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Abstract 

An index to identify potential recharge zones (PRZs) in alluvial aquifers was developed to protect these zones during 

land use planning. The PRZ index was designed as an additive index through the selection of five characterization 

indicators. The variables were then operationalized and categorized to generate a conceptual model of the physical-

geological system. The PRZ index places recharge zones into four classes according to their potential. This index was 

applied to the Bolo River hydrogeological area (Valle del Cauca, Colombia), and the following proportions were 

identified for each PRZ category with a total area greater than 426 km2: very high: 23%, high: 30%; moderate: 40% 

and low: 7%. The areas with a very high recharge potential were found in the upper portion of the debris cones; their 

potential was predominantly due to the presence of sand and gravel unconfined aquifers and to aquifer outcrop layers 

at depths of less than 2.5 m. These PRZs were validated with piezometry, and the hydraulic gradient for 71% of the 

area was greater than 1%. These areas should be declared protected areas. 

Keywords: additive index, alluvial aquifer, aquifer recharge, conceptual model, land use planning, Potential Recharge 

Zone (PRZ), natural recharge. 

Resumen 

Se desarrolló un índice para identificar posibles Zonas Potenciales de Recarga (ZPR) de acuíferos aluviales para la 

planificación del uso del suelo. El índice ZPR fue diseñado como un índice aditivo mediante la selección de cinco 

indicadores de caracterización. Las variables fueron operacionalizadas y categorizadas para generar un modelo 

conceptual del sistema físico-geológico. El índice PRZ clasifica las zonas de recarga en cuatro clases según su 

potencial. Este índice se aplicó al área hidrogeológica del río Bolo (Valle del Cauca, Colombia) con un área total de 

426 km2. Se identificaron las siguientes proporciones para cada categoría de índice ZPR: Muy Alta: 23%, Alta: 30%; 

Moderada: 40% y Baja: 7%. Las áreas con un potencial de recarga Muy Alto se encontraron en la parte superior de los 
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conos aluviales; su potencial se debió principalmente a la presencia de acuíferos no confinados de arena y grava ya las 

capas de afloramientos del acuífero a profundidades inferiores a 2.5 m. Estas zonas potenciales de recarga fueron 

validadas con piezometría y el gradiente hidráulico que para el 71% del área fue superior al 1%. Estas áreas deben ser 

declaradas áreas protegidas. 

Palabras clave: acuífero aluvial, modelo conceptual, planificación del uso del suelo, recarga de acuíferos, recarga 

natural, zonas potenciales de recarga (PZR). 

1. Introduction 

Groundwater supplies 50% of the world’s 

population and represents 43% of the water used 

for irrigation (1). According to UNESCO (1), 2500 

million people depend on this resource daily to 

satisfy their needs. As population growth 

increases, groundwater resources are under 

greater pressure, and 20% of aquifers are being 

overexploited. Being able to estimate aquifer 

recharge is critical for the integrated management 

of groundwater resources because it allows the 

design of priority areas for conservation. Spatially 

delimiting groundwater resources can be 

considered an initial approach in obtaining a 

greater knowledge of the general dynamics of 

water (2). 

Any study involving water resources, particularly 

studies involving issues such as the transport of 

pollutants, subsidence processes, and the disposal 

and reuse of liquid effluents in soils, should 

include the identification and quantification of 

recharge (3). Therefore, understanding and 

quantifying recharge processes is required to 

analyze water resource sustainability and to 

provide basic information for land-use decisions 
(4). However, many human activities such as 

agriculture, livestock, forestry production, urban 

development, industry and the disposal of 

wastewater (treated and untreated) in soils alter 

the characteristics of natural water recharge zones 

and interfere with water infiltration (5). 

Physically, aquifer systems are fed naturally 

through their recharge zones, which are areas with 

geological, edaphic, and climatic characteristics 

that facilitate the infiltration and movement of 

water toward saturation zones. In this regard, 

recharge zones have been defined as areas of 

special importance because they present the 

greatest input of water to aquifer systems (6-10) and 

are potential sources of water for human 

consumption and other economic activities. To 

protect aquifers from becoming contaminated, it 

is necessary to restrict current and future land-use 

practices, the discharge of liquid effluents, and the 

dumping of waste in recharge areas (11). 

Regarding the design and application of 

methodologies for evaluating aquifer recharge 

zones, studies carried out in India identified the 

recharge zones of an aquifer in an urban 

settlement using environmental isotopes (2H, 3H, 

18O) that were correlated with hydrogeological 

conditions. The mapping of potential recharge 

areas was based on the soil type and the depth of 

the water table. Hydrogeological evidence was 

used to approximate the spatial distribution of 

permeable zones, slopes, and boundary 

conditions, which was validated isotopically (12). 

In another Indian study, a technique was 

developed to delimit artificial recharge zones by 

integrating remote sensors and geographic 

information systems (GIS) to increase the scarce 

groundwater reserves west of the Medinipur 

district of West Bengal (10). 

In the Aguascalientes Valley, Mexico, a 

methodology was developed to identify areas 

with the potential to be naturally recharged by 

aquifers. The researchers applied a multi-criteria 

process with GIS in areas of high geological 

heterogeneity located in three geological 

provinces: the Sierra Madre Occidental, the Mesa 

Central, and the Trans-Mexican Volcanic Belt. 

The study area presented different outcroppings 

of acidic extrusive igneous, intrusive igneous, 

continental, and marine sedimentary, 

metamorphic and sedimentary rocks. Information 

on the lithology, precipitation, drainage density, 



Jaramillo, et al/Ingeniería y Competitividad, 24(1), e21011001, enero-julio 2022 

3 / 21 

vegetation cover, land use, and topography was 

analyzed (13). 

The environmental isotopes 2H, 18O and 3H have 

been used to identify possible sources and 

recharge areas in Colombia in the Bajo Cauca 

Antioquia aquifer, which is geologically 

associated with recent alluvial deposits of the 

Cauca River’s main channels and its tributaries 

and the upper and lower members of the Cerrito 

sedimentary formation (14). 

At the end of the 1990s, in the study area, the 

Environmental Authority (CVC) (15) determined 

the regional groundwater flow system in the 

Cauca River valley, based on the water level of 

1200 constructed wells. From which, the 

piezometric head and the hydraulic gradients 

were determined, to preliminarily delineate the 

recharge and discharge areas of the regional 

aquifer. 

In 2015, a conceptual model of the aquifer was 

validated; the diffuse recharge was estimated 

using a methodology based on the 

hydrometeorological balance of the subsoil at a 

resolution of 250x250 m. The calculated average 

multiyear recharge was 3840 km3/year (597 

mm/year) (16). This estimate was made for the 

management and use of groundwater in Cauca 

River valley. 

Based on this scenario, the development of 

methods for delimiting recharge areas, which can 

be used to inform the organized and sustainable 

use of a territory, is considered a significant 

contribution to the management of groundwater 

resources. The objective of this research was to 

develop a methodological tool to evaluate the 

potential recharge zones (PRZs) in alluvial 

aquifers, due to the importation of these areas in 

the land use planning. The Bolo River 

hydrogeological area in the department, 

Colombia, was taken as a case study. An additive 

type index processed using GIS tools that 

consider the local hydrogeological environment 

at a detailed scale (1:25000) was developed. This 

research was conducted using the groundwater 

resource database of the Environmental 

Authority, which has been monitoring the aquifer 

since 1970 (17). 

2. Methodology 

2.1 Study area 

The study area was delimited according to the 

geology (18) and the surface drainage network (19) 

in the Bolo River hydrogeological area, 

Colombia. The study area is located in the Cauca-

Patía hydrogeological province and the upper 

Cauca river basin surface system, between the 

coordinates 860000N - 1065000E and 885000N - 

1100000E (Magna-Colombia-West reference 

system). The area covers approximately 426 km2 

(Figure 1). The limits of the study area are as 

follows: to the north, the Palmira River; to the 

south, the Párraga River; to the west, the Cauca 

River; and the east, a volcanic formation. 

The predominant slope in the study area varies 

from 7% to 12%, with an inclined topography 

covering 61% (261.5 km2) of the area, followed 

by slightly inclined areas (3-7%) and strongly 

inclined areas (12 -25%) accounting for 29% 

(123.9 km 2) and 9% (38.4 km 2) of the total area, 

respectively (20). 

Regarding groundwater management, the area has 

450 wells, of which 74% are active and 26% are 

abandoned or inactive (17). The flows and volumes 

of water extracted for the different uses are 

presented in Table 1, which shows that 84% of the 

water is used for crop irrigation, while 0.5% is 

used for drinking water and domestic use (17). 

Geologically and stratigraphically, the study area 

has the characteristics of an intermontane valley 

originating from the Cauca River between the 

central and western mountain ranges and over a 

narrow valley of tectonic origin. In its origins 

during the Neogene, this valley was formed in a  



Jaramillo, et al/Ingeniería y Competitividad, 24(1), e21011001, enero-julio 2022 

4 / 21 

 

Figure 1. (a) General location. (b) Geology of the Bolo River hydrogeological area. Source: own elaboration 

 

Table 1. Groundwater management indicators in the study area 

Management indicators 
Groundwater uses 

Industrial Domestic Agricultural Other 

Number of wells 45 21 207 60 

Well percentage (%) 13.5 6.3 62.2 18.0 

Flow granted (l/s) 694.79 100 15,719 2,293 

Flow percentage (%) 4 0.5 83.6 12.2 

Volume extracted (km3/year) 11.62 1.24 267.28 32.63 

Volume percentage (%) 4 0.4 85.5 10.4 

Source: adapted from (17). 

tectonically active intracordilleran basin, which 

has received fluvial and volcanic sedimentation 

from the central and western mountain ranges (21). 

According to hydrogeological studies, the 

basement and the geologycal fault region are 

1000m deep. 

2.2 Design of the PRZ index 

The PRZ index was developed as an additive 

index based on criteria for the categorization and 

operationalization of variables recommended by 

Cazau (22), Caparó (23) and Reguant and Martínez 
(24). In an additive index, all the characterization 

indicators (i.e., the factors involved in the 

recharge process) have equal weight in the system 

and are not conflicting (25). 

The first step for the construction of the additive 

index consisted of developing the conceptual 

model associated with the definition of a PRZ in 

an alluvial aquifer. For this, the physical recharge 

process was diagrammed to identify the 

intervening indicators in the system. The 

indicators were identified through a review of the 

scientific literature using the following search 

terms: recharge zones, criteria for the 

delimitation of a PRZ, aquifer recharge and 

evaluation of recharge zones. The second step 

involved the selection process for the indicators, 
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which was carried out based on consultations with 

62 bibliographic references as well as local 

experts. The third step consisted of the 

categorization process of each indicator, which 

involved assigning categories using value ranges. 

For this, each indicator took on a value between 0 

and 1, with 1 being a zone with a greater recharge 

potential and 0 being a zone with no recharge 

potential. The categories assigned to each 

indicator were based on expert knowledge and a 

literature review. Once the indicators were 

categorized, the value of the PRZ index 

corresponded to the sum of the characterized 

indicators. The maximum value of the index is n, 

which corresponds to the number of selected and 

characterized indicators. The PRZ were 

categorized by the PRZ index presented in Table 

2. 

Table 2. Categorization of the PRZ index 

Potential of the 

recharge zone 

Value of the PRZ 

index 

Very high 4-5 

High 3-4 

Moderate 2-3 

Low < 2 

Source: own elaboration 

2.3. Implementation of the PRZ index in the 

hydrogeological area of the Bolo River, 

Colombia 

Based on the physical model of the system and the 

PRZ index, the study area was characterized using 

map algebra in the ArcGIS 10.2 software. To 

generate the map of each indicator, a spatial 

database was created with the plane coordinate 

system (MAGNA-SIRGAS-Colombia-West 

projection system) of 234 existing deep wells. To 

generate the maps of the indicators I1- Aquifer 

roof, I2 - Lithological Predominance of the 

Unsaturated Zone (USZ) and I4 - Degree of 

Confinement, an interpolation process was 

performed using the topo-to-raster tool in the 

ArcGIS 10.2 toolbox, which uses an iterative 

finite difference interpolation technique.  

The main advantage of this approach compared to 

other methods is its ability to correlate data with 

a topographic surface (26). The characterization 

process of the indicators that constitute the 

designed PRZ index is described below: 

 Indicator I1 - Aquifer roof: performed based 

on the lithological column of each well (17), 

in which the depth (in meters) of the roof of 

the first aquifer layer was identified from the 

ground surface. 

 Indicator I2 - Lithological Predominance of 

the USZ: performed based on the 

predominant textural class of the lithological 

profile of each well from the topographic 

surface to the roof of the first aquifer layer. 

The information was obtained from the CVC 

databases (17). 

 Indicator I3 - Lithological Predominance of 

the Saturated Zone (SZ): a correlation 

between the surface geology map (18) and the 

predominant texture in the SZ of each well 

was determined by assigning the 

predominant textural group shown in Table 3 

to each existing well. 

The textural group of the well’s lithological 

profile, with a length of approximately 100 m 

from the water level to the roof of unit B of the 

alluvial aquifer (18), was identified. Subsequently, 

each polygon of the surface geology was assigned 

the highest proportion of area with respect to the 

reclassified texture. For this, Thiessen polygons 

were generated. Once the indicator maps were 

obtained, the additive process was performed with 

the ArcGIS 10.2 tool, and thus, the PRZ index 

map in the hydrogeological zone in the area  
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Table 3. Predominant texture in the SZ 

Predominant 

textural group 
Description 

G1 
The predominance of thick layers of permeable strata composed of gravels of medium to 

coarse grain and the presence of rounded boulders (diameters greater than one meter). 

G2 
Prevalence of permeable layers of sand and gravel of medium to coarse grain with the 

presence of loamy soils and clayey-silt soils. 

G3 
Homogeneous and alternating permeable layers of sand and gravel with clayey and silty 

lenses. 

G4 
The predominance of a clay matrix with few alternating sand lenses and gravels of medium 

to coarse grain. 

Source: own elaboration 

surrounding the Bolo River was estimated. This 

map was converted again to a polygon file for 

area-based estimates, and the data were later 

categorized into the four PRZ index types (Very 

High, High, Moderate and Low). 

2.4. Validation of the PRZ index based on the 

hydraulic gradient 

The PRZ estimated for the study area was 

compared with the hydraulic gradient obtained 

from the piezometric surface based on the average 

piezometric   level   of   each well,   which    was 

measured biannually from 2000 to 2015 (17). The 

piezometric levels were interpolated using the 

topo-to-raster tool. The isopiezometric contours 

were traced every five meters. The recharge zones 

identified by tracing the piezometric surface are 

characterized by high hydraulic potential values 

and downward and divergent flow (27). 

3. Results 

3.1. PRZ Index 

The process of selecting indicators for developing 

the PRZ index was based on a literature review 

(Table 4), preselecting those indicators with a 

citation percentage higher than 15% with respect 

to the consulted authors. Once the preliminary 

indicators were defined, the criterias were 

selected in a workshop with local experts. The 

selected indicators only correspond to parameters 

intrinsic to the aquifer system. Land cover, 

management practice and climate indicators were 

not selected because they are considered external 

factors to the recharge potential process and can 

be affected by climate variability, climate change 

and anthropic decisions.  

The indicators related to water level depth, water 

table depth, aquifer roof and outcrop were 

grouped into “Aquifer roof” because this concept 

correlates with the other indicators in its 

definition. The indicators “soil texture” and 

“slope” were grouped within “infiltration 

potential” through the Hydrological Group 

concept. To avoid redundancy, “porosity” and 

“permeability” were excluded because they were 

already represented in the textural classes of the 

USZ and SZ lithological profiles and the edaphic 

zone. Table 5 summarizes the selected indicators 

and their definition. 

The conceptual model for the definition of the 

PRZ index was based on the movement of water 

from the soil surface to the base of the first aquifer 

unit. This process distinguished the unsaturated 

zone (USZ) from the topographic surface to the 

water level (including the edaphic zone) and the 

saturated zone (SZ) that starts at the water level to 

the roof of the confining layer. In the vertical axis, 

the movement of water begins with the infiltration 

process on the ground surface to the groundwater 

level. The horizontal axis shows the surface 

geology units (Figure 2). The diagram of the 

conceptualized PRZ index is presented in Figure 

3, showing the five indicators selected and 

characterized in the study area and the index 

equation. 
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Table 4. Literature review for the selection process of the characterization indicators 

Indicator Author(s) 
Citation 

percentage 

Degree of fracturing (28, 29) 3 

Aquifer outcrop (2, 30) 3 

Aquifer roof (4, 29, 31-35) 11 

Soil texture (2, 28, 29, 31-33, 36-67) 63 

Ground cover (2, 28, 34, 37, 38, 41, 48-50, 68, 69) 18 

Slope (28, 34, 35, 37, 38, 40, 41, 45, 46) 16 

Lithology USZ (2, 28, 29, 31-35, 37, 39, 48, 49, 56, 58, 59, 62, 64, 65, 67, 69-75) 40 

Lithology SZ (2, 28, 29, 31, 32, 34, 35, 37, 48, 49, 56, 58, 59, 62, 64, 65, 67, 69, 71-75) 35 

Type of rock (29, 31, 33, 37, 47) 8 

Soil management 

practices 

(28, 34, 37, 38, 41, 47, 48, 50-53, 68, 69, 74, 76, 77) 26 

Geology (29, 38, 44, 78) 6 

Infiltration potential (29, 31-34, 36, 40, 41, 45-49, 51, 53, 55, 56, 58, 60, 62-68, 71, 74, 76, 79) 48 

Climate (34-36, 39, 41, 42, 44, 45, 47, 78, 80) 19 

Elevation (2, 29, 34, 41, 45) 10 

Degree of confinement (29, 31-34, 48, 64, 70, 75, 81, 82) 18 

Permeability (4, 29, 31, 33, 34, 37, 38, 40-42, 44, 46, 48, 50-55, 57, 60, 63, 66, 67, 83, 84) 42 

Porosity (4, 29, 31-34, 38, 40-42, 46, 48, 50-55, 57, 60, 63, 66, 67, 83, 84) 40 

Runoff (33, 36, 40, 42, 46, 47) 10 

Hydraulic gradient (11, 27, 29, 31-34, 71, 85) 15 

Magnitude of recharge (29, 35, 39) 5 

Source: own elaboration 

Table 5. Results of the selection of indicators for the design of the PRZ index 

Indicator Definition of the indicator 

Depth of the aquifer roof (I1) 
Depth at which the first permeable layer is found, measured from 

the ground surface. 

Lithological predominance of 

USZ (I2) and SZ (I3) 

Physical characteristics of the materials of the medium that allow 

the movement of water, referring to the lithology that indirectly 

relates the effective porosity, permeability and moisture content 

(only for the USZ). 

Degree of hydraulic confinement 

(I4) 

Hydraulic regime of the aquifer, associated with the accessibility of 

water to the SZ and the direction of flow between the USZ and the 

SZ. 

Infiltration potential. Hydrological 

group (I5) 

Physical characteristics of the materials of the edaphic zone (soil) 

that facilitate water movement, referring to: texture, slope and 

lithology. 

Source: own elaboration 
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Figure 2. Conceptual model of the alluvial aquifer in the Bolo River hydrogeological area. Source: own 

elaboration 

 

Figure 3. Conceptualization of the PRZ index according to Cazau. Source: adapted from (22) 

3.2. Implementation in the hydrogeological 

area of the Bolo River, Colombia 

The PRZs in the study area were delimited, and 

their results are presented in Table 6 and Figure 4. 

The areas categorized with very high recharge 

potential were 23% (97.07 km2) of the area and 

are mainly in the upper part of the debris cones 

and, to a lesser extent, in focal areas of the mid-

section of the alluvial plain.  

Table 6. Results of the categorization of the PRZs 

in the study area 

PRZ Area (km2) 
Percentage with 

respect to % area 

Very high 97.07 22.79 

High 126.64 29.73 

Moderate 172.89 40.58 

Low 29.43 6.91 

Source: own elaboration 
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C1. Aquifer roof

I1. Depth of the 
aquifer roof (cm)
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predominance of 

SZ 

C3. Hydraulic 
confinement 
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hydraulic 
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C4. Infiltration 
potential 

I5.  Hydrological 
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Figure 4. Spatial result of the PRZs in the study area. Source: own elaboration 

This recharge potential was due to the presence of 

unconfined aquifers in 97% of its area and to the 

roof depth of the first permeable layer less than 

2.5 m, occurring in 64% of the area. 

Regarding the lithological predominance of the 

NSZ, the areas with a very high recharge potential 

were characterized by the presence of permeable 

strata composed of sand, gravel and/or boulders. 

The lithological predominance of the SZ was 

characterized as group G1, which corresponds to 

strata composed of sand, gravel and boulders, and 

accounted for over 84% of the area. The 

infiltration potential of this zone corresponded to 

hydrological group B for 83% of the area. 

The zones with a high recharge potential 

represented 30% (126.64 km2) of the study area 

and were located on the lower part of the debris 

cones. Some areas with equal potential were 

located in the middle and lower alluvial plain, and 

others were located toward the right bank of the 

Cauca River. The high potential of this area was 

due to the presence of 40% unconfined aquifers in 

60% of the area. The percentage of unconfined 

aquifers decreased with respect to the areas 

characterized by a very high potential. For this 

area, the depth of the roof of the first permeable 

layer was even deeper, between 2.5 m and 10 m, 

in 75% of the area. The presence of a roof depth 

of less than 2.5 m decreased with respect to areas 

with a very high potential, reaching only 24% of 

the area. Regarding the lithological predominance 

of the USZ, the presence of sand-silts and 

intercalated sand, gravel and clay was found in 

57% of this area.  

Unlike the area with a very high potential, the 

most permeable strata only represented 29% of 

the area. The lithological predominance of the SZ 

corresponded to group G3, which corresponds to 

intercalated lenses of clay, sand and gravel in 56% 

of the area. The infiltration potential 

corresponded to hydrological group B in 80% of 

the area, but the presence of hydrological groups 

C and D was observed in 7% and 13% of the area, 

respectively. 
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Areas of moderate recharge potential were 

located over the entire alluvial plain and in the 

clay deposits toward the lower part of the study 

area, representing 40% of the total area (172.89 

km2). In this area, the roof of the first permeable 

layer was further deepened and was greater than 

5 m in 87% of the area. Regarding the lithology 

of the USZ, unlike the areas with very high and 

high potentials, the predominance of clay was 

observed in 52% of the area, and the 

predominance of silt and silt-clay was observed in 

36% of the area. In contrast to this zone, the clay 

strata did not appear in the zone with a very high 

recharge potential. Regarding the lithological 

predominance of the SZ, it was characterized as 

group G3, which corresponds to intercalated 

lenses of clay, sand and gravel in 57% of the area, 

but a 43% less permeable stratum was classified 

in group G4. The infiltration potential 

corresponded to hydrological group B in 91% of 

the area; however, hydrological groups C and D 

were observed in 4% and 5% of the area, 

respectively. 

The zones with a low potential represented 7% 

(29.43 km2) of the study area and are located 

mainly on the clay deposits of the lower part of 

the basins of the Bolo, Párraga and Fraile Rivers. 

In this area, the deepest roofs of the entire study 

area were found below 10 m in 66% of the area.

In the USZ lithology, clay predominated in 94% 

of the area lacking permeable strata. The 

lithological predominance of the SZ was 

characterized as group G4 and was present in 99% 

of the area, and group G3 only accounted for 1% 

of the area. Regarding the infiltration potential, 

hydrological group B predominated in 54% of the 

area. However, an increase in hydrological group 

D was observed, covering 43% of the area, and 

hydrological group C only corresponded to 3% of 

the area. Table 7 shows the indicators that 

predominated in each PRZ. 

Table 7. Summary of the predominant indicators associated with each PRZ 

PRZ 
Percentage with respect to the PRZ 

I1 I2 I3 I4 I5 

Very high 

97.05 km2 

63.6% 

< 2.5 m 

95.6% 

Sand, gravel and/or boulders 

84.1% 

G1 

97.2% 

Unconfined 

83.4% 

GH: B 

High 

126.64 km2 

41.07% 

2.5 – 5.0 m 

57.3% 

Sandy silt and intercalated 

sand, gravel and clay 

56.3% 

G3 

59.6% 

Covered unconfined 

79.9% 

GH: B 

Moderate 

172.89 km2 

54.1% 

5.0 – 10 m 

51.8% 

Clay 

57.4% 

G3 

51.3% 

Semiconfined 

90.4% 

GH: B 

Low 

29.43 km2 

65.6% 

> 10 m 

94.3% 

Clay 

99.9% 

G4 

99.1% 

Semiconfined 

53.9% 

GH: B 

Source: own elaboration  

 

3.3. Validation of the PRZ index based on the 

hydraulic gradient 

Regarding validation, it was observed through 

piezometry that the direction of the underground 

flow goes from the upper part of the Bolo, 

Aguaclara, Vilela and Párraga rivers to the Cauca 

River (east-west direction) (Figure 5a). For the 

entire study area, the hydraulic gradients showed 

a descending vertical behavior along the direction 

of flow, from the 1115 m piezometric line to the 

945 m piezometric line. According to Freeze and 

Cherry (8), According to the authors, the high areas 

are recharge areas and the low areas are discharge 

areas. However, Scanlon et al. stated that the 

above is true in humid regions. For arid alluvial 

valleys, recharge usually occurs in low 

topographies; this condition being similar to the 
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study area of this research.A visual analysis of the 

piezometry in the upper part of the debris cones 

revealed the shortest distance between the 

isopleths with the maximum hydraulic gradient 

for the study area of between 2% and 3%; 

consequently, the flow rate was higher here.  

This behavior coincided with the zones 

characterized by very high and high potentiality 

(Figure 5a). In contrast, for the isopleths located 

farther away from the Cauca River, the distance 

between the piezometric lines increased, which 

was reflected in a decreased hydraulic gradient 

that reached values below 0.3%; the flow velocity 

was therefore lower. This behavior coincided with 

the zones characterized by moderate and low 

recharge potentials (Figure 5a). 

The relationship between the estimated hydraulic 

gradient and its spatial distribution and the PRZ 

results is presented in Figure 5b. For the areas 

characterized by a very high recharge potential, 

71% of the area had gradients greater than 1% 

(68.94 km2). In this same gradient range, the 

zones characterized by a high potential accounted 

for 18% of the area (22.68 km2) and 1% of the 

area (1.07 km2) corresponded to zones with a 

moderate potential. 

For low recharge potential areas, the 

representativeness, in this hydraulic gradient 

range as a function of area, was zero. According 

to the above results, a direct relationship between 

hydraulic gradients greater than 1% and the 

presence of areas with high and very high 

recharge potentials was observed. 

Regarding the higher representativeness of areas 

based on the range of hydraulic gradients, the 

pattern of recharge potential in the study area 

presented in Figure 6 is as follows: very high 

areas accounted for 55% of the area (53.53 km2) 

with a gradient range between 1% and 2%; high 

zones accounted for 39% of the area (48.76 km2) 

with a gradient range between 0.5% and 1%; 

moderate zones accounted for 48% of the area 

(83.26 km2) with a gradient range of less than 

0.3%; and low zones accounted for 87% of the 

area (25.73 km2) with a gradient range of less than 

0.3%.

 
Figure 5. Validation of PRZs. (a) Relationship between the estimated PRZ and the piezometry. (b) 

Relationship between the estimated PRZ and the hydraulic gradient. Source:  
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Figure 6. Distribution of estimated recharge zones by area and by type of PRZ. Source: own elaboration 

Regarding the lower representativeness of areas 

based on the range of hydraulic gradients, the 

pattern of recharge potential was as follows: areas 

with a very high potential accounted for 2% (1.84 

km2) with a gradient range of less than 3%; areas 

with a high potential accounted for 1% (1.18 km2) 

with a gradient range greater than 2%; and areas 

with moderate and low potentials had no 

representativeness for gradients greater than 1%. 

Based on a trend analysis (Table 8), it was 

validated that the categories classified as very 

high and low potentials have a defined behavior 

as a function of the hydraulic gradient. For the 

first case, there was a greater probability of 

finding areas with a very high recharge potential 

as the hydraulic gradient increased (directly 

proportional).  

Table 8. Trend analysis of the behavior of the PRZs in relation to the hydraulic gradient range. 

Potencial Recharge 

Zones (PRZs) 

PRZs percent in the hydraulic gradient range 
Trend 

< 0.3% 0.3% - 0.5% 0.5% - 1.0% 1.0% - 2.0% > 2% 

Very high 1,3% 3,9% 20,5% 70,3% 92,9% 
 

High 23,4% 28,5% 42,8% 28,2% 7,1% 
 

Moderate 57,5% 62,6% 36,7% 1,4% 0,0% 
 

Low 17,8% 5,0% 0,0% 0,0% 0,0% 
 

Total 100% 100% 100% 100% 100%  

Source: own elaboration 

Very High High Moderate Low

< 0.3% 1.84 33.88 83.26 25.73

0.3% - 0.5% 2.91 21.25 46.67 3.70

0.5% - 1.0% 23.36 48.76 41.82 0.00

1.0% - 2.0% 53.53 21.50 1.07 0.00

> 2% 15.41 1.18 0.00 0.00
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There was a 70% probability of finding areas with 

a very high recharge potential when the hydraulic 

gradient was greater than 1%. The probability 

increased to 93% when the hydraulic gradient was 

greater than 2%. For the second case, there was a 

lower probability of finding areas with a low 

recharge potential as the hydraulic gradient 

increase (inversely proportional). For the study 

area, the probability of occurrence of a cataloged   

area   with a low potential was zero for gradients 

greater than 0.5%; gradients between 0.3% and 

0.5% only reached 5% probability; and for 

gradients lower than 0.3%, the probability of 

occurrence was 18% (Table 8). 

From the same trend analysis (Table 8) and based 

on the ranges of the hydraulic gradient, the results 

obtained for the study area show that there is a 

probability of occurrence of 100% to delimit an 

area with a high to very high potential of reload 

when the hydraulic gradient is greater than 2%; 

the probability is 98.5% for a gradient range 

between 1% to 2% and 63.3% for a gradient range 

between 0.5% to 1% (Table 8). Based on these 

results, a proportional relationship was observed 

between the hydraulic gradient and the 

categorization of the recharge potential. The 

delimitation of recharge zones with a low to 

moderate potential was observed for hydraulic 

gradients below 0.5% with a probability of 

occurrence of 67.6%; for gradients of less than 

0.3%, the probability was 75.3%. 

For a moderate to high potential, inflection 

occurred in the hydraulic gradient between 0.5% 

and 1% because a higher probability of 

occurrence in gradients greater than 1% were 

characterized as recharge areas with a high to very 

high potential. For areas with hydraulic gradients 

of less than 0.5%, there was a trend toward a 

moderate potential, and the lower limits of the 

ranges corresponded to 62.6% for gradients 

between 0.3% to 0.5% and 57.5% for gradients of 

less than 3%. Additionally, it was observed that 

for gradients greater than 1%, the probability of 

occurrence of areas with a moderate recharge 

potential was less than 1.4%. 

4. Discussion 

In the construction of the PRZ index, the process 

of recharging aquifers was addressed in a 

simplified way by only taking into account the 

physical (or intrinsic) properties in the different 

layers through which water must travel to 

recharge an alluvial aquifer. Unlike other studies 
(2, 5, 10, 12-14, 28, 35, 36, 38, 45, 78, 80, 85, 86), this study 

suppressed factors external to the soil infiltration 

process, which can be altered by anthropogenic 

actions, such as land use and soil management 

practices, or by climatic variations and changes 

that affect the magnitude of the recharge but not 

the potential of an aquifer to be recharged. This 

contributes to ensuring the sustainability of 

ecosystems that depend on the dynamics of 

recharge zones. In this sense, the PRZ index was 

developed as a prevention tool, and it is an 

instrument for environmental and land use 

planning. 

The index proposed in this study was 

conceptualized as an additive type of index (equal 

weights for all factors) and considered only the 

restrictions imposed by the natural environment 

for the recharge process. The main advantage of 

the proposed PRZ index is that it limits the 

subjectivity associated with weighted indexes, for 

which the assignment of weights to multiple 

factors by decisionmakers, panels of experts or a 

particular methodology can lead to different 

results (25). 

At the end of 2019, the IDEAM (28) presented a 

methodological proposal for the delimitation of 

PRZs at the national scale based on the 

development of a weighted index, which involved 

5 factors: fracture density, slope, lithology, 

texture, coverage and land use. Unlike the PRZ 

index, the methodology formulated by IDEAM 
(28) includes parameters external to the aquifer 
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system. These parameters can present 

anthropogenic interventions that do not modify 

the intrinsic potential of an evaluated area 

although they do modify the magnitude of the 

recharge. When the fracture density is considered, 

the methodology presented by IDEAM (28) limits 

the analysis to intermontane alluvial aquifers, 

such as the alluvial aquifer of the Cauca River 

considered in this study, and takes into account 

the fault system underlying the alluvial sediments, 

which can be very thick. 

Additionally, although both indices worked with 

the lithology factor, the IDEAM methodology (28) 

only infers the porosity (primary or secondary) of 

the lithological predominance per 

chronostratigraphic unit of the geological map of 

Colombia. In the proposed PRZ index, the 

lithology is considered in greater detail because 

with this parameter, the lithological 

predominance is evaluated as a function of the 

textural classes in the UZs and SZs based on the 

records of deep wells. 

In contrast, just as the hydrographic basin is 

considered as the unit of analysis for integrated 

water resources management, in this research, a 

hydrogeological area was considered as the unit 

of analysis for the definition of a PRZ. 

Hydrogeological areas include surface basins and 

regions based on geology that represent the 

physical environment in which the dynamics of 

the hydrological cycle in its underground 

component are developed, according to the 

capacity of rocks and strata to store and transmit 

water (87). A hydrogeological zone responds to the 

geological model of the subsoil and recognizes 

the geometry and tectonostratigraphic boundaries 

of the aquifer units (87). Different studies (2, 5, 10, 12-

14, 28, 35, 36, 38, 45, 78, 80, 85, 86) have delimited recharge 

zones; however, the analysis units in these studies 

do not follow hydrogeological zones. The 

delimitation of the potential zones was made 

based on geographic and political-administrative 

limits or at the level of hydrographic basins. 

Additionally, the recharge zones defined in these 

studies were not validated. Unlike this research, a 

validation was performed with the hydraulic 

gradient by plotting the piezometric surface, 

which is characterized by positive hydraulic 

potential values and divergent flow (27). 

The hydrogeological zone of the Bolo River 

already had zones delimited by the CVC (6) based 

on local expert knowledge of the surface geology 

and flow system. The zones defined at that time 

were delimited for management purposes and 

included three types of zones (recharge, transition 

and discharge). The difference between the zones 

defined by the CVC (6) and those determined in 

this research, is based on the baseline information 

scale used to estimate the zones, and the GIS 

methods used for analysis. The results of the CVC 
(6) and those presented in this study agree in terms 

of the location of the areas with the greatest 

recharge potential, which are located above the 

debris cones, where the hydraulic gradients are 

greater than 1%. 

5. Conclusions 

A methodological tool was developed for the 

delimitation of PRZs in alluvial aquifers through 

the design of the additive PRZ index based on five 

characterization indicators that only included 

intrinsic parameters of the aquifer that were 

mutually exclusive. The index can be used to 

characterize a territory into four categories of 

recharge potential. This index is considered a 

methodological contribution and a tool for land 

use planning that involves recharge zones as a 

central axis in environmental management. The 

main advantage of the designed index is not to 

depend on a weight system (anthropic factor), 

which can vary the potential of a recharge zone. 

In addition, the designed methodology is flexible 

to be applied to other contexts. The modeler can 

add or remove criteria and indicators according to 

the type of aquifer to be evaluated. However, the 

current application of the designed index only 

allows evaluating alluvial aquifers in 

intermountain valleys. 
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Through the implementation of the proposed PRZ 

index, a conceptual model was constructed for 

delimiting the PRZs in the hydrogeological zone 

surrounding the Bolo River, Colombia, where it 

was observed that 53% of the recharge potential 

was characterized as high to very high and 41% 

was characterized as a moderate potential. This is 

due to a combination of physical factors such as 

the depth of the first permeable layer, the 

lithology, the degree of confinement and the 

infiltration potential. In this sense, the study area 

can be considered to be an area of strategic 

importance. 

Validation of the PRZs in the hydrogeological 

area surrounding the Bolo River was performed. 

Seventy-one percent of the areas with a very high 

recharge potential showed hydraulic gradients 

greater than 1%. In areas with hydraulic gradients 

greater than 1%, there was a 98% probability of 

finding areas characterized by a high to very high 

recharge potential. There was a proportional 

relationship between the gradient, its magnitude 

and the potential of the aquifer recharge zones in 

the context evaluated. This validation can be 

referenced when zoning PRZs in regions with 

characteristics similar to those of the study area. 
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