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Abstract 
A soccer ball is conceptually split into halves so that it can be modeled as two identical blocks connected by a spring. A 

constant kicking force applied to one block simultaneously compresses the spring and imparts velocity to the center of 

mass of the system. If the half in contact with the foot detaches from it when it reaches a specified speed, the final center-

of-mass velocity depends on the spring constant. That could explain why it is hard to kick a soccer ball as far on a cold 

day (when the spring is stiffer) as on a warm day. 

 
Keywords: Physics of sports, Newton’s second law, Mass-spring oscillator. 

 

Resumen 
Una pelota de fútbol se divide conceptualmente en dos mitades para que se pueda modelar como dos bloques idénticos 

conectados por un resorte. Una fuerza de patada constante aplicada a un bloque comprime simultáneamente el resorte 

e imparte velocidad al centro de masa del sistema. Si la mitad en contacto con el pie se separa cuando alcanza una 

velocidad específica, la velocidad final del centro de masa depende de la constante del resorte. Eso podría explicar por 

qué es difícil patear un balón de fútbol tan lejos en un día frío (cuando la primavera está más rígida) que en un día 

cálido. 

 

Palabras clave: Física de los deportes, Segunda ley de Newton, Oscilador masa-resorte. 

 

 

 

I. INTRODUCTION 
 

Football players report is it more difficult to kick a long field 

goal when the weather is cold. Data from the NFL 

corroborates this statement [1]. The longest kicks in history 

were either at Mile High Stadium in Denver, with an altitude 

of over 1.5 km above sea level, or else in warmer indoor or 

outdoor conditions. Mile High Stadium, where three of the 

five longest kicks took place, has reduced air density, thereby 

lowering the drag on the ball. But how can one understand the 

increased difficulty of kicking a ball in cold weather, when 

some players report it feels like kicking a rock? Sports balls 

have previously been analyzed as a single mass on a spring, 

with losses of mechanical energy represented by a coefficient 

of restitution [2] or by a viscous damper [3]. The present paper 

instead proposes a loss-free model of a kicked ball as two 

masses (representing the kicked hemisphere and the opposite 

hemisphere of the ball) connected by a spring (representing 

the elasticity of the ball). The ideas are thus within the grasp 

of an elementary physics student. The equations are solved 

theoretically and compare favorably with available soccer ball 

measurements. This approach may appeal to a physics of 

sports class, or as an example in a general introductory physics 

course when discussing the concept of mechanical 

oscillations. 

 

 

II. THEORETICAL MODEL 
 

Two blocks of mass m on a frictionless surface are connected 

by a massless spring of stiffness constant k. Initially the two 

blocks are at rest and the spring is relaxed. Starting at 0t   a 

constant force F is applied to the left block 1 in the direction 

of the right block 2 in Fig. 1 until some later time ft t  when 

the left block has attained speed . What is the speed of the 

center of mass (cm) of the system at that final instant in time? 

 

 

m m 

k 

F 

x1 x2 X = 0 

 

FIGURE 1. Two identical blocks of mass m are connected by a 

massless Hookean spring of stiffness constant k. A constant force F 

pushes the left block 1 toward the right block 2, but no other external 

horizontal forces act on the system. The displacements of the left 

block, right block, and center of mass of the system are respectively 

x1, x
2
, and X. 

 

Choose a coordinate axis-pointing positive rightward with the 

origin at the initial position of the cm. At some arbitrary 

instant in time t such that f0 t t  , block 1 has displaced 
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rightward by 1x  from its starting position and block 2 by 2x . 

Newton’s second law (N2L) applied to block 1 implies  

 

  1 1 2mx F k x x   .                     (1) 

 

Where overdots denote time derivatives. Likewise N2L for 

block 2 gives rise to 

 

  2 1 2mx k x x  . (2) 

 

Transform to center-of-mass coordinates such that the 

position of the cm is 1 2( ) / 2X x x   and the compression of 

the spring is 1 2x x x  . Then the sum of Eqs. (1) and (2) 

becomes 

 

 2 mX F , (3) 

 

whose solution for the given initial conditions is 

 

 2

4

F
X t

m
 . (4) 

 

On the other hand, the difference of Eqs. (1) and (2) leads to 

 

 2mx F kx   (5) 

 

 

FIGURE 2. Dimensionless speed V of the left mass 1 as a function 

of dimensionless time T starting from the instant of application of the 

external force F. The blue curve plots the general solution from Eq. 

(10), the red curve plots the limiting case of k   from Eq. (11) 

which is also equal to the center-of-mass speed in general from Eq. 

(16), and the green curve plots the opposite limiting case of 0k   

from Eq. (13). As examples discussed in the text, the horizontal black 

and brown lines intersect the colored curves at times T corresponding 

to a speed V of 2 and 4, respectively. 

 

 

With solution 

  1 cos
2

F
x t

k
    where  

2k

m
  . (6) 

 

Inverting Eqs. (4) and (6) gives 

 

   2
1 1 cos

2 4 4

x F F
x X t t

k m
     , (7) 

so that 

 1 sin
4 2

F F
x t t

k m
   . (8) 

 

Recast Eq. (8) into dimensionless form by defining 

 

 1

8mk
V x

F
   and  

2k
T t

m
 , (9) 

to get, 

 

 sinV T T  , (10) 

 

as plotted in blue in Fig. 2. 

Connecting the two masses rigidly together corresponds to 

an infinitely stiff spring k   so that / 0k   while 

sin t  remains bound within the range –1 to 1. Thus Eq. (8) 

becomes 

 

 rigidV T  (11) 

 

in dimensionless form, as plotted in red in Fig 2. At the 

opposite limit, disconnecting the two masses is equivalent to 

a maximally floppy spring 0k   so that 

 

 2sin
4 4 2

F F F
t t t

k k m
    , (12) 

 

and hence Eq. (8) gives rise to 

 

 floppy 2V T  (13) 

 

as plotted in green in Fig. 2. 

The left mass has a dimensionless final speed of 

 

 f

8mk
V

F
 , (14) 

 

at a dimensionless time of fT  found by substituting Eq. (14) 

into the appropriate choice of Eqs. (10), (11), or (13) and then 

inverting it, numerically in the case of Eq. (10). The speed of 

the center of mass is found by taking the time derivative of 

Eq. (4) to get 

 
2

F
X t

m
 . (15) 

 

It can be rewritten in dimensionless form as 

 

 cm

8mk
V X T

F
  , (16) 

 

using Eq. (9), which is again plotted in red in Fig. 2. 

For example, suppose the dimensionless final speed of 
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block 1 is f 2V   as indicated by the black horizontal line in 

Fig. 2. Then the dimensionless final time fT and hence, the 

dimensionless final center-of-mass speed is 1 for the floppy 

case, approximately 1.1061 for the spring-coupled system, 

and 2 for the rigid connection. For that value of fV , rigidly 

connecting the two masses together thus gives rise to the 

largest final cm speed of the system. 

On the other hand, suppose the dimensionless final speed 

of block 1 is instead f 4V   as indicated by the brown 

horizontal line in Fig. 2. Then the dimensionless final time and 

cm speed is 2 for the floppy case, approximately 4.9676 for 

the spring coupling, and 4 for the rigid connection. So now 

connecting the two masses with the spring gives rise to the 

largest final center-of-mass speed of the system. If this 

situation can be taken as a model for an inflated ball, then an 

underinflated floppy ball or a stiff cold ball both result in 

lower final cm speeds than does a ball which is properly 

inflated and warm, assuming the kicker applies to all balls the 

same constant force F until the side of the ball in contact with 

the foot reaches the specified detachment speed . The system 

will lie in a range of parameter values where this behavior can 

occur only if 

 

 
8mk

F
  . (17) 

 

Provided the left-hand side of this inequality is also smaller 

than 2. (More generally, the quantity on the left-hand side 

must lie between an odd-integer multiple of  and the next 

larger even-integer multiple of ). 

 

 

 

III. COMPARISON WITH SPORTS DATA 
 
Consider a soccer ball with a mass of 430 g so that 

0.215 kgm  . For a long-range kick when the final cm speed 

is approximately 30 m/s, a peak force of about 3 kN must be 

applied to the ball [4]. In the present simplified model, it is 

assumed that the force is instead constant over the duration of 

the kick. So to give the same impulse, F must be about half of 

the peak force, or 1.5 kN. The compression of the ball during 

the kick is plotted in Fig. 3 using these values and a spring 

constant of 25 kN/mk  . The peak value of x is about 6 cm 

and the compression lasts about 12 ms. This graph is similar 

to measurements for a kicked soccer ball plotted by the dashed 

curve in Fig. 2 of either Ref. [4] or [5]. If the kicked side of 

the ball detaches from the foot when the latter is moving at 

24 m/s  , then the left-hand side of Eq. (17) is about 5% 

larger than . There may be a good reason that a soccer ball is 

designed so that, when properly inflated and warm, a strong 

kick places its behavior near the crossing point between the 

red and blue curves in Fig. 2. The blue curve is quite flat in 

that crossing region, so that a skillful player can obtain a large 

increase in final cm speed of the ball for a small increase in 

foot speed . 

For these parameters, the ball is found to lose contact with 

the foot after about 9 ms and to end up with a final cm speed 

of 30 m/s. That speed is 26% larger than what would be 

obtained for a rigid ball, such as might be more likely to occur 

on a cold day when the skin of the soccer ball is less flexible. 

 

 

 

IV. CONCLUSION 

 

Mathematically it has been shown that under the right 

conditions, a change in the spring constant (due to a change in 

the elasticity of the ball with temperature) can result in a 

different final speed of the center of mass of a soccer ball for 

fixed values of the mass 2m of the ball, of the kicking force F, 

and of the maximum speed  of the player’s foot. It is 

instructive to end by stepping back and reviewing the 

explanation for this result at a conceptual level. 

In the limiting case of a rigid ball when k  , every part 

of the ball is always moving at the same speed as the foot with 

which it is in contact. Thus, as the ball detaches from the foot 

when it is on the verge of outpacing the maximum speed  of 

the foot, its center of mass must be traveling with that same 

speed . The only way to increase the final center-of-mass 

speed is to keep the ball in contact with the foot for a longer 

time, given that the kicking force F is constant in the simple 

model adopted here. That is done by connecting mass 1 to a 

spring (of finite nonzero stiffness) so that the mass will then 

oscillate about the end of the spring to which it is connected. 

If it so happens that the mass is oscillating with a backward 

velocity (relative to the forward motion of the center of mass) 

as it approaches the detachment speed, then it will remain in 

contact longer with the forward-moving foot. This reasoning 

explains why the blue curve in Fig. 2 must lie in a range that 

is vertically below the red curve. 

It follows that the maximum enhancement in the final 

center-of-mass speed of the ball (relative to what would be 

achieved if the ball were perfectly rigid) is obtained when the 

vertical difference between the red and blue curves is 

maximized. According to Eqs. (10) and (11) that happens at a 

dimensionless time of f 3 / 2T  , three-quarters of the way 

through a cycle of oscillation of the mass on the spring, as one 

might have guessed. In turn, that implies the final value of the 

dimensionless speed of mass 1 will be 

 

 f

3
1

2
V


  . (18) 

 

According to Eq. (10). Reverting to dimensional quantities 

using Eq. (9), this value corresponds to a spring of stiffness 

constant 
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FIGURE 3. Graph of the compression x as a function of time t after 

the kicking force F is applied to the two-block system with 

parameters chosen to model a soccer ball. 

 

Given that the final value of 1x  is . For the parameters in 

Sec. III of 2 0.43 kgm  , 1.5 kNF  , and 24 m/s  , the 

optimum stiffness to demonstrate the enhancement 

experimentally would therefore be 31 kN/mk  . 

On the other hand, a perfectly floppy ball will always 

perform worse than one that is either elastic or rigid. The 

green curve lies above the blue and red curves in Fig. 3 at all 

nonzero times. The reason for that is the kick will initially 

propel forward only the left mass in Fig. 1, while the right 

mass remains at rest. The center of mass will then have a speed 

of only half of the speed of the left mass. Assuming there is 

enough initial separation between them that the left mass gets 

up to speed  and detaches from the foot before it hits the right 

mass, the final center of mass speed will thus be / 2 , only 

half of what it would be for a perfectly rigid body as explained 

above. That is true regardless of whether the subsequent 

collision between the two halves of the ball is elastic or 

inelastic. Intuitively no one would want to play soccer with a 

ball that is deflated due to a tear in its skin! 
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