
Revista Facultad de Ingeniería, 31 (61), 2022, e14828

Revista Facultad de Ingeniería
Journal Homepage: https://revistas.uptc.edu.co/index.php/ingenieria

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (61), e14828. July-September 2022. Tunja-Boyacá,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.

DOI: https://doi.org/10.19053/01211129.v31.n61.2022.14828

Approach to the Best Practices of

Software Development Based on

DevOps and SCRUM Used in Very

Small Entities

Manuel-Alejandro Pastrana-Pardo1

Hugo-Armando Ordóñez-Erazo2

Carlos-Alberto Cobos-Lozada3

Received: May 11, 2022 Accepted: September 22, 2022 Published: September 28, 2022

Citation: M.-A. Pastrana-Pardo, H.-A. Ordóñez-Erazo, C.-A. Cobos-Lozada, “Approach to the Best

Practices of Software Development Based on DevOps and SCRUM Used in Very Small Entities”,

Revista Facultad de Ingeniería, vol. 31 (61), e14828, 2022.

https://doi.org/10.19053/01211129.v31.n61.2022.14828

Abstract

Very small software development entities have a maximum of 25 employees and

have limited cash flow and time to implement improvements in their processes that

1 Institución Universitaria Antonio José Camacho (Cali-Valle del Cauca, Colombia).
mapastrana@admon.uniajc.edu.co. ORCID: https://orcid.org/0000-0002-6506-0659
2 Ph. D. Universidad del Cauca (Popayán-Valle, Colombia). hugoordonez@unicauca.edu.co. ORCID:
https://orcid.org/0000-0002-3465-5617
3 Ph. D. Universidad del Cauca (Popayán-Valle, Colombia). ORCID: https://orcid.org/0000-0002-6263-1911

https://revistas.uptc.edu.co/index.php/ingenieria
https://doi.org/10.19053/01211129.v31.n61.2022.14828
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.19053/01211129.v31.n61.2022.14828
mailto:mapastrana@admon.uniajc.edu.co
https://orcid.org/0000-0002-6506-0659
mailto:hugoordonez@unicauca.edu.co
https://orcid.org/0000-0002-3465-5617
https://orcid.org/0000-0002-6263-1911

Approach to the Best Practices of Software Development Based on DevOps and SCRUM Used in Very Small
Entities

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (61), e14828. July-September 2022. Tunja-Boyacá,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.

 DOI: https://doi.org/10.19053/01211129.v31.n61.2022.14828

allow them to be more competitive. This is one of the reasons why these companies

turn to the implementation of agile frameworks such as SCRUM to manage the

software development process. But when they start their adoption, they find that the

documents only suggest the changes that can be made, but not how to make them,

making the process of discovering which techniques, events and artifacts are the

ones to implement in a costly trial and error approach and in some cases unfeasible.

The same happens with other frameworks that can be complementary to SCRUM,

such as DevOps, which proposes a rapprochement between the development and

operations area, where the largest number of tasks are automated and quality

controls are increased to obtain better products. This article exposes three best

practices based on DevOps, its use models and when within SCRUM they can be

used to facilitate its adoption in these companies. Present a model for the use of

versioning, integration, and deployment continuous and the recommended moments

for its implementation within SCRUM. The best practices most reported in the

literature for software development based on SCRUM and DevOps were identified.

Three of the best practices were selected and a usage model was built for each of

them. These practices were evaluated using a case study and the results obtained

were evaluated. The practices were evaluated in three (3) very small entities,

obtaining changes in the support cases reported weekly and in the number of

successful deployments. The division of the development process into phases

shows that the one that represents the greatest possibility of splicing between the

set of practices suggested by DevOps in SCRUM is the development and quality

phase. Likewise, the set of suggested practices points to the implementation of

controls for quality assurance, providing key information for the learning and

improvement of the development team.

Keywords: DevOps; Software Quality Assurance; Software Engineering; SCRUM;

SQA.

https://doi.org/10.19053/01211129.v31.n61.2022.14828

Manuel-Alejandro Pastrana-Pardo; Hugo-Armando Ordóñez-Erazo; Carlos-Alberto Cobos-Lozada

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (61), e14828. July-September 2022. Tunja-Boyacá,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.

 DOI: https://doi.org/10.19053/01211129.v31.n61.2022.14828

Acercamiento a las buenas prácticas para el desarrollo de software basado

en DevOps y SCRUM utilizadas en empresas muy pequeñas

Resumen

Las empresas muy pequeñas de desarrollo de software poseen un máximo de 25

empleados y tienen un limitado flujo de caja y tiempo para implementar mejoras en

sus procesos que les permita ser más competitivos. Esta es una de las razones por

las que estas empresas recurren a la implementación de marcos de trabajo ágil

como SCRUM para gestionar el proceso de desarrollo de software. Pero cuando

inician su adopción, encuentran que los documentos solo sugieren los cambios que

se pueden realizar, pero no como hacerlos, tornando el proceso de descubrir cuales

técnicas, eventos y artefactos son los que deben implementar en un enfoque de

prueba y error costoso y en algunos casos inviable. Lo mismo sucede con otros

marcos que pueden ser complementarios a SCRUM como DevOps, que propone

un acercamiento entre el área de desarrollo y operaciones, donde se automaticen

la mayor cantidad de tareas y se incrementen los controles de calidad para obtener

mejores productos. Este artículo expone tres buenas prácticas basadas en DevOps,

sus modelos de uso y en qué momentos dentro de SCRUM pueden ser utilizadas

para facilitar su adopción en estas empresas. Se tiene como como objetivo exponer

un modelo para el uso de versionamiento, integración y despliegue continuos y los

momentos recomendados para su implementación dentro de SCRUM. Se

identificaron las buenas prácticas más reportadas en la literatura para desarrollo de

software basado en SCRUM y DevOps. Se seleccionaron tres de las mejores

prácticas y se construyó un modelo de uso para cada una de ellas. Estas prácticas

se pusieron a prueba mediante un caso de estudio y se evaluaron los resultados

obtenidos. Las prácticas fueron evaluadas en 3 empresas, obteniendo cambios en

los casos de soporte reportados semanalmente y en el número de despliegues

exitosos. La división del proceso de desarrollo en fases evidencia que la fase que

representa mayor posibilidad de empalme entre el conjunto de prácticas sugeridas

por DevOps en SCRUM es la de desarrollo y calidad. El conjunto de prácticas

sugeridas apunta a la implementación de controles para el aseguramiento de la

https://doi.org/10.19053/01211129.v31.n61.2022.14828

Approach to the Best Practices of Software Development Based on DevOps and SCRUM Used in Very Small
Entities

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (61), e14828. July-September 2022. Tunja-Boyacá,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.

 DOI: https://doi.org/10.19053/01211129.v31.n61.2022.14828

calidad entregando información clave para el aprendizaje y mejora del equipo de

desarrollo.

Palabras clave: Aseguramiento de la Calidad de Software; DevOps; Ingeniería de

software; SCRUM; SQA.

Abordagem de boas práticas para desenvolvimento de software baseado em

DevOps e SCRUM utilizado em microempresas

Resumo

As empresas de desenvolvimento de software muito pequenas têm no máximo 25

funcionários e possuem fluxo de caixa e tempo limitados para implementar

melhorias em seus processos que lhes permitam ser mais competitivas. Essa é uma

das razões pelas quais essas empresas recorrem à implementação de frameworks

ágeis como o SCRUM para gerenciar o processo de desenvolvimento de software.

Mas quando iniciam sua adoção, descobrem que os documentos apenas sugerem

as mudanças que podem ser feitas, mas não como fazê-las, tornando o processo

de descoberta de quais técnicas, eventos e artefatos são os únicos a serem

implementados em uma tentativa e erro dispendiosa abordagem e, em alguns

casos, inviável. O mesmo acontece com outros frameworks que podem ser

complementares ao SCRUM, como o DevOps, que propõe uma aproximação entre

a área de desenvolvimento e operações, onde o maior número de tarefas é

automatizado e os controles de qualidade são aumentados para obter melhores

produtos. Este artigo expõe três boas práticas baseadas em DevOps, seus modelos

de uso e quando dentro do SCRUM podem ser utilizados para facilitar sua adoção

nessas empresas. O objetivo é expor um modelo para uso de versionamento,

integração e deployment contínuos e os momentos recomendados para sua

implementação dentro do SCRUM. Foram identificadas as boas práticas mais

relatadas na literatura para desenvolvimento de software baseado em SCRUM e

DevOps. Três das melhores práticas foram selecionadas e um modelo de uso foi

construído para cada uma delas. Estas práticas foram postas à prova através de um

estudo de caso e os resultados obtidos foram avaliados. As práticas foram avaliadas

em 3 empresas, obtendo mudanças nos casos de suporte relatados semanalmente

https://doi.org/10.19053/01211129.v31.n61.2022.14828

Manuel-Alejandro Pastrana-Pardo; Hugo-Armando Ordóñez-Erazo; Carlos-Alberto Cobos-Lozada

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (61), e14828. July-September 2022. Tunja-Boyacá,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.

 DOI: https://doi.org/10.19053/01211129.v31.n61.2022.14828

e no número de implantações bem-sucedidas. A divisão do processo de

desenvolvimento em fases mostra que a fase que representa a maior possibilidade

de junção entre o conjunto de práticas sugeridas pelo DevOps no SCRUM é a de

desenvolvimento e qualidade. O conjunto de práticas sugeridas aponta para a

implantação de controles para garantia da qualidade, fornecendo informações

fundamentais para aprendizado e aprimoramento da equipe de desenvolvimento.

Palavras-chave: DevOps; Engenharia de software; Garantia de Qualidade de

Software; SCRUM; SQA.

https://doi.org/10.19053/01211129.v31.n61.2022.14828

Approach to the Best Practices of Software Development Based on DevOps and SCRUM Used in Very Small
Entities

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (61), e14828. July-September 2022. Tunja-Boyacá,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.

 DOI: https://doi.org/10.19053/01211129.v31.n61.2022.14828

I. INTRODUCTION

The software development industry requires early deployments on production, with

high quality and little reprocessing when it comes to maintenance and support to

guarantee the profitability of the projects, as indicated in [1]. This leads to the

accelerated pace of this type of company requiring effective quality controls, with

early feedback on the evolution of the product and allowing project participants to

learn what they are doing well and what they can improve as expressed in [2].

A key factor for the implementation of best practices that make it possible to

implement the quality controls required by companies is their size. The most

common classification is given as: very small entities, made up of a maximum of 25

employees, small entities made up of more than 25 employees and less than 50,

medium-sized entities that have between 50 and 250 employees, and large entities

that have more than 250 employees [3].

According to [4], very small entities (VSE) make up a large part of the industry and

are the ones who suffer the most because their development processes are often

empirical, lacking of practices such as code versioning, continuous integration (CI)

and continuous deployment (CD) which enable better quality results, guaranteeing

optimization of profitability and being more competitive compared to larger

companies. According to [3], some of the problems that most affect these companies

are the overload of functions of various roles for the same person, the limited cash

flow for reinvestment in improving internal processes, the limited number of types of

projects they can access, the few quality controls and little or insufficient

documentation.

Therefore, this article presents a review of some practices recommended by DevOps

that are common in VSEs and when the information they deliver can be used within

SCRUM events to guarantee continuous improvement. The article is organized as

follows: section 2 describes the motivation scenario, section 3 describes the

methodology, section 4 the results, and section 5 the conclusions and future work.

VSE are companies capable of taking on few projects at the same time, because

several of their employees are attending multiple functions of different roles (work

overload), which can be considered as a factor for high turnover of personnel that

https://doi.org/10.19053/01211129.v31.n61.2022.14828

Manuel-Alejandro Pastrana-Pardo; Hugo-Armando Ordóñez-Erazo; Carlos-Alberto Cobos-Lozada

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (61), e14828. July-September 2022. Tunja-Boyacá,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.

 DOI: https://doi.org/10.19053/01211129.v31.n61.2022.14828

these companies usually have [4]. Most of the projects they conduct are developed

with non-systematized practices based on the (empirical) experience of the

development group rather than on a formal software engineering process. By using

empirical processes, VSE find it difficult to implement best practices that lead to the

continuous improvement of the company's processes, especially those related to

managing the evolution of development and its quality in accordance with [5].

Due to the above, these kind of entities according to [5], require organizing and

centralizing the management of the source code, allowing traceability of the history

of changes and who has made them. In addition, they need to identify if the changes

made to the project, when integrated, produce errors when creating the release that

will be put on the test or production servers. Although there are many more practices

such as static code analysis, unit tests, functional test automation, according to [5]

the most frequent for adoption in early stages in the VSE are versioning, continuous

integration and continuous deployment, as mentioned earlier.

II. METHODS

The process followed in this research is made up of the following phases: I)

identification of best basic DevOps practices for software development in VSE II)

identification of the relationship between SCRUM and DevOps, III) proposal for a

versioning model, IV) proposal for a continuous integration (CI) model and V)

proposal for a continuous deployment (CD) model. Phases detailed below.

A. Identification of Basic Best Practices for Software Development in the VSE

An investigation was conducted on DevOps and its best practices oriented to

preventive quality as an axis of continuous feedback for companies. The objective

of this point was to find out the state of these issues and provide a starting point for

the identification of the base practices that the VSE should implement.

Initially, a definition of DevOps and its state of the art was search for, highlighting

the work of [6] who defines the term as a collaboration between the software

development area and the operations area that supports all systems and company

services at the hardware level. Its objective is to automate the largest number of

https://doi.org/10.19053/01211129.v31.n61.2022.14828

Approach to the Best Practices of Software Development Based on DevOps and SCRUM Used in Very Small
Entities

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (61), e14828. July-September 2022. Tunja-Boyacá,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.

 DOI: https://doi.org/10.19053/01211129.v31.n61.2022.14828

tasks related to the management of applications built or under construction through

a set of best practices and rules of interaction. From this work, a notorious interest

of the academic community in delving into the problems that prevent its

implementation can be identified. As important, in [7] the problems for the adoption

of the practices suggested by DevOps and their integration with agile frameworks

are exposed, leaving a clear opportunity for the research community at this point.

In [8] a revision was found related to adopting DevOps to achieve a continuous

delivery process, as in [9], where this is conducted to the implementation of scripts

called pipelines that allow integrating the versioning practices, CI, and CD

automatically, facilitating its adoption by companies. Additionally, in [10] it is

confirmed that the most common practices in companies and that aim to be the first

steps in the adoption of DevOps are the three mentioned above.

Finally, the works presented in [5] and [8] point out that an integration is possible

between the practices of versioning, continuous integration, continuous deployment

and agile frameworks such as SCRUM for the management of changes and the

evolution of the source code, the initial verification of the quality of the deployable

unit and the generation of information that supports decision-making in the

management of software development projects and support for already built

systems.

B. Identification of the Relationship Between SCRUM and DevOps

According to [9], the software development cycle is composed of analysis and

planning, design, development and quality, and deployment. These phases overlap

with the agile SCRUM framework and its recommended practices described in [10].

Next, in the Table 1, the SCRUM practices are listed for each phase of the

development cycle.

Table 1. SCRUM best practices by phase of the development cycle.

Development cycle phase SCRUM recommended practice

Analysis and planning
Sprint Planning Meeting

Design

Development and quality Daily SCRUM Meeting / Sprint 0

Deployment Sprint review / Sprint Retrospective

https://doi.org/10.19053/01211129.v31.n61.2022.14828

Manuel-Alejandro Pastrana-Pardo; Hugo-Armando Ordóñez-Erazo; Carlos-Alberto Cobos-Lozada

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (61), e14828. July-September 2022. Tunja-Boyacá,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.

 DOI: https://doi.org/10.19053/01211129.v31.n61.2022.14828

On the other hand, according to [15] DevOps proposes to reduce rework and

improve organizational culture through a quality environment that implements a set

of automatically synchronized practices that are always available as a feedback

mechanism, which represents a complement for SCRUM. Practices such as

versioning, CI and CD are the most used by companies in the early stages of

DevOps adoption as indicated by [8]. Next, a relationship between SCRUM and

DevOps within the software development lifecycle is presented in Table 2.

Table 2. Relationship between SCRUM and DevOps within the development cycle.

Development
cycle phase

SCRUM
Recommended

Practice

DevOps Recommended Practice

Analysis and
planning Sprint Planning

Meeting

• None.

Design • Archetype design.

Development
and quality

Sprint 0

• Implementation of the archetype for the
development baseline.

• Configuration and implementation of versioning
model.

• Archetypal development baseline versioning.

• CI model implementation.

• CD model implementation.

Daily SCRUM
meeting

Deployment

Sprint review • CD to ensure sprint review.

• Review of information generated by versioning
practices, CI, and CD for retrospective analysis of
the sprint.

Sprint
retrospective

Within the analysis and planning phase, the functional needs of the project are

compiled through user stories, where the functionalities of the applications are

described in the acceptance criteria section. When all user stories are built, they are

grouped in an artifact called product backlog. Completed the above, it is required to

estimate and prioritize it as indicated in [10], to finally determine how long the

construction of the solution takes by calculating the number of sprints (measurement

of time that goes from 1 to 4 weeks). With this information clearly defined, it is

possible to carry out the decomposition of the activities that resolve "what will be

https://doi.org/10.19053/01211129.v31.n61.2022.14828

Approach to the Best Practices of Software Development Based on DevOps and SCRUM Used in Very Small
Entities

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (61), e14828. July-September 2022. Tunja-Boyacá,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.

 DOI: https://doi.org/10.19053/01211129.v31.n61.2022.14828

done" within the project sprint by sprint and create the SCRUM board as mentioned

in [10].

Once the above is done, it is possible to start the design phase by building the artifact

called Software Architecture Document (SAD), where the non-functional needs of

the system are reflected by describing quality attributes of the architecture. These

requirements are resolved through design patterns, which are existing solutions to

recurring problems, are proven effective and are found in the development

frameworks of the various programming languages as indicated [11]. These

decisions mark the architectural style of the solution and are reflected in UML

diagrams that respond to the different views of the SAD. Once the above is done, it

is possible to create a project archetype that responds to the characteristics detailed

in the SAD, allowing to establish and version the development baseline so that the

whole team can have it at the time of starting development.

During the development and quality phase, it is required that at the beginning of each

project, according [10], a sprint 0 or preparation for development is carried out. This

allows verifying that the entire team knows what will be done and how it will be done,

carry out concept tests, build the archetype, create the repository for versioning and

implement the model to be used in it, configure the tools that support CI and CD

practices, version the development baseline and verify that all team members have

access to the tools and configurations required for the formal start of the project.

Once sprint 0 has been completed, development begins.

At the beginning of each development sprint, it should start with the sprint planning

meeting as indicated [10], where it is guaranteed that the entire team knows what

user story is going to be carried out and what activities are required at the

development level to complete them. This way they can break them down in the

SCRUM board where the daily follow-up will be conducted. Additionally, the team

verifies that the architectural decisions that guide the structuring of the project are

known and that they are reflected in the baseline. It is also verified that all the

members are linked to the repository, so they can manage their changes there,

besides, they have downloaded the development baseline built-in sprint 0, being

ready to start with the construction of the user story that each one selects. It is

https://doi.org/10.19053/01211129.v31.n61.2022.14828

Manuel-Alejandro Pastrana-Pardo; Hugo-Armando Ordóñez-Erazo; Carlos-Alberto Cobos-Lozada

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (61), e14828. July-September 2022. Tunja-Boyacá,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.

 DOI: https://doi.org/10.19053/01211129.v31.n61.2022.14828

important that the teams take as a best practice within the organizational culture that

at the beginning of each working day they must perform a pull (update of changes)

on the integration branch in which they are working within the versioner. Similarly, at

the end of each working day, the changes made must be uploaded to each

developer's own branch to ensure that they are not lost. The details of the versioning

model will be described later for a better understanding.

During the evolution of the sprint, according to [10], an event called the daily SCRUM

meeting is held. The objective of this meeting is to identify, through the presentation

of each one of the members, the advances of the previous day, what they are

planning to do during that day and the impediments they must advance. This

promotes proper project management through a continuous flow of information that

allows knowing the real status of the project and react to delays in no more than 24

hours. Here the teams can make use of versioning as a practice to show the work

done the day before. In addition, each time a user story is completed, the versioned

changes of all collaborators must be integrated to ensure that the release can be

generated and deployed in the test environment that is required for the respective

functional review, which it can be manual or automated. This meeting is held every

day of the sprint with the aim of identifying whether the goals will be achieved as

estimated or if it is not possible and what will be done about it.

Regarding the deployment phase, at the end of each integration of changes it is

necessary to carry out the deployment, in this way it is possible to have the latest

stable version placed in a test environment and ready to present the sprint review

as indicated in [10]. During this event, the team presents to the project stakeholders

what was done during the sprint according to the commitments. After this, the team

performs a last event called sprint retrospective that, according to [10], allows a

review of the positive aspects and opportunities for improvement that are the product

of the learning that the sprint execution has left. Here it is key to review the versioning

history to identify if its use has been correct, in addition to knowing how many stories

were built without delay according to the planning, how many required improvements

and how many detected corrections after delivery. Likewise, it is reviewed how many

times the continuous integration was not successful and for what reason, besides, it

https://doi.org/10.19053/01211129.v31.n61.2022.14828

Approach to the Best Practices of Software Development Based on DevOps and SCRUM Used in Very Small
Entities

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (61), e14828. July-September 2022. Tunja-Boyacá,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.

 DOI: https://doi.org/10.19053/01211129.v31.n61.2022.14828

is observed if there were some cases where the continuous deployment was not

successful. All this information together with the use of retrospective techniques

allows the team to have the opportunity to continuously learn and improve, sprint by

sprint.

C. Proposal for a Versioning Model

Based on the work of [12], it is possible to identify that the starting point of a process

oriented to best practices for software development begins with versioning.

Versioners are tools that function as repositories that centralize changes and

guarantee availability always for all the members of the development teams

(collective ownership of the code). Additionally, all the changes stored by the tool

are saved in a history for traceability and if an error is generated in the integration of

changes, return to the previous stable version without major delays (failure

recovery).

To make use of this practice, it is recommended to first know the proper structure of

a versioning model, followed by the steps to use and the practices that must be

implemented in its use. Versioners are made up of a local registry on the user's

machine and a repository registry that stores and integrates all changes within the

tool. The purpose of this tool is to synchronize local changes with the version hosted

in the tool. All changes are housed in a structural separation that the tool creates

called a branch, and usually the initial branch that every versioner creates is called

master.

If the development team only work on the master branch, quiet conflicts would be

generated when integrating the changes and they would not have a latest stable

version because the source code would be constantly being manipulated. For this

reason, it is recommended to detach another branch derived from the master, which

fulfills the functions of integrating the changes of all the participants. This allows

changes to be centralized in the integrations branch and once these are considered

stable, the latest version is synchronized with master, guaranteeing that what it is

holding in master will always be the most recent and stable of the project. To

guarantee greater control of changes, it is recommended to detach from the

https://doi.org/10.19053/01211129.v31.n61.2022.14828

Manuel-Alejandro Pastrana-Pardo; Hugo-Armando Ordóñez-Erazo; Carlos-Alberto Cobos-Lozada

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (61), e14828. July-September 2022. Tunja-Boyacá,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.

 DOI: https://doi.org/10.19053/01211129.v31.n61.2022.14828

integration branch, one branch for each project collaborator. The objective of this is

for each developer to work on their specific activities until they have guaranteed to

have finished, uploading only to the integrations branch when this is done. Once the

developer's changes are integrated, the entire team should be notified seeking

everyone's synchronization.

To integrate the changes from the developer branch to the integrations branch, it is

recommended to do it through a pull request and not directly. This generates a

request that is submitted for review (manual code inspection) so that a member of

the team determines if the changes do not negatively affect the project and comply

with the development policies implemented in the team (code standard). If the

changes are authorized, the new is included (merged) in the desired branch through

the versioner and the tool automatically notifies members by email of its success.

Otherwise, it indicates that it has been rejected and the reason, with the intention of

the developer who requested to upload the change can take the necessary

corrective actions and try again. Fig. 1 summarizes the step by step of what has

been mentioned. Additionally, it is recommended that all members always download

the changes from the integrations branch at the start of the working day to work on

the latest development version and at the end of the day they should always upload

the changes they have made to their branch.

Fig. 1. Versioning model.

https://doi.org/10.19053/01211129.v31.n61.2022.14828

Approach to the Best Practices of Software Development Based on DevOps and SCRUM Used in Very Small
Entities

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (61), e14828. July-September 2022. Tunja-Boyacá,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.

 DOI: https://doi.org/10.19053/01211129.v31.n61.2022.14828

D. Proposal for a Continuous Integration (CI) Model

The practice of continuous integration (CI) goes hand in hand with versioning

according to [13]. Although versioning helps to centralize changes, maintain order,

and trace the evolution of the system being developed, it does not allow verifying the

impact of the changes generated on the deployable unit. Due to the above and in

accordance with [14], it is advisable to adopt the practice of continuous integration

that can validate this as part of the organizational culture.

To implement the IC, it is necessary for the tool that implements this practice to be

able to generate the deployable unit through console instructions, depending on the

programming language and the operating system. If the process has been

successful, the team must be notified that the CI has finished correctly and in case

of failure, it will notify who was the last to make changes, so that they can make the

pertinent adjustments. The above is summarized in Fig. 2.

Fig. 2. CI Model.

E. Proposal for a Continuous Deployment (CD) Model

When the source code is versioned and the CI generates the deployable unit file,

which must be put on an application server for the software to be operational, the

CD is possible according to [16]. The CD practice takes advantage of the fact that

the CI has generated the deployable unit, so as not to repeat this process, and

transfers that file to the server (physical or in the cloud) where the application server

that will deploy it is hosted. Once the file is taken to the server, it is placed in the

required location, depending on the application server and the operating system-

specific commands required to perform the deployment are executed, which in most

https://doi.org/10.19053/01211129.v31.n61.2022.14828

Manuel-Alejandro Pastrana-Pardo; Hugo-Armando Ordóñez-Erazo; Carlos-Alberto Cobos-Lozada

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (61), e14828. July-September 2022. Tunja-Boyacá,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.

 DOI: https://doi.org/10.19053/01211129.v31.n61.2022.14828

cases make the server of applications, but not the physical server, require restarting

their service. The above is summarized in Fig. 3.

Fig. 3. CD Model.

III. RESULTS

To review the impact caused by the implementation of the suggested practices, three

companies were selected, which for confidentiality reasons will be called EMP1,

EMP2 and EMP3.

The EMP1 company has less than 25 employees and develops data analytics

solutions. Additionally, it was detected that they use code versioning, where they

have a master branch that hosts the latest completely stable version of the

development and a branch that integrates the work of all the developers that allows

centralizing the constant changes of the team during each sprint.

Having identified the above, the versioning model is exposed for the refinement of

the practice, recommending that a branch should be created from the integration

branch for each developer that can be named with the first letter of the name followed

by the first surname. In the case of homonyms, the name to be assigned in each

branch is negotiated with those involved. This allows over time to maintain control

over the evolution of the projects, identifying changes made by each developer and

recovering from syntax or logical errors that could affect the dropdown and that are

detected by the IC when a pull request is made to the branch of integrations.

Likewise, the EMP1 has implemented the IC practice to prevent syntactic errors from

generating the deployable unit correctly.

EMP1 was aware of, but had not implemented, the practice of continuous

deployment. Once the CD model has been exposed, the process of adopting this

https://doi.org/10.19053/01211129.v31.n61.2022.14828

Approach to the Best Practices of Software Development Based on DevOps and SCRUM Used in Very Small
Entities

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (61), e14828. July-September 2022. Tunja-Boyacá,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.

 DOI: https://doi.org/10.19053/01211129.v31.n61.2022.14828

practice begins. Since the IC and the CD in some cases can go in the same tool (as

it happens with the EMP1), the file that allows the IC is modified, to add the step of

the CD configuring the path of the test server, the permissions of access and

operating system commands for deployment. With the above, it was achieved that

every time a stable integration is carried out, it is automatically deployed on the test

server and the quality team is notified for review.

The EMP2 was characterized as a VSE with problems typical of this kind of

companies. Its biggest limitation is that the development and technology area is

made up of 9 people. Before the process of adopting best practices, all their projects

were built in PHP and Bootstrap using a code generator called PHPRUNNER. They

did not use versioning and were unaware of the model of working with versions.

Therefore, the model was exposed and implemented. One of the direct impacts that

was achieved whit this it was the organization of work, the non-loss of information,

the elimination of overload of personnel who developed the same, the traceability of

changes and the availability of codes always for those who need them. Additionally,

they identified this step as an opportunity for the implementation of the other two

practices and even showed total interested that once they have adopted the previous

practice as part of their organizational culture, they can explore the implementation

of more practices aimed at preventive quality that optimize your development

process based on SCRUM.

The implemented versioning tool allows continuous integration, so it was natural in

their process to build the required configuration file and adopt the practice. The

impact was significant for EMP2 for several reasons. The first is that they have

detected that on some occasions two people work on the same functionality at the

same time for different support cases. When doing this before the implementation of

the practices, the changes were overwritten, but with the implementation of the

versioning it is prevented from happening because whoever tries to upload the latest

change is forced to download the previous settings, unify everything in a local and

then upload them to the versioner. The second reason is that the CI tool allows to

automatically detect if the changes are preventing the deployable unit from being

generated. In this case, the notification and attention to the situation is resolved by

https://doi.org/10.19053/01211129.v31.n61.2022.14828

Manuel-Alejandro Pastrana-Pardo; Hugo-Armando Ordóñez-Erazo; Carlos-Alberto Cobos-Lozada

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (61), e14828. July-September 2022. Tunja-Boyacá,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.

 DOI: https://doi.org/10.19053/01211129.v31.n61.2022.14828

the last person who uploaded the change. Additionally, EMP2, through code reviews

that allow the integration to be approved, avoided reprocessing, and thus

decongested the support channel they provide to their products. Also, the static

analysis of the code helped to detect that they do not use any dependency manager

for their programming language, they generate a lot of unnecessary code, and the

current architecture did not fully meet the real needs of the company that has been

sacrificed for development speed, making support more demanding for the entire

team.

The EMP3 company reflects an empirical and non-systematized software

development process. Therefore, they do not work with the best practices suggested

in this article. Its main function is to develop custom software in JAVA using Spring,

JPA and Swagger for the construction of a Rest API that exposes the functionalities

of the system and that are consumed by the presentation layer, built in Dart with

Flutter for web and mobile. The three (3) practices were exposed by creating

repositories for both the backend built in java and the frontend. Each repository has

the structure described in the proposed versioning model. This allowed greater

traceability on the evolution of its main application. Additionally, it allowed them to

organize support cases according to who developed it. The practice of CI and CD

by the backend was easy for the team to implement and adopt, giving them the ability

to detect changes that prevent the deployable unit from being built and quickly put it

on the test server. On the part of the continuous deployment for the web, the script

was created without difficulty, and it was deployed in an agile way, but for the mobile

case the tool does not cover the possibility of integrating with the Apple Store or Play

Store deployment platform, so recommended expanding the investigation to another

tool that does allow it. Table 3 summarizes what happened with the three companies.

Table 1. Impact of implemented practices

Entity Detected
Practices

Implemented
Practices

Impact

EMP1
Versioning

Improved
Versioning

The versioning model is improved for greater
control.

CI CD
Manual deployment is eliminated and
automated.

EMP2 None Versioning

https://doi.org/10.19053/01211129.v31.n61.2022.14828

Approach to the Best Practices of Software Development Based on DevOps and SCRUM Used in Very Small
Entities

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (61), e14828. July-September 2022. Tunja-Boyacá,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.

 DOI: https://doi.org/10.19053/01211129.v31.n61.2022.14828

Entity Detected
Practices

Implemented
Practices

Impact

CI
Quality controls are implemented that
decongest the company's supports.

CD
Faster deployment speed with less rework.

EMP3 None Versioning Improved company support.

CI

CD
Elimination of manual deployments for web
applications.

Once the implementation of the suggested best practices was conducted, the first

measurement that was made was the number of failures that appear after

development and that are reported by end users when the software is already

operating (support cases). This is measured before and after implementation to

compare the impact achieved.

The EMP1 before practices reported 9 to 12 weekly requests, while EMP2 had an

average of 16 to 22. On the other hand, EMP3 presented 5 to 8 weekly reports. After

the implementation of best practices, EMP1 reports a decrease of 41.7% of cases,

reaching a report of 3 to 5 weekly requests, while EMP2 indicates a decrease of

45.5%, achieving a range of 8 to 10 reports. per week The EMP3 shows a decrease

of 37.5% of the reports reflecting only 2 to 3 weekly requests. The above results are

summarized in Fig. 4.

Fig. 4. Support cases before and after the implementation of good practices.

The practice of versioning, CI and CD were significant for each company, integrating

the different changes in a controlled way and being always prepared to face a

0
2
4
6
8

10
12
14
16
18
20
22

EMP1 EMP2 EMP3

n
u

m
b

er
 o

f
su

p
p

o
rt

 c
as

es

Report by company

Before After

https://doi.org/10.19053/01211129.v31.n61.2022.14828

Manuel-Alejandro Pastrana-Pardo; Hugo-Armando Ordóñez-Erazo; Carlos-Alberto Cobos-Lozada

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (61), e14828. July-September 2022. Tunja-Boyacá,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.

 DOI: https://doi.org/10.19053/01211129.v31.n61.2022.14828

production release. EMP2 and EMP3 are the ones that suffered the most from

manual deployments, because in some situations and due to response time pressure

on support, they directly manipulated the code deployed on the server to solve a

problem. Not only losing control of the change, but also occasionally generating

inoperability at times due to poor handling. The measurement of effective

deployments before implementing the practices shows that EMP1 had a total of 90%

success, due to a deployment checklist that is executed manually. After

implementation, they get 100% and the manual review of the checklist disappears,

leaving the developer in charge free to fulfill other functions. The EMP2 had a 50%

correct deployment before the practices, because its process is empirical and

without any control. After the implementation, 100% correct deployments are

obtained. The EMP3 had a total of 80% correct deployments before the practices

because it also had a checklist. After implementation they reach 100%. Fig. 5

summarizes the results presented above.

Fig. 5. Successful deployments before and after the implementation of good practices.

IV. CONCLUSIONS AND FUTURE WORK

The division by phases of the development process reflects that development and

quality presents a high possibility of including best practices based on DevOps for

SCRUM, managing to approach an initial selection of best practices, detail them and

propose an implementation way, which is tested in a case study.

0%

20%

40%

60%

80%

100%

EMP1 EMP2 EMP3

Su
cc

es
s

ra
te

Report by company
Before After

https://doi.org/10.19053/01211129.v31.n61.2022.14828

Approach to the Best Practices of Software Development Based on DevOps and SCRUM Used in Very Small
Entities

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (61), e14828. July-September 2022. Tunja-Boyacá,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.

 DOI: https://doi.org/10.19053/01211129.v31.n61.2022.14828

From the case study it was determined that the practice of versioning allows a

historical follow-up evidencing progress or delays in the project, when a change was

made and who makes it, guaranteeing that the code is always available for those

who need it. Additionally, unifying the work of all the collaborators through an

integration branch, with the pull request command, implies doing a manual

inspection of the code whenever it is requested to merge the changes, which adds

a quality filter at that point in the process. Together with the versioning, the IC

implements another quality filter, verifying if a modification has been uploaded that

by inadvertence prevents the deployable unit from being generated or not. Together,

these practices generate an environment of preventive quality that implements

significant controls for the development process. Also, the implementation of the CD

allowed the development teams to guarantee a 100% effective deployment from the

early stages of a project, as evidenced by the results.

On the other hand, there is evidence of a direct impact on the quality of what is

developed, because the number of support cases that companies must address

decreases when quality controls are increased during development.

The research group hopes to explore as future work other approaches to the actual

versioning model, such as replacing the name of each developer branch for an

attribute or characteristic (feature), as well as delving into the implementation of unit

tests and their automatic inspection through CI, analysis static code, automated

functional tests, and the integration of all practices to the current model.

AUTHORS’ CONTRIBUTION

Manuel-Alejandro Pastrana-Pardo: Conceptualization, Methodology Resources,

Writing- Original draft.

Hugo-Armando Ordoñez-Erazo: Conceptualization, Methodology, Resources,

Writing- Original draft, Supervision, Project administration, Funding acquisition.

Carlos-Alberto Cobos-Lozado: Supervision, Writing- Review and Editing.

https://doi.org/10.19053/01211129.v31.n61.2022.14828

Manuel-Alejandro Pastrana-Pardo; Hugo-Armando Ordóñez-Erazo; Carlos-Alberto Cobos-Lozada

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (61), e14828. July-September 2022. Tunja-Boyacá,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.

 DOI: https://doi.org/10.19053/01211129.v31.n61.2022.14828

ACKNOWLEDGMENTS

The authors express their gratitude to the Institución Universitaria Antonio José

Camacho for its participation in the research project entitled "Implementation of

standardized best practices for the development of software based on SCRUM and

DevOps in very small companies". In the same way, to the Research Vice-Rectory

of the Universidad del Cauca for the support provided to the group of researchers in

the execution of this project.

REFERENCES

[1] S. Martinez-Fernandez, A. Vollmer, A.Jedlitschka, X. Franch, L. Lopez, P. Ram, P. Rodriguez, S. Aaramaa,

A. Bagnato, M. Choras, J. Partanen, “Continuously Assessing and Improving Software Quality With

Software Analytics Tools: A Case Study,” IEEE Access, vol. 7, pp. 68219–68239, 2019.

https://doi.org/10.1109/ACCESS.2019.2917403

[2] P. Rodríguez, A. Haghighatkhah, L. E. Lwakatare, S. Teppola, T. Suomalainen, J. Eskeli, T. Karvonen, P.

Kuvaja, J. M. Verner, M. Oivo, “DevOps in practice: A multiple case study of five companies,” Information

and Software Technology, vol. 114, pp. 217–230, 2019. https://doi.org/10.1016/j.infsof.2019.06.010

[3] ISO/IEC JTC 1/SC 7/WG 24, ISO/IEC DTR 29110-5-6-3:2018, 2019.

https://isotc.iso.org/livelink/livelink/open/jtc1sc7wg24

[4] M. Munoz, J. Mejia, A. Lagunas, “Implementation of the ISO/IEC 29110 standard in agile environments: A

systematic literature review,” in Iberian Conference on Information Systems and Technologies, 2018, pp.

1–6. https://doi.org/10.23919/CISTI.2018.8399332

[5] A. Hemon, B. Lyonnet, F. Rowe, B. Fitzgerald, “From Agile to DevOps: Smart Skills and Collaborations,”

Information Systems Frontiers, vol. 22, no. 4, pp. 927–945, 2020. https://doi.org/10.1007/s10796-019-

09905-1

[6] S. Badshah, A. A. Khan, B. Khan, “Towards Process Improvement in DevOps,” in Proceedings of the

Evaluation and Assessment in Software Engineering, Apr. 2020, pp. 427–433.

https://doi.org/10.1145/3383219.3383280

[7] M. Z. Toh, S. Sahibuddin, M. N. Mahrin, “Adoption Issues in DevOps from the Perspective of Continuous

Delivery Pipeline,” in Proceedings of the 2019 8th International Conference on Software and Computer

Applications, 2019, pp. 173–177. https://doi.org/10.1145/3316615.3316619

[8] A. Hemon, B. Lyonnet, F. Rowe, B. Fitzgerald, “Conceptualizing the transition from agile to DevOps: A

maturity model for a smarter is function,” in IFIP Advances in Information and Communication Technology,

2019, pp. 209–223. https://doi.org/10.1007/978-3-030-04315-5_15

[9] R. S. Pressman, B. R. Maxim, Software Engineering: A Practitioner’s Approach, Eighth Edition, McGraw-

Hil. Boston, USA: McGraw-Hill, 2015.

[10] K. Schwaber, J. Sutherland, La Guía de Scrum. La Guía Definitiva de Scrum: Las Reglas del Juego, 2020.

https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-Spanish-European.pdf

https://doi.org/10.19053/01211129.v31.n61.2022.14828
https://doi.org/10.1109/ACCESS.2019.2917403
https://doi.org/10.1016/j.infsof.2019.06.010
https://isotc.iso.org/livelink/livelink/open/jtc1sc7wg24
https://doi.org/10.23919/CISTI.2018.8399332
https://doi.org/10.1007/s10796-019-09905-1
https://doi.org/10.1007/s10796-019-09905-1
https://doi.org/10.1145/3383219.3383280
https://doi.org/10.1145/3316615.3316619
https://doi.org/10.1007/978-3-030-04315-5_15
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-Spanish-European.pdf

Approach to the Best Practices of Software Development Based on DevOps and SCRUM Used in Very Small
Entities

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (61), e14828. July-September 2022. Tunja-Boyacá,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.

 DOI: https://doi.org/10.19053/01211129.v31.n61.2022.14828

[11] M. O. Onarcan, Y. Fu, M. O. Onarcan, Y. Fu, “A Case Study on Design Patterns and Software Defects in

Open Source Software,” Journal of Software Engineering and Applications, vol. 11, no. 5, pp. 249–273,

May 2018. https://doi.org/10.4236/JSEA.2018.115016

[12] M. Pastrana, H. Ordoñez, A. Rojas, A. Ordoñez, “Ensuring Compliance with Sprint Requirements in

SCRUM: Preventive Quality Assurance in SCRUM,” in Advances in Intelligent Systems and Computing,

2019, pp. 33–45. https://doi.org/10.1007/978-981-13-6861-5_3

[13] N. Railic, M. Savic, Architecting Continuous Integration and Continuous Deployment for Microservice

Architecture, 2021. https://doi.org/10.1109/INFOTEH51037.2021.9400696

[14] Y. Zhao, A. Serebrenik, Y. Zhou, V. Filkov, B. Vasilescu, “The impact of continuous integration on other

software development practices: A large-scale empirical study,” in 32nd IEEE/ACM International

Conference on Automated Software Engineering, 2017, pp. 60–71.

https://doi.org/10.1109/ASE.2017.8115619

https://doi.org/10.19053/01211129.v31.n61.2022.14828
https://doi.org/10.4236/JSEA.2018.115016
https://doi.org/10.1007/978-981-13-6861-5_3
https://doi.org/10.1109/INFOTEH51037.2021.9400696
https://doi.org/10.1109/ASE.2017.8115619

