VOC format; and

(2) the original annotations and the generated detections are compared with a particular

metric. Currently, metrics such as mAP, IoU or F1-score are supported. Using this

approach, the models constructed using our framework can be compared even if they

were constructed using different tools, and the comparison is returned to the user both

textually and visually. When two models obtain the same accuracy with respect to the

selected metric, the best model is chosen based on its speed for prediction (either using

a GPU or a CPU).

Finally, the last key feature of UFOD is its output, that can be either the best model

selected as indicated previously, or an ensemble of models that combines either all

the trained models or the best three models using the Non-Maximum Suppression

algorithm [126]. In both cases, the necessary code to run the models is also generated,

and it can be called from the command line, integrated in other Python programs, or

executed by using Jupyter notebooks.

A case study: the Optic dataset

In order to test the performance of the UFOD framework, we present the results obtained

by using UFOD with the Optic dataset [127]. The complete study with another dataset

is available in [66]. The Optic dataset consists of ophthalmological images that are

employed to detect discs where blood vessels join together inside the eyeball. This

dataset contains 1250 images, and there is only one disc per image. The Optic dataset is

small in comparison with the Pascal VOC or COCO datasets, but such a size is common

when training a detection algorithm in a custom dataset.

For the experiment, we employed the following settings. The dataset was split into

two different sets using a 75% for training, and a 25% for testing. The training set was

employed to construct models using all the algorithms available in our framework. The

performance of the trained models was evaluated on the test set using three different

metrics: F1-score, IoU, and mAP. Once the user has fixed the training options in the

configuration file, the training process was launched by just executing an instruction in

22 CHAPTER 2. RESULTS AND DISCUSSION

Table 2.4: Results using different models for the Optic dataset. The best result for the individual

models is shown in italics, and the best overall result is shown in bold face.

F1 IoU mAP

Cascade RCNN-50 100 91.39 90.91

EfficientDet-B0 100 90.97 90.91

Faster-RCNN 99.49 90.09 90.91

FCOS-Resnet-50 100 89.02 100
FSAF-Resnet-50 16.12 7.44 6.44

MRCNN-50 94.91 72.65 90.91

MRCNN-101 87.87 71.07 90.84

Retinanet-50 99.49 90.40 90.91

Retinanet-101 99.49 89.42 100
Retinanet-152 99.49 89.66 100
RFCN 97.43 87.69 90.84

SSD VGG16-300 98.99 84.66 90.91

SSD VGG16-512 97.44 83.35 90.91

SSD Mobilenet (MXNET) 99.63 80.60 90.88

SSD Mobilenet (Tensorflow) 97.95 87.22 90.84

SSD Resnet 99.00 86.77 90.91

Tiny YOLO 87.01 60.79 90.67

YOLO 91.89 75.56 90.91

Ensemble 99.63 80.60 90.91

Ensemble 3 best 100 89.61 100

the command line, see Figure 2.3.

The results for the Optic dataset are included in Table 2.4. This dataset can be seen

as a sanity check for our framework since good models can be constructed using all the

algorithms provided in our framework. Namely, we obtained a mAP of 100% with 3

models, and the rest of the models, but the FSAF model, achieved a mAP over 90%.

There are differences among the models when using the F1-score and the IoU metrics,

but accurate results were obtained with all of them. In addition, we improved those

models using the ensemble process.

Conclusions

The second contribution of this work is UFOD, a free and open-source framework that

aims to facilitate the construction and use of the most suitable object detection model

for the particular problem of each user. Namely, our framework allows users to easily

train, compare and ensemble several object detection models on their own datasets using

a common pipeline. The framework can be seen as a wrapper for the functionality

provided by the multiple and heterogeneous existing frameworks and libraries that

support object detection algorithms. This is achieved thanks to a high-level extensible

API that abstracts all the steps that are required to train and evaluate a detection model.

It is important to note that, as far as we are aware, UFOD is the first AutoML tool for

object detection.

Both UFOD and FrImCla can be used as an inspiration, or as a starting point, to

create AutoML tools for other Computer Vision tasks such as semantic segmentation

or anomaly detection, but this remains future work. For both FrImCla and UFOD, and

also for other AutoML tools developed in the future, the more images feed to them the

2.2. OBJECTIVE 2: A GENERAL IMAGE AUGMENTATION LIBRARY 23

merrier since Deep Learning algorithms are data hungry. Therefore, we have developed

a tool with the aim of generating large enough datasets.

2.2 Objective 2: A General Image Augmentation Li-
brary

Deep Learning methods are data demanding, which is a problem in context such as

biolology, medicine or agriculture where it is challenging to acquire new images (for

instance due to a tight budget or neccessity of an invasive procedure) [8, 128, 129].

Moreover, once the images have been acquired, they must be manually annotated, a task

that is time-consuming and requires experts in the field to conduct it correctly [130].

A successful method that has been applied to deal with the problem of a limited

amount of data is data augmentation [9, 39]. This technique consists in generating new

training samples from the original dataset by applying transformations that do not alter

the class of the data. This method has been successfully applied in several contexts such

as brain electron microscopy image segmentation [131], melanoma detection [128], or

the detection of gastrointestinal diseases from endoscopical images [8]. Due to this fact,

several libraries, like Augmentor [41] or Imgaug [40], and Deep Learning frameworks,

like Keras [36] or Tensorflow [120], provide features for data augmentation in the

context of image classification.

In general, those augmentation libraries have not been designed to deal with other

common tasks in Computer Vision such as object localization, object detection, semantic

segmentation or instance segmentation. These problems can also take advantage from

data augmentation [131, 132]; but, at least up to the best of our knowledge, it does not

exist a general purpose library that can be applied to those problems and works with the

standard annotation formats. This is probably due to the fact that, in the classification

context, transformation techniques for image augmentation do not generally change

the class of an image, but they might alter the annotation in the other problems. For

instance, applying the vertical flip operation to a melanoma image does not change the

class of the image; but the position of the melanoma in the new image has changed from

the original image. This means that, for each specific problem, special purpose methods

must be implemented, or artificially generated images must be manually annotated.

Neither of these two solutions is feasible when dealing with hundreds or thousands of

images. In addition, augmentation libraries focus on datasets of 2 dimensional (2D)

images, but do not deal with multi-dimensional images (such as z-stacks or videos).

To tackle the aforementioned challenges, we have designed a generic method, that

can be applied to automatically augment a dataset of images devoted to classification,

localization, detection, semantic segmentation, and instance segmentation using the

classical image augmentation transformations applied in object recognition; moreover,

this method can be also applied to multi-dimensional images. Such a method has been

implemented in an open-source library called CLoDSA (that stands for Classification,

Localization, Detection, Segmentation Augmentor) [68].

24 CHAPTER 2. RESULTS AND DISCUSSION

Figure 2.4: Examples of annotations for classification, localization, detection and semantic

segmentation.

CLoDSA method

We have developed an approach to augment images for the problems of object classifi-

cation, localization, detection, semantic segmentation and instance segmentation. First

of all, it is important to understand how the images are annotated in each of these five

problems. In the case of object classification, each image is labeled with a prefixed

category; for object localization, the position of the object in the image is provided using

the bounding box (that is, the minimum rectangle containing the object); for object

detection, a list of bounding boxes and the category of the objects inside those boxes

are given; in semantic segmentation, each pixel of the image is labeled with the class of

its enclosing object; and, finally in instance segmentation, each pixel of the image is

labeled with the class of its enclosing object and objects of the same class are distin-

guished among them. An example of each kind of annotation is provided in Figure 2.4.

It is worth noting that, instance segmentation is the most general case, and the other

problems can be seen as particular cases of such a problem; however, special purpose

techniques and annotation formats have been developed to tackle each problem; and,

therefore, we consider them separately. Image augmentation for object classification is

the simplest case. This task consists in specifying a set of transformations for which

an image classification problem is believed to be invariant; that is, transformations that

do not change the class of the image. It is important to notice that image-augmentation

techniques are problem-dependent and some transformations should not be applied; for

example, applying a 180° rotation to an image of the digit “6” changes its class to the

digit “9”.

In the literature, the most commonly chosen image augmentation techniques for

object classification are geometric transformations (such as translations, rotations, or

scaling), color transformations (for instance, changing the color palette of the image or

normalizing the image), filters (for example, Gaussian or median filters), and elastic dis-

tortions [39]. Other more specific techniques such as Generative Adversarial Networks

(GANs) [44] have been also applied for image augmentation in object classification [46];

however, we will not consider GANs in our work since they cannot be directly applied

for image augmentation in the other four problems.

For image augmentation in localization, detection, segmentation, and instance

segmentation, we consider the classical image augmentation techniques applied in

2.2. OBJECTIVE 2 25

Table 2.5: List of considered augmentation techniques

Position invariant techniques Position variant techniques

Average blur Crop

Bilateral blur Elastic deformation

Brightness noising Flip

Color noising Rescale

Contrast noising Rotation

Dropout Skewing

Gamma correction Translation

Gaussian blur

Gaussian noise

Hue jitter

Median blur

Normalization

Random erasing

Salt and pepper

Saturation jitter

Sharpen

Value jitter

Channel shift

Lightning

Change space color

object classification, and split them into two categories. The former category consists of

the techniques that leave invariant the position of the objects in the image; for example,

changing the color palette of the image does not modify the position of an object.

On the contrary, techniques that modify the position of the image belong to the latter

category; for instance, rotation and translation belong to this category. A list of all

the transformations that have been considered in this work, and their corresponding

category, is available in Table 2.5.

Image augmentation for localization, detection, segmentation, and instance seg-

mentation using the techniques from the “invariant” category consists in applying the

technique to the image and returning the resulting image and the original annotation

as result. The rest of this section is devoted to explain, for each problem, how the

annotation can be automatically generated for the techniques of the “variant” category.

In the case of object localization, the first step to automatically generate the label

from an annotated image consists in generating a mask from the annotated bounding

box — i.e. a black image with a white rectangle indicating the position of the object.

Subsequently, the transformation technique is applied to both the original image and

the generated mask. Afterwards, from the transformed mask, the white region is simply

located using basic contours properties, and the bounding box of the region is obtained

— some transformations might generate a really small bounding box, or produce an

image without bounding box at all since it will be located outside the boundaries of

the image; to avoid that problem, a minimum percentage is required to keep the image;

otherwise, the image is discarded. Finally, the transformed image is combined with the

resulting bounding box to obtain the new annotated image. This process is depicted in

Figure 2.5 using as example the horizontal flip operation.

26 CHAPTER 2. RESULTS AND DISCUSSION

Figure 2.5: Process to automatically label augmented images for the localization problem: (1)

generation of the mask, (2) application of the transformation operation (horizontal flip) to both

the mask and the original image, and (3) combination of the bounding box containing the new

mask and the transformed image

The procedure for image augmentation in object detection relies on the method

explained for object localization. Namely, the only difference is that instead of gener-

ating a unique mask, a list of masks is generated for each bounding box of the list of

annotations.

In the semantic segmentation problem, given an image I, each pixel I(i,j) of the image

— i.e. the pixel of row i and column j of I — is labeled with the class of its enclosing

object, this annotation is usually provided by means of an image A of the same size as the

original image, where A(i,j) provides the category of the pixel I(i,j), and where each pixel

category is given by a different value. In this case, the idea to automatically generate a

new annotated image consists in applying the same transformation to the original and

the annotation image, the result will be the combination of the two transformed images.

Finally, we present the procedure for the instance segmentation problem. The idea

is similar to the method explained for object detection. A mask is generated for each

instance of the image. Subsequently, the transformation technique is applied to both the

original image and the generated masks. Afterwards, from the transformed masks, the

new instances are obtained.

The aforementioned procedures are focused on 2D images, but they can also be

applied to multi-dimensional images that can be decomposed as a collection of images

— this includes z-stacks and videos among others. The method consists in decomposing

the multi-dimensional image into a collection of 2D images, applying the corresponding

procedure, and finally combining back the resulting images into a multi-dimensional

image. Both methods for 2D and multi-dimensional images have been implemented in

a library called CLoDSA.

2.2. OBJECTIVE 2 27

CLoDSA description

CLoDSA is an open-source library implemented in Python and relies on OpenCV [74]

and SciPy [133] to deal with the different augmentation techniques. The CLoDSA library

can be used in any operating system, and it is also independent from any particular

Machine Learning framework.

CLoDSA augmentation procedure is flexible to adapt to different needs and it is

based on six parameters: the dataset of images, the kind of problem, the input annotation

mode, the output annotation mode, the generation mode, and the techniques to be

applied. The dataset of images is given by the path where the images are located;

and the kind of problem is either classification, localization, detection, segmentation,

instance segmentation, stack classification, stack detection, or stack segmentation (the

former five can be applied to datasets of 2D images, and the latter 3 to datasets of

multi-dimensional images). The other four parameters, and how they are managed in

CLoDSA, deserve a more detailed explanation.

The input annotation mode refers to the way of providing the labels for the images.

CLoDSA supports the most-widely employed formats for annotating classification,

localization, detection, semantic and instance segmentation tasks. For example, for

object classification problems, the images can be organized by folders, and the label

of an image be given by the name of the containing folder; another option for object

classification labels is a spreadsheet with two columns that provide, respectively, the path

of the image and the label; for object localization and detection there are several formats

to annotate images such as the PASCAL VOC format [124] or the OpenCV format [74];

for semantic segmentation, the annotation images can be given in a devoted folder or

in the same folder as the images; and, for instance segmentation, the COCO format is

usually employed [29]. CLoDSA has been designed to manage different alternatives

for the different problems, and can be easily extended to include new input modes

that might appear in the future. To this aim, several design patterns, like the Factory

pattern [134], and software engineering principles, such as dependency inversion or

open/closed [135], have been applied. The list of input formats supported by CLoDSA

is given in Table 2.6 — a detailed explanation of the process to include new formats is

provided in the project webpage.

The output annotation mode indicates the way of storing the augmented images and

their annotations. The first option can be as simple as using the same format or approach

used to input the annotations. However, this might have the drawback of storing a large

amount of images in the hard drive. To deal with this problem, it can be useful to store

the augmented dataset using the standard Hierarchical Data Format (HDF5) [136] —

a format designed to store and organize large amounts of data. Another approach to

tackle the storage problem, and since the final aim of data augmentation is the use of the

augmented images to train a model, consists in directly feeding the augmented images

as batches to the model, as done for instance in Keras [36]. CLoDSA features these

three approaches, and has been designed to easily include new methods in the future.

The complete list of output formats supported by CLoDSA is given in Table 2.6.

The generation mode indicates how the augmentation techniques will be applied.

Currently, there are only two possible modes: linear and power — in the future, new

modes can be included. In the linear mode, given a dataset of n images, and a list

28 CHAPTER 2. RESULTS AND DISCUSSION

Table 2.6: List of supported annotation formats

Data Problem Input format Output format

2D Images Classification A folder for each class of image A folder for each class of image

An HDF5 file

A Keras generator

Localization Pascal VOC format Pascal VOC format

An HDF5

Detection Pascal VOC format Pascal VOC format

YOLO format YOLO format

Segmentation A folder containing the images and their associated masks A folder containing the images and their associated masks

An HDF5 file

A Keras generator

Instance segmentation COCO format COCO format

JSON format from ImageJ JSON format from ImageJ

Multi-dimensional Images Video Classification A folder for each class of video A folder for each class of video

Video Detection Youtube BB format Youtube BB format

Stack segmentation Pairs of tiff files containing the stack and the associated mask Pairs of tiff files containing the stack and the associated mask

of m augmentation techniques, each technique is applied to the n images producing

at most n × m images. The power mode is a pipeline approach where augmentation

techniques are chained together. In this approach, the images produced in one step of

the pipeline are added to the dataset that will be fed in the next step of the pipeline

producing a total of (2m−1)×n new images (where n is the size of the original dataset

and m is the cardinal of the set of techniques of the pipeline). Finally, the last but not

least important parameter is the set of augmentation techniques to apply — the list of

techniques available in CLoDSA is given in Table 2.5, and a more detailed explanation

of the techniques and the parameters to configure them is provided in the CLoDSA

documentation. Depending on the particular problem, the CLoDSA users can select the

techniques that are more fitted for their needs.

CLoDSA can be employed by both expert and non-expert users. First of all, users

that are used to work with Python libraries can import CLoDSA as any other library

and use it directly in their own projects. Several examples of how the library can be

imported and employed are provided in the project webpage. This kind of users can

extend CLoDSA with new augmentation techniques easily. The second, and probably

the most common, kind of CLoDSA’s users are researchers that know how to employ

Python but do not want to integrate CLoDSA with their own code. In this case, we

have provided several Jupyter notebooks to illustrate how to employ CLoDSA for data

augmentation in several contexts — again the notebooks are provided in the project

webpage.

CLoDSA can be also employed without any knowledge of Python. To this aim,

CLoDSA can be executed as a command line program that can be configured by means

of a JSON file. Therefore, users who know how to write JSON files can employ this

approach. Finally, and due to the fact that the creation of a JSON file might be a

challenge for some users since there is a great variety of options to configure the library;

we have created a step-by-step Java wizard that guides the user in the process of creating

the JSON file and invoking the CLoDSA library. In this way, the users, instead of

writing a JSON file, select in a simple graphical user interface the different options for

augmenting their dataset of images, and the wizard is in charge of generating the JSON

file and executing the augmentation procedure. Besides, since new configuration options

might appear in the future for CLoDSA, the Java wizard can include those options by

modifying a configuration file — this avoids the issue of modifying the Java wizard

every time that a new option is included in CLoDSA.

2.3. OBJECTIVE 3: DEALING WITH THE DOMAIN SHIFT PROBLEM 29

A case study: Malaria parasite classification

To show the benefits of applying data augmentation using CLoDSA, we considered

classification of Malaria images [137] combining FrImCla and CLoDSA. In this dataset

images are labeled as parasitized or uninfected; and, we analyzed the impact of applying

data augmentation. Namely, we considered 7 publicly available networks trained on

the ImageNet challenge (the networks are GoogleNet, Inception v3, OverFeat, Resnet

50, VGG16, VGG19, and Xception v1) and use them as feature extractors to construct

classification models for the Malaria dataset. For each feature extractor network, we

considered 4 datasets: D1 is the original dataset that consists of 1000 images (500

images per class); D2 was generated from D1 by applying flips and rotations (D2

consists of 5000 images, the original 1000 images and 4000 generated images); D3 was

generated from D1 by applying gamma correction and equalisation of histograms (D3

consists of 3000 images, the original 1000 images and 2000 generated images); and, D4

is the combination of D2 and D3 (D4 consists of 7000 images, the original 1000 images

and 6000 generated images). In order to evaluate the accuracy of the models, a stratified

5-fold cross-validation approach was employed using the FrImCla framework.

As can be seen in the scatter plot of Figure 2.6, the accuracy of the models con-

structed for each feature extractor method increased when data augmentation is applied.

The improvement ranged from a 0.4% up to a 6.5%; and, there was only one case

where applying data augmentation had a negative impact on the accuracy of the model.

Moreover, we can notice that we obtained better models only applying flips and rota-

tions (dataset D2) than using a bigger dataset where we have applied not only flips and

rotations but also color transformations (dataset D4). This indicates the importance

of correctly selecting the set of data augmentation techniques — an active research

area [43, 138, 139].

Conclusions

The third contribution of this work is CLoDSA, an open-source framework that allows

researchers to automatically apply image augmentation techniques to the problems

of object classification, localization, detection, semantic segmentation, and instance

segmentation. Such a method works not only with 2D images, but also with multi-

dimensional images (such as stacks or videos). This library has been designed using

several object oriented patterns and software engineering principles to facilitate its

usability and extensibility.

Up to know, we have focused on building tools that facilitate the construction of

Deep Learning models, but once those models have been trained, we want to fix the

problems that appear when they are used with images from a different domain than the

one used for training; that is, the domain shift challenge.

2.3 Objective 3: Dealing with the Domain Shift Problem
There is an important generalization challenge when using trained models that is known

as domain shift (also known as distribution shift) [10, 11]. This problem arises when

the data distribution of the dataset used for training a model is not the same than

30 CHAPTER 2. RESULTS AND DISCUSSION

Figure 2.6: Scatter plot showing the accuracy of the models constructed for the different versions

of the Malaria dataset (where D1 is the original dataset; and D2, D3 and D4 are the augmented

datasets) using different feature extractor methods.

the data that the model encounters when deployed. This is common in biomedical

contexts since images greatly vary due to experimental conditions, the equipment (for

instance, microscopes) and settings (for instance, focus and magnification) employed

for capturing those images; or in autonomous driving, where we might have different

climatic conditions.

This generalization problem can be tackled by combining datasets from multiple

sources [57] or by using techniques like data augmentation; nevertheless, it is not

possible to foresee every new and unknown distribution. A different approach consists

in applying transfer learning. However, this requires the annotation of the target dataset,

a time-consuming task that should be carried out for every new dataset. A different

approach to handle the domain shift problem is the application of image-to-image

translation methods [48], a set of techniques that aim to learn the mapping between an

input image and an output image using a training set of aligned image pairs; however,

this requires paired data from the source and target domains, a challenge that can be

faced by using unpaired image-to-image translation techniques [49].

Unpaired image-to-image translation methods translate images from a domain A to

a domain B, and vice versa. This approach poses two challenges. First, datasets from

both domains must be available, and this might be an issue due to privacy concerns [62];

and, secondly, unpaired image-to-image methods are mainly based on GANs that must

be trained, a process that demands the usage of GPUs and might be challenging for

several users due to the difficulties of training GAN models [47]. The approach that we

2.3. OBJECTIVE 3 31

propose to tackle these drawbacks consists in developing a framework that facilitates

the application of unpaired image-to-image methods for dealing with the domain shift

problem, and also incorporate style transfer methods.

Methods

We start by explaining the procedure to apply unpaired image-to-image translation

methods to tackle the domain shift problem, see Figure 2.7. We assume that a model

has been trained using a source dataset of images, and we have a dataset of images with

a different data distribution called the target dataset. From the source and target datasets,

we build a model that transforms images following the data distribution of the source

dataset to images following the data distribution of the target dataset, and vice versa.

Now, when we are interested in obtaining the prediction associated with a target image,

we first employ the transformation model to transform the image; and, subsequently, the

transformed image is fed to the prediction model. In this approach, the key component

is the algorithm employed to construct the transformation model. Currently, the most

successful approaches for this task are based on GANs [44]; and, namely, variants of

the CycleGAN algorithm [49], which translates an image from a source domain X
to a target domain Y by learning two mappings GX : X → Y and GY : Y → X
such that they satisfy the cycle-consistency properties; that is GY (GX(x)) ≈ x and

GX(GY (y)) ≈ y.

We focus now on the procedure to apply style transfer methods to deal with the

domain shift problem of a model — such a procedure is summarized in Figure 2.7.

Analogously to the unpaired image-to-image approach, we assume that a model has

been trained using a source dataset of images, and we are interested in applying such a

model to obtain the prediction associated with an image from a different distribution

than the source dataset; we call this image, the target image. Instead of feeding the

target image directly to the model, we first take an image from the source dataset and

transfer the style of that image to the target image but preserving its content producing

as a result a transformed image. Finally, the transformed image is fed to the model to

obtain the associated prediction. As in the unpaired image-to-image approach, the key

component of the style transfer process is the algorithm that transfers the style from the

source dataset but keeping the content of the target image; and, we can find several of

them in the literature [140].

It is worth noting that both the unpaired image-to-image approach and the style

transfer approach can be applied to deal with the domain shift problem for any Computer

Vision task. Hence, these methods can be helpful for a great variety of scenarios.

However, it might be difficult to apply these techniques since unpaired image-to-image

methods and style transfer algorithms are implemented in different libraries and using

different frameworks. Following the approach employed for developing UFOD, we

have addressed this drawback by developing a high-level Python API that allows the

integration of both kinds of algorithms independently of their underlying library and

framework.

Currently, our library includes three style transfer algorithms: neural style trans-

fer (NST) [45], an optimization technique that uses a Convolutional Neural Network

(CNN) to decompose the content and style from images; deep image analogy [141], a

32 CHAPTER 2. RESULTS AND DISCUSSION

Figure 2.7: Workflow of the style transfer approach (Left). (1) A model is trained using a source

dataset. (2) The target image is transformed using the style from an image of the source dataset. (3)

The transformed image is fed to the model. Workflow of the unpaired image-to-image translation

models (Right). (1) A model is trained using a source dataset. (2) A source dataset and a target

dataset are employed to combine a GAN model. (3) Given an image from the distribution of the

target dataset, the GAN model is employed to transform the image. (4) The transformed image is

fed to the prediction model.

method that finds semantically-meaningful correspondences between two input images

by adapting the notion of image analogy with features extracted from a CNN; and

STROTSS [142], a variant of the NST algorithm that changes the optimization objective

of NST. In order to apply the style transfer procedure using our API, users only have to

provide the style image, the target image, and the name of the algorithm to apply; the

rest of the transformation process is automatically conducted by the API.

Moreover, the library provides 6 unpaired image-to-image translation algorithms:

CycleGAN [49], DualGAN [51], ForkGAN [52], GANILLA [53], CUT [50], and

FASTCUT [50]); after that, the transformation model is automatically trained and the

images from the target dataset are transformed. In this case, users of the API only have

to provide the path to the source and target datasets, and the name of the translation

algorithm to apply; after that, the transformation model is automatically trained and the

images from the target dataset are transformed.

A running example

As a running example for testing our approach and library, we have considered the

segmentation of spheroids. Spheroids are the most widely used 3D models to study

cancer since they can be used for studying the effects of different micro-environmental

characteristics on tumor behavior and for testing different preclinical and clinical treat-

ments [143]. The images from tumor spheroids greatly vary depending on the experi-

mental conditions, and also on the equipment (microscopes) and conditions (focus and

magnification) employed to capture the images [56].

For our experiments, we have employed the 4 datasets presented in [56]; an image

of each dataset is shown in Figure 2.8. As can be noticed from Figure 2.8, there are

considerable differences among the images of each dataset. Three of those datasets

(the BL5S, BN2S, and BN10S datasets) were employed for training 4 segmentation

2.3. OBJECTIVE 3 33

BL5S BN2S BN10S BO10S

Figure 2.8: Samples from the 4 datasets employed in this work

Table 2.7: Performance of the 4 models when evaluating in a test set formed from images

following the same distribution than the training set (BL5S-BN2S-BN10S), and when evaluated

using a test set from a different distribution (BO10S)

DeepLab v3 HRNet-Seg U-Net U2-Net

BL5S-BN2S-BN10S 97.00 97.32 97.25 97.26

BO10S 83.61 92.65 13.64 95.65

models (using the algorithms DeepLab v3 [144], HRNet Seg [145], U-net [132] and

U2-Net [146]) and the last dataset (the BO10S dataset) was employed for testing. We

have used this dataset split because the last dataset comes from a different laboratory

so its style will not be the same as the others. The definition of those 4 architectures is

available in the SemTorch package2. All the architectures were trained with the libraries

PyTorch [37] and fastai [38] and using a GPU Nvidia RTX 2080 Ti. In order to set

the learning rate for the different architectures, we employed the procedure presented

in [38]; and, we applied early stopping when training all the architectures to avoid

overfitting. The metric employed to measure the accuracy of the different methods was

the IoU [147]. In Table 2.7, we can see the domain shift problem with real data. In

all models the results worsen when applied to images from the BOIOS dataset. These

results are due to the fact that the dataset used is from a different domain than the one

used in the other three datasets. The framework through the change of domain seeks to

mitigate this problem and improve the results.

For training the translation models, we employed a GPU Nvidia RTX 2080 Ti to

segment tumour spheroids, and using our API we randomly picked an image from the

combination of the datasets BL5S, BN2S, and BN10S, and used it to transform the

images from the BO10S dataset. Subsequently, we fed those images to the segmentation

models, and evaluated their performance, see Table 2.8. From the three studied style

transfer algorithms included in our library, both the NST and STROTSS algorithms

handled the domain shift problem; whereas, the images transformed with the deep

image analogy algorithm produced even worse results than the original images from the

BO10S dataset. Using the NST algorithm, all the segmentation models improved their

IoU (the U-Net model improves its performance from 13.64% to 89.21%, and the other

2The SemTorch package is available at https://github.com/WaterKnight1998/SemTorch.

34 CHAPTER 2. RESULTS AND DISCUSSION

Table 2.8: Performance for the BO10S dataset using the different style-transfer methods to deal

with the domain shift problem. A ↑ indicates an improvement with respect to the base model,

whereas a ↓ indicates a declination in the performance.

DeepLab v3 HRNet-Seg U-Net U2-Net

Base 83.61 92.65 13.64 95.65

NST 95.64↑ 94.91↑ 89.21↑ 95.89↑
Deep Image Analogy 0.00↓ 45.13 ↓ 0.66↓ 0.84↓

STROTSS 94.86↑ 92.38↓ 78.08↑ 94.14↓

Table 2.9: Performance for the BO10S dataset using the different unpaired image-to-image

translation methods to deal with the domain shift problem. A ↑ indicates an improvement with

respect to the base model, whereas a ↓ indicates a declination in the performance.

DeepLab v3 HRNet-Seg U-Net U2-Net

Base 83.61 92.65 13.64 95.65

CycleGAN 94.97↑ 92.97↑ 72.34↑ 95.87↑
DualGAN 4.09↓ 73.37↓ 24.67↑ 34.45↓
ForkGAN 32.63↓ 46.10↓ 38.33↑ 44.46↓
GANILLA 24.27↓ 76.24↓ 3.26↓ 82.97 ↓

CUT 0.48↓ 38.01 ↓ 20.94↑ 52.20↓
FastCUT 6.08↓ 79.52 ↓ 1.12↓ 2.98↓

models have an IoU close to 95%). For the STROTSS algorithm, the results were also

positive: two of the segmentation models improved (DeepLab and U-Net), and the other

two achieved worse results, but still their IoU was over 92%.

The results obtained with the unpaired image-to-image translation are summarized

in Table 2.9. From the 6 algorithms included in our library, only the CycleGAN

method solved the domain shift problem in our context. Using the transformation

model produced by this algorithm, all the segmentation models improved their IoU (the

U-Net model improves its performance from 13.64% to 72.34%, and the other models

have an IoU over to 92%). On the contrary, the images produced by the rest of the

transformations models were more difficult to segment, and the performance of the

segmentation models decreased — the exception was the U-Net model that, in some

cases, obtained better results with the transformed images, but still its IoU was under

40%.

We can visually inspect the images produced by the different transformation algo-

rithms to discover the difficulties faced by the segmentation models, see Figure 2.9. We

can notice that the three successful models (NST, STROTSS, and CycleGAN) produced

images that preserved the content of the image but with a style that is similar to the style

of those used for training the segmentation models. On the contrary, the deep image

analogy method, and the DualGAN and ForkGAN models did not keep the content

of the image; and, thus the segmentation models were not able to properly segment

2.3. OBJECTIVE 3 35

Image Truth DeepLab v3 HRNet Seg U-Net U2-Net

Base

NST

Deep Image

Analogy

STROTSS

CycleGAN

DualGAN

ForkGAN

GANILLA

CUT

FastCUT

Figure 2.9: An example showing the segmentation produced by the DeepLab, HRNet, U-Net and

U2-Net models after applying a style transfer algorithm or an unpaired image-to-image translation

model to a given image.

the images. For the rest of the image-to-image transformation models (GANILLA,

CUT and FastCUT), the content of the image was kept, but the style was not properly

transferred (colour artefacts are added to the transformed image); hence, the images

were not segmented properly by the models.

Conclusions

The forth contribution of this work is a framework that addresses the domain shift

problem by giving access to style transfer and unpaired image-to-image algorithms.

Using this framework; we have shown that using those translation methods, it is possible

to recover the performance of a model that suffers from the domain shift problem. In

addition, we have shown that style transfer methods achieve similar results to those

obtained by unpaired image-to-image translation methods with the advantage of not

requiring a training step, and therefore can be deployed by providing a single image

from the source dataset. This is a relevant result since these methods do not require the

training step of image-to-image translation models, can be run in a computer without

special purpose hardware like GPUs, and only require the availability of an image from

36 CHAPTER 2. RESULTS AND DISCUSSION

the source dataset. We have also noticed that style transfer techniques and image-to-

image translation methods have a different impact on the performance of the models;

hence, it is important to have a simple approach to test different algorithms. This has

been solved in this work with the development of a high-level API that facilitates the

process of testing different alternatives for style transfer and unpaired image-to-image

translation.

Up to know, we have developed several tools that facilitates the construction and

use of Deep Learning models. In the rest of this memoir, we focus on two concrete

biomedical problems that have been tacked using techniques implemented in our tools.

In addition, the solutions given to those problems have provided us valuable experience

to improve in the future our tools with methods and techniques that work in real-life

problems.

2.4 Objective 4: Applications to biomedical problems
In the rest of this chapter, we present how the techniques and methods developed in

the previous section have been the basis to tackle two biomedical problems that are the

prediction of epiretinal membrane from retinal fundus images and the classification and

segmentation of bacteria in motility images.

2.4.1 Prediction of ERM from Retinal Fundus Images
An epiretinal membrane (ERM) is a fibrocellular tissue found on the inner surface of

the retina that is associated with loss of central vision and decreased visual acuity [70].

In spite of being one of the main causes for vitreoretinal surgery and having a high

prevalence [148], it does not exist a screening procedure for diagnosing epiretinal

membranes.

Currently, the gold standard for diagnosing ERM is based on the exploration of the

fundus by an ophthalmologist, and the confirmation via the analysis of optical coherence

tomography images (OCT) [149, 150]. However, acquiring OCT images is an expensive

procedure that is not available for all patients. On the contrary, acquiring fundus images

is cheaper, and most medical centres have the resources to acquire them. In collaboration

with Hospital Vall D’Hebron, we have focused on building a classification model for

diagnosing ERM in retinal fundus images. In the rest of this section, we present our

approach to tackle this image classification task.

Materials and methods

The ERM dataset employed in this work was created from retinal images of a private

database, a nationwide database that collected retinal information from patients attending

to optometrists. Images of the database were acquired using different non-mydriatic

fundus cameras, all of them approved by the National Health Service for Diabetic

Screening in the UK [151]. Optometrists were instructed to perform posterior pole

retinal photography, centered on the macula and including the optic disc and vascular

arcades [152].

2.4. OBJECTIVE 4 37

Table 2.10: Architectures and backbones employed in our study for diagnosing

Architecture Backbones

Resnet 34, 50, 101

Resnest 26, 50, 50 4s2x40, 101

EfficientNet B0–B3

ViT ViT-B/16-244, ViT-B/16-R50-384

Deit ViT-B/16-384

NasNet 050

HRnet w32, w40, w44, w48, w64

The ERM dataset consists of 4081 images (2108 positive samples, and 1973 negative

samples) with a size of 299×299, and it was randomly split using an 80% of the images

for training, and a 20% for testing. Furthermore, a 10% of the training dataset was

employed for validation in order to adjust the hyperparameters of the models.

We have conducted a thorough study of several families of Deep Learning archi-

tectures for diagnosing ERM. The studied architectures, summarized in Table 2.10,

included 3 manually designed convolutional neural networks (namely, ResNet [12],

ResNeSt [153] and HRnet [145]), 2 architectures found by neural architecture search

(EfficientNet [13] and NasNet [154]); and 2 transformer-based architectures that are

ViT [155], and its training efficient version, Deit [156]. All the networks used in our

experiments were implemented in PyTorch [37], and have been trained thanks to the

functionality of the fastai library [38] using a GPU Nvidia RTX 2080 Ti, and using

the cross entropy loss function. In order to train the different models, we considered 4

approaches: baseline models, CycleGAN augmentation, state-of-the-art bag of tricks,

and transfer learning from a close domain.

First of all, and in order to establish a baseline for our models, we have used the fine-

tuning method presented in [38]. This is a two-stage procedure that starts from a model

pretrained in the ImageNet challenge. Moreover, we employed early stopping based

on monitoring the validation loss, and data augmentation [39] to prevent overfitting.

In addition to the classical data augmentation techniques employed for training our

baseline models, we have also studied an approach that consists in using a Generative

Adversarial Network (GAN) to synthesize new retinal images [157]. In particular, we

trained a CycleGAN model [49] that allowed us to synthesize ERM images from healthy

images and viceversa (1652 healthy images, and 1622 ERM images were generated

using this procedure). The CycleGAN model was trained using the UPIT library3 for

15 epochs and using the learning rate suggested by the algorithm presented in [158].

The generated images were combined with the original dataset and used for training

the models by employing the same procedure presented in the previous paragraph. As

we mentioned in the previous section, CycleGAN has already been used to deal with

the domain shift problem but for this project it has been used as a data augmentation

technique. This can be seen as a first step towards including this technology in CLoDSA.

In the third set of experiments, we employed a bag of “tricks” that have been

successfully employed in the literature to improve the performance of deep classification

3https://github.com/tmabraham/UPIT

38 CHAPTER 2. RESULTS AND DISCUSSION

models. First of all, we replaced the Adam optimization algorithm, the by-default

optimizer used in fastai, with the Ranger algorithm, which combines ideas from the

RAdam optimization algorithm [159] and the Lookahead optimizer [160]. Moreover,

we used two regularization techniques that are Label Smoothing [82] and MixUp [161].

Finally, we applied the cyclical learning rate policy for convergence proposed in [162].

In order to identify the benefits provided by each trick, an ablation study was conducted.

The last approach that we explored to train our models was based on the fact that

transfer learning produces better results when there is a close relation between the

source and target task. Hence, we started by training the models with the RIADD

dataset [163] (a dataset of 8289 images for multi-disease detection on retinal images);

and, subsequently, we fine-tuned the models for our ERM dataset. It is worth mentioning

that the models trained for the RIADD dataset did not aim to detect the multiple diseases,

but we simplified the problem to determine whether the retinal images were healthy. The

RIADD’s models were trained using the procedure presented for the baseline approach.

Finally, and in order to further improve the performance of our models, we employed

ensemble methods. Namely, we tested the ensemble of several models [164], the

application of test-time augmentation [80] (that is, given an image, we created random

modifications of such an image, performed predictions on them using a model, and,

finally, returned the average of those predictions), and the combination of these two

techniques. As we will show in the following section, these ensemble techniques

considerably improved the performance of individual models.

Comparing the technologies used in this project with those used in FrImCla we see

how the models used in this case are different. This is due to the fact that Deep Learning

methods advance very quickly. The models that were the state of the art during the

development of FrImCla have been overtaken by new architectures. For this reason, it is

necessary to include updated models and technologies in FrImCla to continue obtaining

accurate models for each problem, but this remains as further work.

Results

The models trained with the different approaches presented throughout the previous

section were evaluated on the testing set using the F1-score as metric, see Table 2.11 for

a summary of the results. The rest of this section is devoted to discuss the advantages

and disadvantages of each training approach.

We start by analyzing the baseline models. As we can notice from the first column

of Table 2.11, the F1-score of most models is under 70%. The exceptions are the family

of HRNet models, and the two transformer-based architectures. The most plausible

explanation for those results is the high-resolution representation learned by those

models in the ImageNet dataset, which is better transferred to this particular context of

diagnosing ERM. It is specially remarkable the ViT-B/16-R50-384 model that achieved

a F1-score of 81.29%.

We focus now on the results achieved when training the models with the dataset

augmented with the images generated with the CycleGAN model. As we can notice

from Table 2.11, the results highly vary among models ranging from an improvement of

9% in the Efficientnet-B1 model, to a 23% decay in the HRNet-w64 model. In general,

in most models, augmenting the dataset with the images generated by the CycleGAN

2.4. OBJECTIVE 4 39

Table 2.11: F1-score achieved by the studied architectures using the baseline procedure, the

CycleGAN dataset, the bag-of-tricks, and transfer learning from a close domain. Moreover, we

include the results obtained by applying test-time augmentation (TTA) to the models fine-tuned

from a close domain, and the results for the RIADD dataset. In italics the best model for each

approach, and in bold face the best overall model without TTA.

Architecture Baseline CycleGAN Tricks Transfer TTA RIADD

Resnet-34 55.22 55.18 72.21 59.09 65.69 75.04

Resnet-50 49.53 58.04 75.23 72.18 72.63 73.93

Resnet-101 53.04 46.53 71.85 72.20 72.20 68.38

Resnest-26 55.18 53.59 73.62 62.68 66.36 75.57

Resnest-50 56.02 56.22 76.72 49.22 55.57 75.76

Resnest50d 4s2x40d 56.12 61.99 78.36 63.38 68.10 73.05

Resnest101 59.03 49.63 76.31 56.92 64.00 76.07

EfficientNet-B0 51.16 60.47 73.83 67.43 65.05 78.87

EfficientNet-B1 48.62 47.26 70.14 66.09 71.16 79.05

EfficientNet-B2 60.20 49.94 71.98 61.82 65.30 79.19

EfficientNet-B3 56.68 50.20 73.41 66.96 65.67 79.45

VIT-B/16-244 69.41 62.80 72.21 73.13 76.25 83.01

ViT-B/16-R50-384 81.29 62.91 67.39 83.86 84.23 87.44

Deit-B/16-384 74.85 72.11 81.52 76.46 76.77 87.01

Nasnet-050 55.55 49.76 71.30 55.23 50.66 52.65

HRNet-w32 73.74 67.15 80.50 79.22 81.17 87.98
HRNet-w40 71.09 52.53 70.76 84.00 85.52 87.30

HRNet-w44 72.33 60.79 71.30 82.61 83.27 87.50

HRNet-w48 70.60 76.12 73.95 82.17 84.59 86.32

HRNet-w64 73.78 50.27 77.88 83.70 84.35 87.59

had a negative impact. This might occur due to the challenge of producing realistic

images with the GAN models [165]; therefore, this approach needs further investigation

to be successfully applied.

On the contrary to the results achieved with the augmented CycleGAN dataset, a

clear benefit is obtained with the bag of tricks. Thanks to the set of applied tricks, all

the architectures were able to achieve a performance over 70%, we can notice that there

is not a single technique, or combination of techniques, that always produce the best

results. However, the usage of Label Smoothing and MixUp as regularization techniques

consistently produced good results. It is also worth mentioning that the benefits obtained

with each individual technique did not stack when combined with other techniques.

This hinders the applicability of this bag of tricks since lots of experiments must be

conducted to find which methods should be applied to produce the best result for each

architecture.

An approach that served to improve most base models, and did not require so many

experiments as the bag of tricks, is the application of transfer learning from the RIADD

dataset. Pretraining the models with such a dataset, and then fine-tuning them for the

ERM dataset achieved a mean improvement of 7.57%. There were only 3 models which

performance decayed using this approach, and some models improved more than a 20%.

The architectures that took more advantage of this approach were those from the HRNet

family, since all of them reached a performance close or even higher than 80%. In fact,

the best overall individual model was obtained with the HRNet-w40 architecture with a

40 CHAPTER 2. RESULTS AND DISCUSSION

F1-score of 84%.

We also analyzed how the performance of the individual models could be improved

thanks to the application of ensemble methods. The ensemble of the 5 best models

achieved a F1-score of 84.76%; that is an improvement of 0.76% regarding the best

individual model. Since, 4 out of 5 of the best models belonged to the same family,

we also tested the ensemble of the best individual model of each family; however, the

F1-score obtained by such an ensemble was 81.01%, worse than the best individual

model. Moreover, we analyzed the impact of test-time-augmentation. This technique

was applied to each individual model built using the close transfer approach, and, as we

can notice in Table 2.11, the majority of models improved thanks to it (namely, a mean

improvement of 3%, and only the performance of 3 models decayed). The best result

was again obtained with the HRNet-w40 model with an improvement of 1.52%. Finally,

we combined the ensemble of the output produced by the test-time augmentation of the

5 best models, and this produced a F1-score of 86.82%, the best overall result.

Conclusions

The fifth contribution of this work is an open source application that studied several

approaches to build deep learning models for diagnosing epiretinal membrane. The best

results, with a F1-score of 86.82%, was achieved by using the HRNet and transformer-

based architectures, and combining 3 techniques (transfer learning from the RIADD

dataset, test-time augmentation and model ensemble).

The next contribution is another collaboration with a hospital. Again, we will use

what we have learned previously to solve another real-life problem that is the analaysis

of motility images.

2.4.2 Analysis of Bacteria on Motility Images

Historically, infectious diseases have been a major cause of mortality and, nowadays,

remain as an important problem not only in human, but also in animal and plant

health. The discovery of antibiotics changed medical practice by significantly decreasing

the morbidity and mortality associated with bacterial infection. However, the rapid

emergence, spread and persistence of antimicrobial-resistant microorganisms is a public

health problem all over the globe, and possibly one of the major challenges nowadays.

Furthermore, the limited therapeutic alternatives to combat them are aggravating the

problem [166, 167]. Among the big arsenal of bacterial virulence factors, bacterial

surface motility has been regarded as a pathogenicity element because it is essential

for many biological functions, such as the search for nutrients, sexual reproduction,

but also for the spreading of diseases. Motility is involved in movement between body

compartments, host cell adherence, colonization, formation of biofilms, and bacterial

survival and persistence [168–170].

Investigations on the motility of bacteria are crucial to understand chemotaxis,

biofilm formation and virulence in general. To identify a motile strain in the laboratory,

the bacterial spread is observed on media solidified with agar. Up to now, bacteria

spread was either measured with a ruler [171], or by using programs like ImageJ [172]

2.4. OBJECTIVE 4 41

Figure 2.10: Workflow of MotilityJ. Blue components are steps that must be carried out by the

user; whereas, orange components are steps automatically conducted by MotilityJ

or Photoshop [173] that allow users to manually draw a region that is subsequently mea-

sured. This is a tedious, time-consuming and subjective task that we have automatized

by means of Deep Learning techniques. The problem of detecting and measuring the

region covered by a bacteria in an image can be framed as a segmentation task. To

tackle this task, we have faced several challenges of Deep Learning methods presented

throughout this memoir; for instance, the amount of annotated images that is necessary

to construct Deep Learning models. In addition, we have deal with a problem related

to the deployment of Deep Learning models. Namely, Deep Learning models can be

mainly employed inside the framework where they were built; however, non-expert users

might find challenging to use those frameworks. In collaboration with the Biomedical

Research Center of La Rioja (CIBIR), we have address those limitations by building

a standalone application called MotilityJ that automatically classifies and segments

motility images by using Deep Learning models. In the rest of this section, we provide

an overview of the key components of MotilityJ, and how we have addressed the main

challenges of the development of this tool.

MotilityJ

The workflow to employ MotilityJ, diagrammatically described on Figure 2.10, consists

of the following steps. First of all, the user selects a folder containing the images to

analyze. Then, in order to analyze the images, the user must provide the scale of the

images (in terms of the size of the Petri dish). After that, the images are analyzed by first

classifying them; and, subsequently, segmenting those that are classified as incomplete.

Finally, the analyzed images are shown to the users, where they can edit the annotation

produced for each image, and see the area of the bacterial spread. For each image, the

results are summarized in the format of a table (in the bottom part of the interface) and

can be exported to an Excel file.

We have developed an image processing pipeline that automatically annotates the

motility images. Subsequently, such annotations were validated and corrected by experts.

42 CHAPTER 2. RESULTS AND DISCUSSION

It is worth noting that experts were still needed to be sure about the validity of the

annotations; however, they did not need to manually annotate each image; then, the

burden of creating an annotated dataset of images was considerably reduced. Finally,

using the annotated dataset, we have built a Deep Learning pipeline for segmenting

motility images.

The image processing pipeline for annotating motility images was split into two

components: a classification procedure, and a segmentation procedure. We explain

how these two steps were designed to semi-automatically annotate the 2772 motility

images of our dataset. The pipeline has been implemented as an ImageJ’s plugin that is

available at [71].

The classification procedure was in charge of distinguishing images where the

bacteria has covered completely the Petri dish (from now on, these images are called

complete images) from those images where the bacteria only covers part of the dish

(from now on, incomplete images). This distinction is relevant since complete images

do not require any further processing, and the size of the covered area can be directly

obtained. We based the procedure to classify the images on the fact that, for incomplete

images, the mean intensity of the pixels inside the Petri dish that are close to the border

is similar to the mean intensity of the region outside the Petri dish; whereas, for complete

images, the mean intensity of the pixels inside the Petri dish that are close to the border

is lower than outside the Petri dish. Hence, for this task, we fixed an annulus close to

the border of the Petri dish, determined by the Hough transform [174], and compared it

with the intensity outside the dish. Using this classification procedure, a 95.63% of the

images were correctly classified, and the experts only had to reorganize, approximately,

100 images. As a result, we produced a dataset that consists of 1305 images from the

complete class, and 1467 from the incomplete class. The images from the incomplete

class were further processed to produce their associated annotation.

The segmentation procedure for the incomplete images aims to produce a mask for

the region that contains the bacteria. Our segmentation algorithm was based on the

sequential application of several image processing techniques, such as edge detection or

thresholding, and morphological operations such as dilation or erosion. Namely, the

procedure can be split into two steps: contour generation and contour refinement.

In order to construct and evaluate the classification model for distinguishing com-

plete and incomplete motility images, the classification dataset was split into a training

set and a test set using, respectively, 1817 (80%) and 455 (20%) images of the original

dataset; additionally, 181 (10%) images of the training set were used for validation

in order to avoid overfitting. After that, we increased the size of the training set by

applying several data augmentation techniques. From the training dataset, we fine-tuned

several convolutional neural networks pretrained on the ImageNet dataset; namely, the

last layer of the convolutional networks was replaced with a sequence of linear layers

where batch normalization, dropout and a ReLU activation function were applied. In

our experiments, we have trained two ResNet architectures (Resnet 50 and 101), an

EfficientNet architecture (EfficientNet B3), and a FBNet architecture [175] using the

fastai library and a GPU Nvidia RTX 2080 Ti.

For each architecture, we constructed three models by using two different input

image sizes (224×224 and 512×512), and using the progressive resizing approach [38].

In order to set the learning rate for the architectures, we employed the two-stage

2.4. OBJECTIVE 4 43

Table 2.12: Performance (95% CI) for the test set obtained by each classification model. The best

result is highlighted in bold face.

Size Architecture Precision Recall F1-score

224× 224

ResNet-50 100 (100-100) 96.14 (94.55–97.73) 98.03 (96.88–99.18)

ResNet-101 100 (100–100) 97.62 (96.36–98.88) 98.79 (97.89–99.69)

EfficientNet-B3 99.38 (98.73–100) 95.84 (94.19–97.49) 97.58 (96.31–98.85)

FBNet 100 (100–100) 97.62 (96.36–98.88) 98.79 (97.89–99.69)

512× 512

ResNet-50 99.39 (98.75-100) 97.03 (95.63–98.43) 98.19 (97.09–99.2*)

ResNet-101 99.39 (98.75–100) 97.32 (95.99–98.65) 98.35 (97.30–99.40)

EfficientNet-B3 99.38 (98.73–100) 95.54 (93.84–97.24) 97.42 (96.11–98.73)

FBNet 98.80 (97.90–99.70) 98.51 (97.51–99.51) 98.66 (97.71–99.61)

Resizing

ResNet-50 100 (100-100) 99.70 (99.25–100) 99.85 (99.53–100)

ResNet-101 100 (100-100) 97.92 (96.74–99.10) 98.95 (98.11–99.79)

EfficientNet-B3 97.94 (96.77–99.11) 98.81 (97.92–99.70) 98.37 (97.33–99.41)

FBNet 100 (100–100) 98.51 (97.51–99.51) 99.25 (98.54–99.96)

procedure presented in [38] and used previously for ERM diagnosis. Finally, we applied

early stopping in all the architectures to avoid overfitting.

In order to construct the deep segmentation models from the segmentation dataset,

we employed 1154 (76%) images for training, and the remaining 313 (24%), for testing;

additionally, 115 (10%) images of the training set were used for validation. As for

the classification dataset, we increased the size of the training set by applying several

data augmentation techniques. From the training dataset, we fine-tuned several deep-

learning segmentation algorithms. Namely, we have trained 5 architectures: U-Net [132]

(with a Resnet 34 backbone), DeepLabV3+ [144] (with a Resnet 50 backbone), Mask

RCNN [117] (with a Resnet 50 backbone), HRNet-Seg [145] (with an HRNet W30

backbone) and U2-net [132] (with its underlying backbone). All the architectures were

trained using the same procedure presented in Section 2.3. The experience adquired

building those models will serve as a basis for developing a tool similar to FrImCla and

UFOD but oriented towards semantic segmentation.

Results

We analyze the results obtained by the deep models built to classify and segment

the motility images. We start by analyzing the results achieved by the constructed

classification models in the test set, see Table 2.12. As evaluation metrics we employed

precision, recall and F1-score. Using those metrics the model that provides a better

trade-off between precision and recall is the ResNet-50 model trained using the resizing

approach with a F1-score of 99.85%. We can also notice from the results presented in

Table 2.12 the benefits of using resizing since all the models are improved using this

approach.

We focus now on the results achieved by the deep segmentation models in the test

set, see Table 2.13. The metrics employed to measure the accuracy of the different

methods are the Dice coefficient and the Jaccard index. As can be seen in Table 2.13,

the best model is obtained using the DeepLabV3+ architecture with a Dice coefficient

44 CHAPTER 2. RESULTS AND DISCUSSION

Table 2.13: Performance (95% CI) for the test set obtained by each segmentation model. The best

result is highlighted in bold face.

Model Dice coefficient Jaccard index

DeepLabV3+ 95.66 (93.40–97.92) 91.68 (88.62–94.74)

HRNet-seg 95.31 (95.97–97.65) 91.05 (87.89–94.21)

Mask-RCNN 91.18 (88.04–94.32) 83.80 (79.72–87.88)

U-Net 60.14 (54.72–65.56) 43.00 (37.52–48.48)

U2-Net 66.94 (61.73–72.15) 50.31 (44.77–55.85)

of 95.66% and a Jaccard index of 91.68%. A similar result is also obtained using the

HRNet-seg architecture, whereas the other models obtain much worse results.

Conclusions

The final contribution of this work is MotilityJ, an open-source framework that auto-

matically analyzes bacteria spread in motility images. The underlying algorithms of

MotilityJ are based on highly accurate Deep Learning models that generate a segmen-

tation comparable to those produced by experts; but, considerably reducing the effort

required to obtain them. In addition, MotilityJ provides a simple to use interface for

editing the results. Thanks to the development of the Deep Learning models and their

deployment in MotilityJ, the analysis of motility images will be faster, less subjective,

more reliable and comparable among different laboratories all over the world. The

developed tools will help to advance our understanding of the behavior and virulence of

bacteria.

As a general summary of all the contributions presenter throughout this chapter, it

is worth highlighting the work that has been done in bringing Deep Learning methods

closer to the largest possible number of users, whether they are experts or not. To

achieve this aim, we have developed AutoML tools to help users without experience in

these complex technologies, however these libraries also have a configuration so that

advanced users can have a use and configuration adapted to them. Other types of Deep

Learning technologies such as GANs have also been studied to solve real problems, as

we have shown the ERM images project. Finally, in MotilityJ, Deep Learning models

were used for the classification and segmentation of the images.

Chapter 3

Contributions

This chapter provides a description of the research publications where we addressed the

problems presented in this memoir. For each paper, we provide its abstract and a table

with metadata about it.

45

46 CHAPTER 3. CONTRIBUTIONS

3.1 FrImCla: A Framework for Image Classification Us-
ing Traditional and Transfer Learning Techniques

Deep Learning techniques are currently the state of the art approach to deal with image

classification problems. Nevertheless, non-expert users might find challenging the

use of these techniques due to several reasons, including the lack of enough images,

the necessity of trying different models and conducting a thorough comparison of

the results obtained with them, and the technical difficulties of employing different

libraries, tools and special purpose hardware like GPUs. In this work, we present the

FrImCla framework, an open-source and free tool that simplifies the construction of

robust models for image classification from a dataset of images, and only using the

computer CPU. Given a dataset of annotated images, FrImCla automatically constructs

a classification model by trying several feature extractors (based both on Transfer

Learning and traditional computer vision methods) and Machine Learning algorithms,

and selecting the best combination after a thorough statistical analysis. Thus, this tool

can be employed by non-expert users to create accurate models from small datasets of

images without requiring any special purpose hardware. In addition, in this paper we

show that FrImCla can be employed to construct accurate models that are close, or even

better, to the state-of-the-art models.

Title FrImCla: A Framework for Image Classification Using Traditional and Transfer Learning Techniques

Authors Manuel Garcı́a-Domı́nguez, César Domı́nguez, Jónathan Heras, Eloy Mata and Vico Pascual

Journal IEEE Access

Impact Factor (2020) 3.367

Rank Q2

Publisher IEEE

Volume 8

Issue -

Pages 53443-53455

Year 2020

Month March

ISSN 2169-3536

DOI 10.1109/ACCESS.2020.2980798

URL https://ieeexplore.ieee.org/document/9035496

State Published

Cites 5

Project webpage https://github.com/ManuGar/FrImCla

Project stats 72.090 downloads (extracted from https://pepy.tech/)

Author’s contribution

The PhD student, Manuel Garcı́a Domı́nguez, was the main author of the paper. In this work, the PhD

participated in the analysis and design phases of the Frimcla software, and was in charge of implementing,

documenting and testing it. In addition, he carried out different experiments with the developed software and

analyzed the results obtained. Finally, the doctoral student wrote a large part of the article, revised the parts

that he had not written, and was in charge of the entire process of submission and revision to the journal in

which the work was published.

3.1. UFOD 47

3.2 UFOD: An AutoML Framework for the Construc-
tion, Comparison, and Combination of Object De-
tection Models

Object detection models based on Deep Learning techniques have been successfully

applied in several contexts; however, non-expert users might find challenging the use

of these techniques due to several reasons, including the necessity of trying different

algorithms implemented in heterogeneous libraries, the configuration of hyperparame-

ters, the lack of support of many state-of-the-art algorithms for training them on custom

datasets, or the variety of metrics employed to evaluate detection algorithms. These

challenges have been tackled by the development of UFOD, an automated Machine

Learning framework that trains several object detection algorithms (using different

underlying frameworks and libraries), compares them, and finally selects the best model

or ensembles them. Currently, the most well-known object detection algorithms have

been included in our system, and new methods can be easily incorporated thanks to a

high-level API. UFOD is available at https://github.com/ManuGar/UFOD/

Title
UFOD: An AutoML Framework for the Construction, Comparison, and Combination of Object Detection

Models

Authors Manuel Garcı́a-Domı́nguez, César Domı́nguez, Jónathan Heras, Eloy Mata and Vico Pascual

Journal Pattern Recognition Letters

Impact Factor (2020) 3.756

Rank Q2

Publisher Elsevier

Volume 145

Issue -

Pages 135-140

Year 2021

Month May

ISSN 0167-8655

DOI 10.1016/j.patrec.2021.01.022

URL https://doi.org/10.1016/j.patrec.2021.01.022

State Published

Cites 1

Project webpage https://github.com/ManuGar/UFOD

Project stats -

Author’s contribution

The PhD student, Manuel Garcı́a Domı́nguez, was the main author of the paper. In this work, the PhD

participated in the analysis and design phases of the UFOD software, and was in charge of implementing,

documenting and testing it. In addition, he carried out different experiments with the developed software and

analyzed the results obtained. Finally, the doctoral student wrote a large part of the article, revised the parts

that he had not written, and was in charge of the entire process of submission and revision to the journal in

which the work was published.

48 CHAPTER 3. CONTRIBUTIONS

3.3 CLoDSA: a tool for augmentation in classification,
localization, detection, semantic segmentation and
instance segmentation tasks

Background. Deep Learning techniques have been successfully applied to bioimaging

problems; however, these methods are highly data demanding. An approach to deal

with the lack of data and avoid overfitting is the application of data augmentation, a

technique that generates new training samples from the original dataset by applying

different kinds of transformations. Several tools exist to apply data augmentation in the

context of image classification, but it does not exist a similar tool for the problems of

localization, detection, semantic segmentation or instance segmentation that works not

only with 2 dimensional images but also with multi-dimensional images (such as stacks

or videos).

Results. In this paper, we present a generic strategy that can be applied to au-

tomatically augment a dataset of images, or multi-dimensional images, devoted to

classification, localization, detection, semantic segmentation or instance segmentation.

The augmentation method presented in this paper has been implemented in the open-

source package CLoDSA. To prove the benefits of using CLoDSA, we have employed

this library to improve the accuracy of models for Malaria parasite classification, stomata

detection, and automatic segmentation of neural structures.

Conclusions. CLoDSA is the first, at least up to the best of our knowledge, image

augmentation library for object classification, localization, detection, semantic segmen-

tation, and instance segmentation that works not only with 2 dimensional images but

also with multi-dimensional images.

Title
CLoDSA: a tool for augmentation in classification, localization, detection, semantic segmentation and

instance segmentation tasks

Authors
Ángela Casado-Garcı́a, César Domı́nguez, Manuel Garcı́a-Domı́nguez, Jónathan Heras, Adrián Inés, Eloy

Mata and Vico Pascual

Journal BMC Bioinformatics

Impact Factor (2020) 3.169

Rank Q2

Publisher Springer

Volume 20

Issue -

Pages -

Year 2019

Month June

ISSN 1471-2105

DOI 10.1186/s12859-019-2931-1

URL https://doi.org/10.1186/s12859-019-2931-1

State Published

Cites 34

Project webpage https://github.com/joheras/CLoDSA

Project stats 103.855 downloads (extracted from https://pepy.tech/)

Author’s contribution

The PhD participated in the development of the CLODSA library. Specifically, he participated in the analysis

and design phases of this library. In addition, he implemented, documented, and tested the data augmentation

module for object detection models. Finally, the doctoral student wrote part of the article (the one referring

to the development that he had carried out), revised the rest of the article, and was involved in the revision

process carried out by the journal in which the article was finally published.

3.3. NEURAL STYLE TRANSFER 49

3.4 Neural Style Transfer and Unpaired Image-to-Image
Translation to deal with the Domain Shift Problem
on Spheroid Segmentation

Background and objectives. Domain shift is a generalisation problem of Machine

Learning models that occurs when the data distribution of the training set is different to

the data distribution encountered by the model when it is deployed. This is common

in the context of biomedical image segmentation due to the variance of experimental

conditions, equipment, and capturing settings. In this work, we address this challenge by

studying both neural style transfer algorithms and unpaired image-to-image translation

methods in the context of the segmentation of tumour spheroids.

Methods. We have illustrated the domain shift problem in the context of spheroid

segmentation with 4 Deep Learning segmentation models that achieved an IoU over 97%

when tested with images following the training distribution, but whose performance

decreased up to an 84% when applied to images captured under different conditions. In

order to deal with this problem, we have explored 3 style transfer algorithms (NST, deep

image analogy, and STROTSS), and 6 unpaired image-to-image translations algorithms

(CycleGAN, DualGAN, ForkGAN, GANILLA, CUT, and FastCUT). These algorithms

have been integrated into a high-level API that facilitates their application to other

contexts where the domain-shift problem occurs.

Results. We have considerably improved the performance of the 4 segmentation

models when applied to images captured under different conditions by using both style

transfer and image-to-image translation algorithms. In particular, there are 2 style

transfer algorithms (NST and deep image analogy) and 1 unpaired image-to-image

translations algorithm (CycleGAN) that improve the IoU of the models in a range from

0.24 to 76.07. Therefore, reaching a similar performance to the one obtained with the

models are applied to images following the training distribution.

Title
Neural Style Transfer and Unpaired Image-to-Image Translation to deal with the Domain Shift Problem on

Spheroid Segmentation

Authors Manuel Garcı́a-Domı́nguez, César Domı́nguez, Jónathan Heras, Eloy Mata and Vico Pascual

Journal Arxiv

Impact Factor (2020) -

Rank -

Publisher arXiv

Volume abs/2112.09043

Issue -

Pages -

Year 2021

Month 12

ISSN -

DOI 10.48550/ARXIV.2112.09043

URL https://arxiv.org/abs/2112.09043
State -

Cites -

Project webpage https://github.com/ManuGar/ImageStyleTransfer

Project stats -

Author’s contribution

The PhD student, Manuel Garcı́a Domı́nguez, was the main author of the paper. In this work, the PhD

participated in the analysis and design phases of the Image Style Transfer software, and was in charge

of implementing, documenting and testing it. In addition, he carried out different experiments with the

developed software and analyzed the results obtained. Finally, the doctoral student wrote a large part of the

article, revised the parts that he had not written, and is in charge of the entire process of submission and

revision.

50 CHAPTER 3. CONTRIBUTIONS

3.5 Prediction of Epiretinal Membrane from Retinal
Fundus Images Using Deep Learning

An epiretinal membrane (ERM) is an eye disease that can lead to visual distortion and, in

some cases, to loss of vision. Screening retinal fundus images allows ophthalmologists

to early detect and diagnose this disease; however, the manual interpretation of images

is a time-consuming task. In spite of the existence of several computer vision tools for

analysing retinal fundus images, they are mainly focused on the diagnosis of diabetic

retinopathy and glaucoma. In this work, we have conducted a thorough study of several

Deep Learning architectures, and a variety of techniques to train them, in order to build

a model for automatically diagnosing ERM. As a result, we have built several models

that can be ensembled to achieve a F1-score of 86.82%. The lessons learned in this

work can serve as a basis for the construction of Deep Learning models for diagnosing

other eye diseases.

Title Prediction of Epiretinal Membrane from Retinal Fundus Images Using Deep Learning

Authors
Ángela Casado-Garcı́a, Manuel Garcı́a-Domı́nguez, Jónathan Heras, Adrián Inés, Didac Royo and Miguel

Ángel Zapata

Journal Lecture Notes in Computer Science

Impact Factor (2020) 0.25 (SJCR)

Rank Q3 (SJCR)

Publisher Springer International Publishing

Volume 12882

Issue -

Pages 3-13

Year 2021

Month September

ISSN 0302-9743

DOI 10.1007/978-3-030-85713-4 1
URL https://link.springer.com/chapter/10.1007/978-3-030-85713-4 1
State Published

Cites -

Project webpage https://github.com/CoVUR/ERM

Project stats -

Author’s contribution

The PhD participated in the development of the library, available at https://github.com/CoVUR/ERM.

Specifically, he participated in the analysis and design phases of this library. In addition, he implemented,

documented, and tested the creation of the GANs models for the image generation for data augmentation

using CycleGAN. Finally, the doctoral student revised the article, and was involved in the revision process

carried out by the journal in which the article was finally published.

3.5. MOTILITYJ 51

3.6 MotilityJ: An open-source tool for the classification
and segmentation of bacteria on motility images

Background and objectives. Infectious diseases produced by antimicrobial resistant

microorganisms are a major threat to human, and animal health worldwide. This

problem is increased by the virulence and spread of these bacteria. Surface motility has

been regarded as a pathogenicity element because it is essential for many biological

functions, but also for disease spreading; hence, investigations on the motility behaviour

of bacteria are crucial to understand chemotaxis, biofilm formation and virulence in

general. To identify a motile strain in the laboratory, the bacterial spread area is observed

on media solidified with agar. Up to now, the task of measuring bacteria spread was a

manual, and, therefore, tedious and time-consuming task. The aim of this work is the

development of a set of tools for bacteria segmentation in motility images.

Methods. In this work, we address the problem of measuring bacteria spread on

motility images by creating an automatic pipeline based on Deep Learning models. Such

a pipeline consists of a classification model to determine whether the bacteria has spread

to cover completely the Petri dish, and a segmentation model to determine the spread

of those bacteria that do not fully cover the Petri dishes. In order to annotate enough

images to train our Deep Learning models, a semi-automatic annotation procedure is

presented.

Results. The classification model of our pipeline achieved a F1-score of 99.85%,

and the segmentation model achieved a Dice coefficient of 95.66%. In addition, the

segmentation model produces results that are indistinguishable, and in many cases pre-

ferred, from those produced manually by experts. Finally, we facilitate the dissemination

of our pipeline with the development of MotilityJ, an open-source and user-friendly

application for measuring bacteria spread on motility images.

Conclusions. In this work, we have developed an algorithm and trained several

models for measuring bacteria spread on motility images. Thanks to this work, the

analysis of motility images will be faster and more reliable. The developed tools will

help to advance our understanding of the behaviour and virulence of bacteria.

52 CHAPTER 3. CONTRIBUTIONS

Title MotilityJ: An open-source tool for the classification and segmentation of bacteria on motility images

Authors
Ángela Casado-Garcı́a, Gabriela Chichón, César Domı́nguez, Manuel Garcı́a-Domı́nguez, Jónathan Heras,

Adrián Inés, Marı́a López, Eloy Mata, Vico Pascual and Yolanda Sáenz

Journal Computers in Biology and Medicine

Impact Factor (2020) 4.589

Rank Q1

Publisher Elsevier

Volume 136

Issue -

Pages 104673

Year 2021

Month July

ISSN 0010-4825

DOI 10.1016/j.compbiomed.2021.104673

URL https://www.sciencedirect.com/science/article/pii/S0010482521004674

State Published

Cites 3

Project webpage https://github.com/joheras/MotilityJ

Project stats 11.096 (extracted from https://pepy.tech/)

Author’s contribution

The PhD participated in the development of the MotilityJ library. Specifically, he participated in the creation

of the segmentation models of the library. Finally, the doctoral student revised the article, and was involved

in the revision process carried out by the journal in which the article was finally published.

Chapter 4

Conclusions and further work

In this chapter, we present the conclusions of our work, and present our future lines of

research.

The main goal of our work was to bring Deep Learning methods closer to a wide

variety of users by developing a series of applications that simplify the creation and use

of Deep Learning methods. To this aim, we have developed two AutoML tools called

FrImCla and UFOD, that facilitate the construction of Deep Learning models for image

classification and object detection. FrImCla has several advantages with respect to other

AutoML tools for image classification. First of all, FrImCla automatizes the whole

pipeline to construct classification models from raw images. In addition, it reduces the

amount of data and computational resources that are required to train those classification

models thanks to the use of transfer learning. Furthermore, the accuracy achieved by

the models constructed with FrImCla is superior to the accuracy obtained using other

AutoML tools. In fact, FrImCla models can achieve close results to special purpose

models by using a general method that can be applied to any dataset. Thanks to FrImCla,

users from several contexts can use state-of-the-art techniques and build accurate models

from small datasets, and without requiring any special hardware. In the case of UFOD,

this is the first AutoML tool for building Deep Learning models for object detection.

The main strength of UFOD is its high-level API that provides a common access point

to multiple libraries and frameworks for building object detection models. This feature

allows UFOD to automatically search the best model for a custom dataset. As future

work in this research line, we want to add libraries and algorithms both to FrImCla and

UFOD that would help to find even more precise models, we have seen the benefits of

those algorithms when dealing with actual biomedical problems. We also want to add

optimization methods such as Bayesian optimization to select the best configuration

hyperparameter for each classification and object detection algorithm. Finally, we want

to deal with other Computer Vision tasks such as semantic segmentation or anomaly

detection; hence, new AutoML tools will be developed.

Both FrImCla and UFOD, and in general any Deep Learning framework and algo-

rithm, produce better models when large datasets of images are provided. This issue

has been faced by developing CLoDSA, a library that facilitates the construction of

large enough datasets to build models independently of the underlying framework.

53

54 CHAPTER 4. CONCLUSIONS AND FURTHER WORK

This library helps users to automatically apply data augmentation techniques to object

classification, location, detection, semantic segmentation, and instance segmentation

problems for 2D and multi-dimensional images. This library has been designed using

various object-oriented patterns and software engineering principles to facilitate its

usability and extensibility. The benefits of applying data augmentation with this library

have been tested with different data sets and tools. As a future work in this context,

it is planned to add more data augmentation methods such as generating images with

a stochastic approach, or the use of GANs to increase the number of images for the

mentioned problems. In our work, we have already conducted some experiments for

data augmentation using GANs in the context of retinal fundus classification, but more

research is still needed to provide a general method applicable to a wide variety of

scenarios and tasks.

Independently of the technique or framework used for building Deep Learning

models, they generally suffer a generalization problem known as domain shift. We have

tackled this problem by developing a framework that facilitates the usage of several style

transfer and unpaired image-to-image algorithms to deal with the domain shift problem.

The results obtained with our framework show that with these techniques it is possible

to handle this generalization problem. In addition, we have seen that the style transfer

methods obtain similar results to the unpaired image-to-image translation methods but

with the advantage that they do not require any training process, and that they can be

implemented using only an image from the source dataset. In our experiments, we have

noticed that the methods implemented in our framework have a different impact on

the performance of the models; hence, different approach should always be tested. As

future work, it remains the task of developing an AutoML tool similar to FrImCla and

UFOD that facilitates the automatic comparison of methods to deal with the domain

shift problem.

All the technologies and methods studied during our work have been the basis to

tackle two real biomedical problems: the diagnosis of diseases from retinal fundus

images and the analysis of bacteria on motility images. For the former task, we have

studied several Deep Learning models and techniques to build an image classification

model able to predict a disease called epiretinal membrane. The best results, with a F1-

score of 86.82%, were achieved by using transformer-based architectures, and combining

3 techniques (transfer learning from the RIADD dataset, test-time augmentation and

model ensemble). As further work, we plan to extend our work to other retinal diseases.

In addition, we aim to further explore the generation of images by using GAN models

since this approach did not provide the expected results in this context. For the task of

analyzing bacteria on motility images, we have built a user-friendly tool called MotilityJ.

This tool uses Deep Learning models to obtain comparable results to those produced by

experts, but considerably reducing the effort required to obtain them. Also, MotilityJ

has a simple to use interface that allows users to edit the results generated by our models.

With this application, the analysis of motility images is done in a more objective, reliable

and faster way. As future work for this project, it remains the task of incorporating in

MotilityJ the techniques that have been developed to deal with the domain shift problem.

This will allow users from different laboratories to carry out studies with different

species of bacteria, and using different conditions to capture the motility images.

Finally, we aim to apply our methods and tools in different scenarios. This has

55

led to a new research line focused on human monitoring. This research line has been

opened in collaboration with the Istituto di Sistemi e Tecnologie Industriali Intelligenti
per il Manifatturiero Avanzato (Bari, Italy). In this context, all the experience gained

during the PhD studies will serve to create tools that facilitate the construction and use

of models for human monitoring.

Chapter 5

Conclusiones y trabajo futuro

En este capı́tulo, presentamos las conclusiones de nuestro trabajo, y presentamos

nuestras futuras lı́neas de investigación.

El objetivo principal de nuestro trabajo fue acercar los métodos de Deep Learning

a una amplia variedad de usuarios mediante el desarrollo de una serie de aplicaciones

que simplifican la creación y el uso de métodos de Deep Learning. Para ello, hemos

desarrollado dos herramientas de AutoML denominadas FrImCla y UFOD, que facilitan

la construcción de modelos de Deep Learning para la clasificación de imágenes y

detección de objetos. FrImCla tiene varias ventajas con respecto a otras herramientas

de AutoML para la clasificación de imágenes. En primer lugar, FrImCla automatiza

todo el proceso para construir modelos de clasificación a partir de imágenes sin procesar.

Además, reduce la cantidad de datos y recursos computacionales que se requieren para

entrenar esos modelos de clasificación gracias al uso del aprendizaje por transferencia.

Además, la precisión alcanzada por los modelos construidos con FrImCla es superior a la

precisión obtenida con otras herramientas de AutoML. De hecho, los modelos FrImCla

pueden lograr resultados similares a los modelos de propósito especial mediante el uso

de un método general que se puede aplicar a cualquier conjunto de datos. Gracias a

FrImCla, los usuarios de varios contextos pueden utilizar técnicas de última generación

y construir modelos precisos a partir de pequeños conjuntos de datos y sin necesidad

de ningún hardware especial. En el caso de UFOD, esta es la primera herramienta de

AutoML para construir modelos de aprendizaje profundo para la detección de objetos.

La principal fortaleza de UFOD es su API de alto nivel que proporciona un punto de

acceso común a múltiples librerı́as y frameworks para construir modelos de detección

de objetos. Esta función permite a UFOD buscar automáticamente el mejor modelo para

un conjunto de datos personalizado. Como trabajo futuro en esta lı́nea de investigación,

queremos agregar librerı́as y algoritmos tanto a FrImCla como a UFOD que ayudarı́an

a encontrar modelos aún más precisos. Hemos visto los beneficios de esos algoritmos

cuando se trata de problemas biomédicos reales. También queremos agregar métodos de

optimización como la optimización bayesiana para seleccionar el mejor hiperparámetro

de configuración para cada algoritmo de clasificación y detección de objetos. Por último,

queremos ocuparnos de otras tareas de Visión por Computador como la segmentación

semántica o la detección de anomalı́as; por lo tanto, se desarrollarán nuevas herramientas

57

58 CHAPTER 5. CONCLUSIONES Y TRABAJO FUTURO

de AutoML.

Tanto FrImCla como UFOD, y en general cualquier marco y algoritmo de apren-

dizaje profundo, producen mejores modelos cuando se proporcionan grandes conjuntos

de datos de imágenes. Este problema se ha enfrentado al desarrollar CLoDSA, una

biblioteca que facilita la construcción de conjuntos de datos lo suficientemente grandes

como para construir modelos independientemente del marco subyacente. Esta biblioteca

ayuda a los usuarios a aplicar automáticamente técnicas de aumento de datos a proble-

mas de clasificación, localización, detección, segmentación semántica y segmentación

de instancias de objetos para imágenes 2D y multidimensionales. Esta librerı́a ha

sido diseñada usando varios patrones orientados a objetos y principios de ingenierı́a

de software para facilitar su usabilidad y extensibilidad. Los beneficios de aplicar el

aumento de datos con esta librerı́a se han probado con diferentes conjuntos de datos y

herramientas. Como trabajo futuro en este contexto, se planea agregar más métodos de

aumento de datos, como la generación de imágenes con un enfoque estocástico, o el

uso de GAN para aumentar la cantidad de imágenes para los problemas mencionados.

En nuestro trabajo, ya hemos realizado algunos experimentos para el aumento de datos

utilizando GAN en el contexto de la clasificación del fondo de retina, pero aún se

necesita más investigación para proporcionar un método general aplicable a una amplia

variedad de escenarios y tareas.

Independientemente de la técnica o framework utilizado para construir modelos de

Deep Learning, estos modelos suelen sufrir un problema de generalización conocido

como cambio de dominio. Hemos abordado este problema mediante el desarrollo de

un framework que facilita el uso de varios algoritmos de traducción desparejada de

imágenes. Los resultados obtenidos con nuestro framework muestran que con estas

técnicas es posible manejar este problema de generalización. Además, hemos visto que

los métodos de transferencia de estilos obtienen resultados similares a los métodos de

traducción desparejada de imágenes pero con la ventaja de que no requieren ningún

proceso de entrenamiento y que pueden implementarse utilizando solo una imagen

del dataset de origen. En nuestros experimentos, hemos notado que los métodos

implementados en nuestro framework tienen un impacto diferente en el rendimiento de

los modelos; por lo tanto, siempre se debe probar un enfoque diferente. Como trabajo

futuro, queda la tarea de desarrollar una herramienta AutoML similar a FrImCla y

UFOD que facilite la comparación automática de métodos para tratar el problema de

cambio de dominio.

Todas las tecnologı́as y métodos estudiados durante nuestro trabajo han sido la base

para abordar dos problemas biomédicos reales: el diagnóstico de enfermedades a partir

de imágenes de fondo de retina y el análisis de bacterias en imágenes de motilidad. Para

la primera tarea, hemos estudiado varios modelos y técnicas de Deep Learning para

construir un modelo de clasificación de imágenes capaz de predecir una enfermedad

llamada membrana epirretiniana. Los mejores resultados, con una puntuación F1 del

86,82%, se lograron mediante el uso de arquitecturas basadas en transformadores

y la combinación de 3 técnicas (aprendizaje de transferencia del conjunto de datos

RIADD, aumento del tiempo de prueba y conjunto de modelos). Como trabajo adicional,

planeamos extender nuestro trabajo a otras enfermedades de la retina. Además, nues-

tro objetivo es explorar más a fondo la generación de imágenes mediante el uso de

modelos GAN, ya que este enfoque no proporcionó los resultados esperados en este

59

contexto. Para la tarea de analizar bacterias en imágenes de motilidad, hemos creado

una herramienta fácil de usar llamada MotilityJ. Esta herramienta utiliza modelos de

Deep Learning para obtener resultados comparables a los producidos por expertos, pero

reduciendo considerablemente el esfuerzo necesario para obtenerlos. Además, MotilityJ

tiene una interfaz fácil de usar que permite a los usuarios editar los resultados generados

por nuestros modelos. Con esta aplicación, el análisis de imágenes de motilidad se

realiza de una forma más objetiva, fiable y rápida. Como trabajo futuro de este proyecto,

queda la tarea de incorporar en MotilityJ las técnicas que se han desarrollado para

tratar el problema de cambio de dominio. Esto permitirá a los usuarios de diferentes

laboratorios realizar estudios con diferentes especies de bacterias y utilizar diferentes

condiciones para capturar las imágenes de motilidad.

Finalmente, nuestro objetivo es aplicar nuestros métodos y herramientas en dife-

rentes escenarios. Esto ha dado lugar a una nueva lı́nea de investigación centrada en la

monitorización humana. Esta lı́nea de investigación ha sido abierta en colaboración con

el Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato
(Bari, Italia). En este contexto, toda la experiencia adquirida durante los estudios de

doctorado servirá para crear herramientas que faciliten la construcción y uso de modelos

para el seguimiento humano.

Bibliography

[1] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: Nature
521 (2015), pp. 436–444. DOI: 10.1038/nature14539.

[2] Stuart Russell and Peter Norving. Artificial Intelligence: A Modern Approach.

PEARSON, 1995.

[3] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of
Machine learning. MIT press, 2012.

[4] Wei Li, Gai-He Wang, and Amir H. Gandomi. “A Survey of Learning-Based

Intelligent Optimization Algorithms”. In: Archives of Computational Methods
in Engineering 28 (2021), pp. 3781–3799. DOI: 10.1007/s11831-021-
09562-1.

[5] Licheng Jiao et al. “A Survey of Deep Learning-Based Object Detection”. In:

IEEE Access 7 (2019), pp. 128837–128868. DOI: 10.1109/ACCESS.2019.
2939201.

[6] Richard Szeliski. Computer Vision: Algorithms and Applications. Springer,

2010.

[7] Samet Akcay et al. “Transfer learning using convolutional neural networks for

object classification within X-ray baggage security imagery”. In: 2016 IEEE
International Conference on Image Processing. 2016, pp. 1057–1061. DOI:

10.1109/ICIP.2016.7532519.

[8] Andrea Asperti and Claudio Mastronardo. “The Effectiveness of Data Aug-

mentation for Detection of Gastrointestinal Diseases from Endoscopical Im-

ages”. In: 11th International Joint Conference on Biomedical Engineering
Systems and Technologies - Volume 2. 2018, pp. 199–205. DOI: 10.5220/
0006730901990205.

[9] Patrice Simard et al. “Tangent prop-a formalism for specifying selected in-

variances in an adaptive network”. In: Neural Information Processing Systems.

Vol. 91. 1991, pp. 895–903.

[10] Anirudh Choudary et al. “Advancing Medical Imaging Informatics by Deep

Learning-Based Domain Adaptation”. In: Year book of medical informatics 29.1

(2020), pp. 129–138. DOI: 10.1055/s-0040-1702009.

61

62 BIBLIOGRAPHY

[11] Ida Arvidsson et al. “Generalization of prostate cancer classification for multiple

sites using deep learning”. In: IEEE 15th International Symposium on Biomedi-
cal Imaging. 2018, pp. 191–194. DOI: 10.1109/ISBI.2018.8363552.

[12] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: IEEE
Conference on Computer Vision and Pattern Recognition. 2016, pp. 770–778.

DOI: 10.1109/CVPR.2016.90.

[13] Mingxing Tan and Quoc V. Le. “EfficientNet: Rethinking Model Scaling for

Convolutional Neural Networks”. In: International Conference on Machine
Learning. Vol. 97. 2019, pp. 6105–6114. DOI: 10.48550/arXiv.1905.
11946.

[14] Joseph Redmon et al. “You Only Look Once: Unified, Real-Time Object Detec-

tion”. In: IEEE Conference on Computer Vision and Pattern Recognition. 2016,

pp. 779–788. DOI: 10.1109/CVPR.2016.91.

[15] Shaoqing Ren et al. “Faster R-CNN: Towards Real-Time Object Detection

with Region Proposal Networks”. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence. Vol. 28. 2015, pp. 91–99. DOI: 10.1109/TPAMI.
2016.2577031.

[16] David H Wolpert, William G Macready, et al. “No free lunch theorems for

optimization”. In: IEEE transactions on evolutionary computation 1.1 (1997),

pp. 67–82. DOI: 10.1109/4235.585893.

[17] Isabelle Guyon et al. “AutoML Challenge 2015: Design and first results”. In:

Proc. of AutoML 2015@ICML. 2015.

[18] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. Automated Machine
Learning: Methods, Systems, Challenges. Springer, 2019. DOI: 10.1007/
978-3-030-05318-5.

[19] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. “Sequential Model-

Based Optimization for General Algorithm Configuration”. In: Learning and
Intelligent Optimization. 2011, pp. 507–523. DOI: 10.1007/978-3-642-
25566-3_40.

[20] Chris Thornton et al. “Auto-WEKA: Combined Selection and Hyperparameter

Optimization of Classification Algorithms”. In: 19th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining. 2013, pp. 847–

855. DOI: 10.1145/2487575.2487629.

[21] Matthias Feurer et al. “Auto-sklearn: Efficient and Robust Automated Machine

Learning”. In: Advances in Neural Information Processing Systems. Vol. 28.

2015, pp. 2755–2763. DOI: 10.1007/978-3-030-05318-5_6.

[22] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. “Neural Architecture

Search: A Survey”. In: Journal of Machine Learning Research 20.1 (2019),

pp. 1997–2017.

[23] Barret Zoph et al. “Learning Transferable Architectures for Scalable Image

Recognition”. In: IEEE Conference on Computer Vision and Pattern Recogni-
tion. 2018, pp. 1–14. DOI: 10.1109/CVPR.2018.00907.

BIBLIOGRAPHY 63

[24] Haifeng Jin, Qingquan Song, and Xia Hu. “Auto-Keras: An Efficient Neural

Architecture Search System”. In: 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. ACM. 2019, pp. 1946–1956. DOI:

10.1145/3292500.3330648.

[25] Google. Google Cloud AutoML. 2018. URL: https://cloud.google.
com/automl/ (visited on 07/15/2022).

[26] Ekaba Bisong. “Google AutoML: Cloud Vision”. In: Building Machine Learning
and Deep Learning Models on Google Cloud Platform: A Comprehensive Guide
for Beginners. 2019, pp. 581–598. DOI: 10.1007/978-1-4842-4470-
8_42.

[27] Esteban Real et al. “Regularized Evolution for Image Classifier Architecture

Search”. In: AAAI Conference on Artificial Intelligence. Vol. 33. 2019. DOI:

10.1609/aaai.v33i01.33014780.

[28] Chen Sun et al. “Revisiting unreasonable effectiveness of data in deep learning

era”. In: IEEE international conference on computer vision. 2017, pp. 843–852.

DOI: 10.1109/ICCV.2017.97.

[29] Tsung-Yi Lin et al. “Microsoft COCO: Common Objects in Context”. In: Com-
puter Vision. 2014, pp. 740–755. DOI: 10.1007/978-3-319-10602-
1_48.

[30] Ali Sharif Razavian et al. “CNN features off-the-shelf: An astounding baseline

for recognition”. In: IEEE Conference on Computer Vision and Pattern Recog-
nition Workshops. 2014, pp. 512–519. DOI: 10.1109/CVPRW.2014.131.

[31] Sinno Jialin Pan and Qiang Yang. “A survey on Transfer Learning”. In: IEEE
Transactions on Knowledge and Data Engineering 22.10 (2010), pp. 1345–1359.

DOI: 10.1109/TKDE.2009.191.

[32] Stergios Christodoulidis et al. “Multisource Transfer Learning With Convo-

lutional Neural Networks for Lung Pattern Analysis”. In: IEEE Journal of
Biomedical and Health Informatics 21.1 (2017), pp. 76–84. DOI: 10.1109/
JBHI.2016.2636929.

[33] Mohsen Ghafoorian et al. “Transfer Learning for Domain Adaptation in MRI:

Application in Brain Lesion Segmentation”. In: Medical Image Computing and
Computer-Assisted Intervention. Cham: Springer International Publishing, 2017,

pp. 516–524. DOI: 10.1007/978-3-319-66179-7_59.

[34] Afonso Menegola et al. “Knowledge transfer for melanoma screening with deep

learning”. In: 2017 IEEE 14th International Symposium on Biomedical Imaging.

2017, pp. 297–300. DOI: 10.1109/ISBI.2017.7950523.

[35] Olga Russakovsky et al. “Imagenet large scale visual recognition challenge”.

In: International journal of computer vision 115.3 (2015), pp. 211–252. DOI:

10.1007/s11263-015-0816-y.

[36] François Chollet. Deep learning with Python. Manning, 2017.

[37] Adam Paszkeand others. “Automatic differentiation in PyTorch”. In: 31st Inter-
national Conference on Neural Information Processing Systems. 2017.

64 BIBLIOGRAPHY

[38] Jeremy. Howard and Sylvain. Gugger. “Fastai: A Layered API for Deep Learn-

ing”. In: Information 11 (2020), p. 108. DOI: 10.3390/info11020108.

[39] Patrice Simard, Dave Steinkraus, and John C. Platt. “Best practices for con-

volutional neural networks applied to visual document analysis”. In: 12th In-
ternational Conference on Document Analysis and Recognition. Vol. 2. 2003,

pp. 958–964. DOI: 10.1109/ICDAR.2003.1227801.

[40] Alexander B. Jung et al. imgaug. https : / / github . com / aleju /
imgaug. 2020. (Visited on 07/15/2022).

[41] Marcus D Bloice, Peter M Roth, and Andreas Holzinger. “Biomedical image

augmentation using Augmentor”. In: Bioinformatics 35.21 (2019), pp. 4522–

4524. DOI: 10.1093/bioinformatics/btz259.

[42] Alexander Buslaev et al. “Albumentations: Fast and Flexible Image Augmenta-

tions”. In: Information 11.2 (2020). DOI: 10.3390/info11020125.

[43] Ekin D Cubuk et al. “Autoaugment: Learning augmentation strategies from

data”. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition.

2019, pp. 113–123. DOI: 10.1109/CVPR.2019.00020.

[44] Ian Goodfellow et al. “Generative Adversarial Networks”. In: 28th International
Conference on Neural Information Processing Systems. 2014, pp. 2672–2680.

DOI: 10.1145/3422622.

[45] Leon Gatys, Alexander Ecker, and Matthias Bethge. “A Neural Algorithm of

Artistic Style”. In: Journal of Vision 16 (2016), p. 326. DOI: 10.1167/16.
12.326.

[46] Jason Wang and Luis Perez. “The Effectiveness of Data Augmentation in Image

Classification using Deep Learning”. In: CoRR abs/1712.04621 (2017). DOI:

10.48550/arXiv.1712.04621.

[47] Tim Salimans et al. “Improved Techniques for Training GANs”. In: 30th In-
ternational Conference on Neural Information Processing Systems. Curran

Associates Inc., 2016, pp. 2234–2242.

[48] Phillip Isola et al. “Image-to-Image Translation with Conditional Adversar-

ial Networks”. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition. 2017, pp. 5967–5976. DOI: 10.1109/CVPR.2017.632.

[49] Jun-Yan. Zhu et al. “Unpaired Image-to-Image Translation Using Cycle-

Consistent Adversarial Networks”. In: IEEE International Conference on Com-
puter Vision. 2017, pp. 2242–2251. DOI: 10.1109/ICCV.2017.244.

[50] Taesung Park et al. “Contrastive Learning for Unpaired Image-to-Image Trans-

lation”. In: European Conference on Computer Vision. 2020, pp. 319–345. DOI:

10.1007/978-3-030-58545-7_19.

[51] Zili Yi et al. “DualGAN: Unsupervised Dual Learning for Image-to-Image

Translation”. In: 2017 IEEE International Conference on Computer Vision.

IEEE, 2017, pp. 2868–2876. DOI: 10.1109/ICCV.2017.310.

BIBLIOGRAPHY 65

[52] Ziqiang Zheng et al. “ForkGAN: Seeing into the Rainy Night”. In: 16th Euro-
pean Conference on Computer Vision. 2020, pp. 1–16. DOI: 10.1007/978-
3-030-58580-8_10.

[53] Samet Hicsonmez et al. “GANILLA: Generative adversarial networks for image

to illustration translation”. In: Image and Vision Computing 95 (2020), p. 103886.

DOI: 10.1016/j.imavis.2020.103886.

[54] Sung-Wook Park et al. “Data augmentation using generative adversarial net-

works (CycleGAN) to improve generalizability in CT segmentation tasks”. In:

vol. 9. 2019. DOI: 10.1038/s41598-019-52737-x.

[55] Emanuele Alberti et al. “IDDA: A Large-Scale Multi-Domain Dataset for Au-

tonomous Driving”. In: IEEE Robotics and Automation Letters 5.4 (2020),

pp. 5526–5533. DOI: 10.1109/LRA.2020.3009075.

[56] D. Lacalle et al. “SpheroidJ: An Open-Source Set of Tools for Spheroid Seg-

mentation”. In: Computer Methods and Programs in Biomedicine 200 (2021),

p. 105837. DOI: 10.1016/j.cmpb.2020.105837.

[57] Jeremy Irvin et al. “CheXpert: A Large Chest Radiograph Dataset with Un-

certainty Labels and Expert Comparison”. In: Thirty-Third AAAI Conference
on Artificial Intelligence. Vol. 33. 2019, pp. 590–597. DOI: 10.1609/aaai.
v33i01.3301590.

[58] Subhankar Roy et al. “TriGAN: image-to-image translation for multi-source do-

main adaptation”. In: vol. 32. 2021. DOI: 10.1007/s00138-020-01164-
4.

[59] Wenjun Yan et al. “The Domain Shift Problem of Medical Image Segmentation

and Vendor-Adaptation by Unet-GAN”. In: Medical Image Computing and
Computer Assisted Intervention. 2019, pp. 623–631. DOI: 10.1007/978-3-
030-32245-8_69.

[60] Yue Zhang et al. “Task driven generative modeling for unsupervised domain

adaptation: Application to X-ray image segmentation”. In: International Confer-
ence on Medical Image Computing and Computer-Assisted Intervention. 2018,

pp. 599–607. DOI: 10.1007/978-3-030-00934-2_67.

[61] Jinzheng Cai et al. “Towards cross-modal organ translation and segmentation: A

cycle- and shape-consistent generative adversarial network”. In: Medical Image
Analysis 52 (2019), pp. 174–184. DOI: 10.1016/j.media.2018.12.
002.

[62] Julia Adler-Milstein and Ashish K Jha. “Sharing clinical data electronically: a

critical challenge for fixing the health care system”. In: JAMA 307.16 (2012),

pp. 1695–1696. DOI: 10.1001/jama.2012.525.

[63] Manuel Garcı́a-Domı́nguez et al. “FrImCla: A Framework for Image Classifica-

tion Using Traditional and Transfer Learning Techniques”. In: IEEE Access 8

(2020), pp. 53443–53455. DOI: 10.1109/ACCESS.2020.2980798.

66 BIBLIOGRAPHY

[64] Manuel Garcı́a-Domı́nguez et al. “Jupyter Notebooks for Simplifying Transfer

Learning”. In: Computer Aided Systems Theory – EUROCAST 2019. Cham:

Springer International Publishing, 2020, pp. 215–221. DOI: 10.1007/978-
3-030-45096-0_27.

[65] Manuel Garcı́a et al. “An On-Going Framework for Easily Experimenting with

Deep Learning Models for Bioimaging Analysis”. In: Distributed Computing
and Artificial Intelligence, Special Sessions, 15th International Conference.

Cham: Springer International Publishing, 2019, pp. 330–333. DOI: 10.1007/
978-3-319-99608-0_39.

[66] Manuel Garcı́a-Domı́nguez et al. “UFOD: An AutoML framework for the

construction, comparison, and combination of object detection models”. In:

Pattern Recognition Letters 145 (2021), pp. 135–140. DOI: https://doi.
org/10.1016/j.patrec.2021.01.022.

[67] César Domı́nguez et al. “DetectionEvaluationJ: A Tool to Evaluate Object

Detection Algorithms”. In: Computer Aided Systems Theory – EUROCAST
2017. Cham: Springer International Publishing, 2018, pp. 273–280. DOI: 10.
1007/978-3-319-74727-9_32.

[68] Ángela Casado-Garcı́a et al. “CLoDSA: a tool for augmentation in classification,

localization, detection, semantic segmentation and instance segmentation tasks”.

In: BMC Bioinformatics 20 (2019). DOI: 10.1186/s12859-019-2931-1.

[69] Manuel Garcı́a-Domı́nguez et al. Neural Style Transfer and Unpaired Image-to-
Image Translation to deal with the Domain Shift Problem on Spheroid Segmen-
tation. 2021. DOI: 10.48550/ARXIV.2112.09043.

[70] Ángela Casado-Garcı́a et al. “Prediction of Epiretinal Membrane from Retinal

Fundus Images Using Deep Learning”. In: (2021), pp. 3–13. DOI: 10.1007/
978-3-030-85713-4_1.

[71] Ángela Casado-Garcı́a et al. “MotilityJ: An open-source tool for the classifica-

tion and segmentation of bacteria on motility images”. In: Computers in Biology
and Medicine 136 (2021), p. 104673. DOI: 10.1016/j.compbiomed.
2021.104673.

[72] Fabian Pedregosa et al. “Scikit-learn: Machine learning in Python”. In: Journal
of machine learning research 12 (2011), pp. 2825–2830.

[73] Piotr Szymański and Tomasz Kajdanowicz. “A scikit-based Python environment

for performing multi-label classification”. In: CoRR abs/1702.01460 (2017).

DOI: 10.48550/arXiv.1702.01460.

[74] Gary Bradski. “The OpenCV library”. In: Dr. Dobb’s Journal: Software Tools
for the Professional Programmer 25.11 (2000), pp. 120–123.

[75] Python software foundation. CPickle library. 2018. URL: https://docs.
python.org/2/library/pickle.html (visited on 07/15/2022).

[76] Thomas Kluyver et al. “Jupyter Notebooks – a publishing format for repro-

ducible computational workflows”. In: International Conference on Electronic
Publishing. 2016, pp. 87–90. DOI: 10.3233/978-1-61499-649-1-87.

BIBLIOGRAPHY 67

[77] Richard. S. Hunter. “Photoelectric Color-Difference Meter”. In: Journal of the
Optical Society of America 38.7 (1948), p. 661. DOI: 10.1364/JOSA.48.
000985.

[78] Robert M. Haralick, Kumarasamy Shanmugam, and Its’Hak Dinstein. “Textural

Features for Image Classification”. In: IEEE Transactions on Systems, Man and
Cybernetics SMC-3.6 (1973), pp. 610–621. DOI: 10.1109/TSMC.1973.
4309314.

[79] N. Dalal and B. Triggs. “Histograms of Oriented Gradients for Human Detec-

tion”. In: 2005 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition. Vol. 1. IEEE Computer Society, 2005, pp. 886–893. DOI:

10.1109/CVPR.2005.177.

[80] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Networks

for Large-Scale Image Recognition”. In: CoRR abs/1409.1556 (2014). DOI:

10.48550/arXiv.1409.1556.

[81] Gao Huang et al. “Densely connected convolutional networks”. In: IEEE Con-
ference on Computer Vision and Pattern Recognition. 2017, pp. 2261–2269.

DOI: 10.1109/CVPR.2017.243.

[82] Christian Szegedy et al. “Rethinking the inception architecture for computer

vision”. In: IEEE conference on computer vision and pattern recognition. 2016,

pp. 2818–2826. DOI: 10.1109/CVPR.2016.308.

[83] Christian Szegedy et al. “Going deeper with convolutions”. In: IEEE Conference
on Computer Vision and Pattern Recognition. IEEE, 2015, pp. 1–9. DOI: 10.
1109/CVPR.2015.7298594.

[84] Pierre Sermanet et al. “OverFeat: Integrated Recognition, Localization and

Detection using Convolutional Networks”. English (US). In: International Con-
ference on Learning Representations. 2014.

[85] François Chollet. “Xception: Deep Learning with Depthwise Separable Convolu-

tions”. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition.

2017, pp. 1800–1807. DOI: 10.1109/CVPR.2017.195.

[86] Corinna Cortes and Vladimir Vapnik. “Support-Vector Networks”. In: Machine
Learning 20.3 (1995), pp. 273–297. DOI: 10.1007/BF00994018.

[87] Thomas Cover and Peter Hart. “Nearest Neighbor Pattern Classification”. In:

IEEE Trans. Inf. Theor. 13.1 (2006), pp. 21–27. DOI: 10.1109/TIT.1967.
1053964.

[88] Christopher. M. Bishop. Neural Networks for Pattern Recognition. Oxford

University Press, 1995.

[89] Jerome H. Friedman. “Greedy function approximation: A gradient boosting

machine.” In: The Annals of Statistics 29.5 (2001), pp. 1189–1232. DOI: 10.
1214/aos/1013203451.

[90] Peter McCullagh and John A. Nelder. Generalized Linear Models. Chapman &

Hall, 1989.

68 BIBLIOGRAPHY

[91] Leo Breiman. “Random Forests”. In: Machine Learning 45.1 (2001), pp. 5–32.

DOI: 10.1023/A:1010933404324.

[92] Pierre Geurts et al. “Extremely randomized trees”. In: Machine Learning 63

(2006), pp. 3–42. DOI: 10.1007/s10994-006-6226-1.

[93] Min-Ling Zhang et al. “Binary relevance for multi-label learning: an overview”.

In: Frontiers of Computer Science 12 (2018), pp. 191–202. DOI: 10.1007/
s11704-017-7031-7.

[94] Jesse Read et al. “Classifier chains for multi-label classification”. In: Joint Euro-
pean Conference on Machine Learning and Knowledge Discovery in Databases.

Springer. 2009, pp. 254–269. DOI: 10.1007/978-3-642-04174-7_17.

[95] Min-Lin Zhang and Zhi-Hua. Zhou. “ML-KNN: A lazy learning approach to

multi-label learning”. In: Pattern recognition 40.7 (2007), pp. 2038–2048. DOI:

10.1016/j.patcog.2006.12.019.

[96] Wei-Jie Chen et al. “MLTSVM: a novel twin support vector machine to multi-

label learning”. In: Pattern Recognition 52 (2016), pp. 61–74. DOI: 10.1016/
j.patcog.2015.10.008.

[97] Carlos Fernandez-Lozano et al. “Visual complexity modelling based on image

features fusion of multiple kernels”. In: PeerJ 7 (2019), e7075. DOI: 10.7717/
peerj.7075.

[98] Cha Zhang and Yunqian Ma. Ensemble Machine Learning: Methods and Appli-
cations. Springer Publishing Company, Incorporated, 2012. DOI: 10.1007/
978-1-4419-9326-7.

[99] John Suckling et al. Mammographic Image Analysis Society (MIAS) database
v1.21. 2018. URL: https://www.repository.cam.ac.uk/handle/
1810/250394 (visited on 07/15/2022).

[100] Hiba Chougrad, Hamid Zouaki, and Omar Alheyane. “Deep Convolutional

Neural Networks for breast cancer screening”. In: Computer Methods and
Programs in Biomedicine 157 (2018), pp. 19–30. DOI: https://doi.org/
10.1016/j.cmpb.2018.01.011.

[101] Lessage Xavier et al. “Assessing Breast Cancer Screening using recent Deep

Convolutional Neural Networks”. In: International Journal of Computer As-
sisted Radiology and Surgery (2018).

[102] Joe Davison. DEvol - Deep Neural Network Evolution. 2018. URL: https:
//github.com/joeddav/devol (visited on 07/15/2022).

[103] Piero Molino, Yaroslav Dudin, and Sai Sumanth Miryala. “Ludwig: a type-

based declarative deep learning toolbox”. In: CoRR abs/1909.07930 (2019).

DOI: 10.48550/arXiv.1909.07930.

[104] Nikita Orlov et al. “WND-CHARM: Multi-purpose image classification using

compound image transforms”. In: Pattern Recognition Letters 29.11 (2008),

pp. 1684–1693. DOI: 10.1016/j.patrec.2008.04.013.

BIBLIOGRAPHY 69

[105] Lior Shamir et al. “IICBU 2008: A Proposed Benchmark Suite for Biological

Image Analysis”. In: Medical & Biological Engineering & Computing 46.9

(2008), pp. 943–947. DOI: 10.1007/s11517-008-0380-5.

[106] Tsung-Yi Lin et al. “Feature Pyramid Networks for Object Detection”. In: IEEE
Conference on Computer Vision and Pattern Recognition. 2017, pp. 936–944.

DOI: 10.1109/CVPR.2017.106.

[107] Tsung-Yi Lin et al. “Focal Loss for Dense Object Detection”. In: vol. 42. 2.

2020, pp. 318–327. DOI: 10.1109/TPAMI.2018.2858826.

[108] Wei Liu et al. “SSD: Single Shot MultiBox Detectors”. In: European Conference
on Computer Vision. Vol. 9905. Springer, 2016, pp. 21–37. DOI: 10.1007/
978-3-319-46448-0_2.

[109] Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. “Are we

really making much progress? A worrying analysis of recent neural recom-

mendation approaches”. In: ACM Conference on Recommender Systems. 2019,

pp. 101–109. DOI: 10.1145/3298689.3347058.

[110] Jonathan Huang et al. “Speed/accuracy trade-offs for modern convolutional

object detectors”. In: IEEE Conference on Computer Vision and Pattern Recog-
nition. 2017, pp. 3296–3305. DOI: 10.1109/CVPR.2017.351.

[111] Jian Guo et al. “GluonCV and GluonNLP: Deep Learning in Computer Vision

and Natural Language Processing”. In: 21.1 (2020).

[112] Lucas Goulart Vazquez and Farid Hassainia. URL: https://airctic.
com/0.12.0/ (visited on 07/15/2022).

[113] Mingxing Tan, Ruoming Pang, and Quoc V Le. “Efficientdet: Scalable and

efficient object detection”. In: IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2020, pp. 10781–10790. DOI: 10.1109/CVPR42600.
2020.01079.

[114] Xuannianz. EfficientDet (Scalable and Efficient Object Detection) implemen-
tation in Keras and Tensorflow. https://github.com/xuannianz/
EfficientDet. 2019.

[115] Zhi Tian et al. “FCOS: Fully Convolutional One-Stage Object Detection”. In:

2019 IEEE/CVF International Conference on Computer Vision. 2019, pp. 9626–

9635. DOI: 10.1109/ICCV.2019.00972.

[116] Chenchen Zhu, Yihui He, and Marios Savvides. “Feature selective anchor-free

module for single-shot object detection”. In: IEEE Conference on Computer
Vision and Pattern Recognition. 2019, pp. 840–849. DOI: 10.1109/CVPR.
2019.00093.

[117] Kaiming He et al. “Mask r-cnn”. In: IEEE international conference on computer
vision. 2017, pp. 2961–2969. DOI: 10.1109/ICCV.2017.322.

[118] Waleed Abdulla. Mask R-CNN for object detection and instance segmentation on
Keras and TensorFlow. https://github.com/matterport/Mask_
RCNN. 2017.

70 BIBLIOGRAPHY

[119] Tianqi Chen et al. “MXNet: A Flexible and Efficient Machine Learning Library

for Heterogeneous Distributed Systems”. In: CoRR abs/1512.01274 (2015).

URL: http://arxiv.org/abs/1512.01274.

[120] Martı́n Abadi et al. TensorFlow: Large-scale machine learning on heterogeneous
systems. 2015. URL: https://www.tensorflow.org/ (visited on

07/15/2022).

[121] Kai Chen et al. “MMDetection: Open MMLab Detection Toolbox and Bench-

mark”. In: CoRR abs/1906.07155 (2019). URL: http://arxiv.org/abs/
1906.07155.

[122] Zhaowei Cai and Nuno Vasconcelos. “Cascade R-CNN: Delving into High

Quality Object Detection”. In: IEEE Conference on Computer Vision and Pattern
Recognition. 2018, pp. 6154–6162. DOI: 10.1109/CVPR.2018.00644.

[123] Jifeng Dai et al. “R-FCN: Object Detection via Region-Based Fully Convo-

lutional Networks”. In: 30th International Conference on Neural Information
Processing Systems. 2016, pp. 379–387.

[124] Mark Everingham et al. “The Pascal Visual Object Classes (VOC) Challenge”.

In: International Journal of Computer Vision 88.2 (2010), pp. 303–338. DOI:

10.1007/s11263-009-0275-4.

[125] Andy B. Yoo, Morris A. Jette, and Mark Grondona. “SLURM: Simple Linux

Utility for Resource Management”. In: Workshop on Job Scheduling Strategies
for Parallel Processing. Vol. 2862. 2003, pp. 44–60. DOI: doi.org/10.
1007/10968987_3.

[126] Jan Hosang, Rodrigo Benenson, and Bernt Schiele. “Learning Non-maximum

Suppression”. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition. 2017, pp. 6469–6477. DOI: 10.1109/CVPR.2017.685.

[127] Ishtiyaque Ahmad. “Automatic detection of diabetic retinopathy from fundus

images using image processing and artificial neural network”. In: Department
of computer Science and Engineering (2019).

[128] Eduardo Valle et al. “Data, Depth, and Design: Learning Reliable Models for

Melanoma Screening”. In: CoRR abs/1711.00441 (2017). DOI: 10.48550/
arXiv.1711.00441.

[129] Adrian Galdran et al. “Data-Driven Color Augmentation Techniques for Deep

Skin Image Analysis”. In: CoRR abs/1703.03702 (2017). DOI: 10.48550/
arXiv.1703.03702.

[130] Xiaosong Wang et al. “ChestX-Ray8: Hospital-Scale Chest X-Ray Database and

Benchmarks on Weakly-Supervised Classification and Localization of Common

Thorax Diseases”. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition. 2017, pp. 3462–3471. DOI: 10.1109/CVPR.2017.369.

[131] Ahmed Fakhry, Hanchuan Peng, and Shuiwang Ji. “Deep models for brain EM

image segmentation: novel insights and improved performance”. In: Bioinfor-
matics 32.15 (2016), pp. 2352–2358. DOI: 10.1093/bioinformatics/
btw165.

BIBLIOGRAPHY 71

[132] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convolutional

Networks for Biomedical Image Segmentation”. In: Medical Image Computing
and Computer-Assisted Intervention. Vol. 9351. 2015, pp. 234–241. DOI: 10.
1007/978-3-319-24574-4_28.

[133] Pauli Virtanenand others. “SciPy 1.0: Fundamental Algorithms for Scientific

Computing in Python”. In: Nature Methods 17 (2020), pp. 261–272. DOI: 10.
1038/s41592-019-0686-2.

[134] Erich Gamma et al. Design patterns: elements of reusable object-oriented
software. Pearson Deutschland GmbH, 1995.

[135] Robert C Martin, James Newkirk, and Robert S Koss. Agile software develop-
ment: principles, patterns, and practices. Vol. 2. Prentice Hall Upper Saddle

River, NJ, 2003.

[136] HDF Group et al. “Hierarchical data format version 5”. In: The HDF Group
(2019). URL: https://www.hdfgroup.org/solutions/hdf5/
(visited on 07/15/2022).

[137] Sivaramakrishnan Rajaraman et al. “Pre-trained convolutional neural networks

as feature extractors toward improved malaria parasite detection in thin blood

smear images”. In: PeerJ (2018). DOI: 10.7717/peerj.4568.

[138] Joseph Lemley, Shabab Bazrafkan, and Peter Corcoran. “Smart Augmentation

Learning an Optimal Data Augmentation Strategy”. In: IEEE Access 5 (2017),

pp. 5858–5869. DOI: 10.1109/ACCESS.2017.2696121.

[139] Toan Tran et al. “A bayesian data augmentation approach for learning deep

models”. In: Advances in neural information processing systems. Vol. 30. 2017,

pp. 2794–2803.

[140] Long Liu et al. “Advanced deep learning techniques for image style transfer: A

survey”. In: Signal Processing: Image Communication 78 (2019), pp. 465–470.

DOI: 10.1016/j.image.2019.08.006.

[141] Jing Liao et al. “Visual Attribute Transfer Through Deep Image Analogy”. In:

ACM Transactions on Graphics 36.4 (2017), 120:1–120:15. DOI: 10.1145/
3072959.3073683.

[142] Nicholas Kolkin, Jason Salavon, and Greg Shakhnarovich. “Style Transfer by

Relaxed Optimal Transport and Self-Similarity”. In: 2019 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. 2019, pp. 10043–10052.

DOI: 10.1109/CVPR.2019.01029.

[143] Sritama Nath and Gayathri R. Devi. “Three-dimensional culture systems in

cancer research: Focus on tumor spheroid model”. In: Pharmacology & Ther-
apeutics 163 (2016), pp. 94–108. DOI: 10.1016/j.pharmthera.2016.
03.013.

[144] Liang-Chien Chen et al. “Encoder-Decoder with Atrous Separable Convolution

for Semantic Image Segmentation”. In: Computer Vision. Springer International

Publishing, 2018, pp. 833–851. DOI: 10.1007/978-3-030-01234-
2_49.

72 BIBLIOGRAPHY

[145] Jingdong Wang et al. “Deep High-Resolution Representation Learning for

Visual Recognition”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence (2020). DOI: 10.1109/tpami.2020.2983686.

[146] Xueblin Qin et al. “U2-Net: Going deeper with nested U-structure for salient

object detection”. In: Pattern Recognition 106 (2020), p. 107404. DOI: 10.
1016/j.patcog.2020.107404.

[147] Hamid Rezatofighi et al. “Generalized Intersection Over Union: A Metric and

a Loss for Bounding Box Regression”. In: Conference on Computer Vision
and Pattern Recognition. 2019, pp. 658–666. DOI: 10.1109/CVPR.2019.
00075.

[148] Miguel Ángel Zapata et al. “Prevalence of Vitreoretinal Interface Abnormalities

on Spectral-Domain OCT in Healthy Participants over 45 Years of Age”. In:

Ophthalmology Retina 1.3 (2017), pp. 249–254. DOI: https://doi.org/
10.1016/j.oret.2016.11.001.

[149] Ying-Chih Lo et al. “Epiretinal Membrane Detection at the Ophthalmologist

Level using Deep Learning of Optical Coherence Tomography”. In: Scientific
Reports 10 (2020), p. 8424. DOI: 10.1038/s41598-020-65405-2.

[150] Suvimol Reintragulchai et al. “Predicting Chance of Success on Epiretinal

Membrane Surgery using Deep Learning”. In: 14th International Joint Sympo-
sium on Artificial Intelligence and Natural Language Processing. 2019. DOI:

10.1109/iSAI-NLP48611.2019.9045159.

[151] Authors not listed. Diabetic eye screening: guidance on camera approval.
2020. URL: https://www.gov.uk/government/publications/
diabetic - eye - screening - approved - cameras - and -
settings/diabetic-eye-screening-guidance-on-camera-
approval (visited on 07/15/2022).

[152] Miguel Ángel Zapata et al. “Telemedicine for a General Screening of Retinal

Disease Using Nonmydriatic Fundus Cameras in Optometry Centers: Three-

Year Results”. In: Telemedicine and e-Health 23.1 (2017), pp. 30–36. DOI:

10.1089/tmj.2016.0020.

[153] Hang Zhang et al. ResNeSt: Split-Attention Networks. 2020. DOI: 10.48550/
arXiv.2004.08955.

[154] Barret Zoph et al. “Learning Transferable Architectures for Scalable Image

Recognition”. In: IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. 2018, pp. 8697–8710. DOI: 10.1109/CVPR.2018.00907.

[155] Alexey Dosovitskiy et al. “An Image is Worth 16x16 Words: Transformers

for Image Recognition at Scale”. In: International Conference on Learning
Representations. 2021.

[156] Hugo Touvron et al. Training data-efficient image transformers & distillation
through attention. 2021. DOI: 10.48550/ARXIV.2012.12877.

BIBLIOGRAPHY 73

[157] Alireza Tavakkoli et al. “A novel deep learning conditional generative adver-

sarial network for producing angiography images from retinal fundus pho-

tographs”. In: Scientific Reports 10.21580 (2020). DOI: 10.1038/s41598-
020-78696-2.

[158] Leslie Smith. “Cyclical Learning Rates for Training Neural Networks”. In: IEEE
Winter Conference on Applications of Computer Vision. 2017, pp. 464–472. DOI:

10.1109/WACV.2017.58.

[159] Liyuan Liu et al. “On the Variance of the Adaptive Learning Rate and Beyond”.

In: International Conference on Learning Representations. 2020.

[160] Michael Zhang et al. “Lookahead Optimizer: k steps forward, 1 step back”. In:

Advances in Neural Information Processing Systems. Vol. 32. Curran Associates,

Inc., 2019.

[161] Hongyi Zhang et al. “mixup: Beyond Empirical Risk Minimization”. In: Inter-
national Conference on Learning Representations. 2018.

[162] Ilya Loshchilov and Frank Hutter. “SGDR: Stochastic Gradient Descent with

Warm Restarts”. In: International Conference on Learning Representations.

2017.

[163] Samiksha Pachade et al. “Retinal Fundus Multi-Disease Image Dataset

(RFMiD): A Dataset for Multi-Disease Detection Research”. In: Data 6.2 (2021),

p. 14. DOI: 10.21227/s3g7-st65.

[164] Cha Zhang and Yunqian Ma, eds. Ensemble Machine Learning: Methods and
Applications. Springer, 2012.

[165] Martin Arjovsky and Léon Bottou. “Towards principled methods for training

generative adversarial networks”. In: International Conference on Learning
Representations. 2017.

[166] Rustam I. Aminov. “A brief history of the antibiotic era: lessons learned and

challenges for the future”. In: Frontiers Microbiology 8.1 (2010), p. 134. DOI:

10.3389/fmicb.2010.00134.

[167] Bernardo Riberio da Cunha, Luis P. Fonseca, and Cecilia R. C. Calado. “Antibi-

otic Discovery: Where Have We Come from, Where Do We Go?” In: Antibiotics
(Basel) 8.2 (2019), p. 45. DOI: 10.3390/antibiotics8020045.

[168] Barbara I. Kazmierczak, Maren Schniederberend, and Ruchi Jain. “Cross-

regulation of Pseudomonas motility systems: the intimate relationship between

flagella, pili and virulence”. In: Current Opinion in Microbiology 28 (2015),

pp. 78–82. DOI: 10.1016/j.mib.2015.07.017.

[169] Johanna Haiko and Benita Westerlund-Wikström. “The role of the bacterial flag-

ellum in adhesion and virulence”. In: Biology (Basel) 25.2(4) (2013), pp. 1242–

1267. DOI: 10.3390/biology2041242.

[170] Rasika M. Harshey. “Bacterial motility on a surface: many ways to a common

goal”. In: Annual Reviews Microbiology 57 (2003), pp. 249–273. DOI: 10.
1146/annurev.micro.57.030502.091014.

74 BIBLIOGRAPHY

[171] Xavier Mulet et al. “Biological Markers of Pseudomonas aeruginosa Epidemic

High-Risk Clones”. In: Antimicrobial agents and chemotherapy 57.11 (2010),

pp. 5527–5535. DOI: 10.1128/AAC.01481-13.

[172] Evelyn Sun, Sijie Liu, and Robert E W Hancock. “Surfing Motility: a Conserved

yet Diverse Adaptation among Motile Bacteria”. In: Journal of bacteriology
200.23 (2018), e00394–18. DOI: 10.1128/JB.00394-18.

[173] Alexander Yang et al. “Influence of Physical Effects on the Swarming Motility

of Pseudomonas aeruginosa”. In: Biophysical journal 112.7 (2017), pp. 1462–

1471. DOI: 10.1016/j.bpj.2017.02.019.

[174] John Illingworth and Josef Kittler. “The Adaptive Hough Transform”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 9.5 (1987), pp. 690–

698. DOI: 10.1109/TPAMI.1987.4767964.

[175] Bichen Wu et al. “FBNet: Hardware-Aware Efficient ConvNet Design via

Differentiable Neural Architecture Search”. In: 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2019, pp. 10726–10734. DOI:

10.1109/CVPR.2019.01099.

