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Abstract
Aim of study: To define an early selection strategy based on tests applied to full-sibling progenies of Pinus caribaea var. hondurensis 

grown in the Cerrado Biome. 
Area of study: Prata region (MG), Brazil. 
Materials and methods: Progeny tests were cultivated in 2006; the study followed a completely randomized design, with 79 families of 

full-siblings and 15 repetitions, with one plant per plot. Thinning was carried out at the age of 6 and 8 years; 615 individuals and 44 families 
were included in the test. The following quantitative variables were used in the statistical analysis of data on the remaining individuals: 
diameter at breast height (DBH) in cm, total height (H) in m, and volume in dm³ at the age of 3, 4, 5, 6, 7, 8 and 11 years. BLUP multi-trait 
multivariate model, with non-structured covariance structure matrix, was adopted for calculations.  

Main results: There were strong additive genetic correlations (above 90%) between variables DBH and H, in all analyzed ages. Strong 
volume correlations were estimated based on the age group over four years; volume selection efficiency reached its peak at the age of five 
years.  Selection based on volume at the age of 5 years leads to genetic gains in this variable; selection intensity values can range from 7.8% 
to 6.4% and 5.4%, and from 10% to 20% and 30%.  

Research highlights: The best strategy lies on carrying out the selections at the age of five years, based on 30% selection intensity. 
Additional key words: early selection; multi-trait BLUP; unstructured matrices 
Abbreviations used: BLUP (best linear unbiased prediction); DBH (diameter at breast height); H (total height); REML (restricted 

maximum likelihood); VOL (volume).
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Introduction
One of the main targets of genetic enhancement pro-

grams lies on making genetic gain estimates as soon as 
possible, since early selection processes are important to 
maximize gains per time unit to get fast capture of gains 
and reproductive cycle reduction (Belaber et al., 2018; Ha-
yatgheibi et al., 2019). 

Early Pinus selection allows identifying commercial 
features of interest in juvenile trees, since its rotation cycles 

can range from 15 to 22 years, in Brazil (Aguiar et al., 2015; 
Coutinho et al., 2017; Flores Jr et al., 2021). Genetic gain 
at rotation age can be predicted through age-age correlation 
to mean genetic gain in earlier age (Luo & Thomas, 2021). 
Therefore, it is essential knowing correlation magnitudes 
among different age groups (Belaber et al., 2018). Correla-
tion is high when genotypic classifications are stable, over-
time; it is low when it changes significantly (Rweyonge-
za, 2016). Any trait must be recurrently assessed overtime 
in order to collect longitudinal data to model heritability 

https://doi.org/10.5424/fs/2022312-18230
https://orcid.org/0000-0001-8289-1051
https://orcid.org/0000-0002-0415-407X
https://orcid.org/0000-0002-7275-8043
https://orcid.org/0000-0002-2518-7575
https://orcid.org/0000-0001-8486-0611


2 Vanessa Ishibashi, Paulo C. Flores-Junior, Diego T Martinez et al.

Forest Systems August 2022 • Volume 31 • Issue 2 • e014

changes and genetic/age correlations (Apiolaza & Garrick, 
2001). Longitudinal data can be taken as multivariate data, 
since their analysis also shows some peculiarities; it is so, 
because several measurements are correlated to each other 
and because there may be variance and covariance hetero-
geneity among them (Mariguele et al., 2011). 

The multivariate model, also known as unstructured co-
variance matrix, is recommended to analyze data sets, such 
as the herein assessed ones (Mariguele et al., 2011). Best 
unbiased linear multi-trace prediction (BLUP) is a quite 
efficient alternative, since it simultaneously uses all infor-
mation and deals with repeated measurements - as if they 
were different and correlated features - by taking into con-
sideration their heritability and genetic correlations (Alves 
et al., 2019). This model was used in the longitudinal data 
analysis applied to Jatropha curcas (Alves et al., 2019). 

Studies conducted with different species belonging to the 
herein investigated genus have pointed towards the feasi-
bility of early selection processes based on using diameter 
at breast height (DBH) as selection criterion. Belaber et al. 
(2018) conducted a study with the Pinus caribaea var. hon-
durensis × Pinus elliottii hybrid and recorded high age-age 
correlations to growth traits; thus, the selection process can 
be carried out when plants are three years old. Tambarussi 
et al. (2018) conducted a study with this very same hybrid 
and found genetic correlations ranging from 0.96 to 0.99 
between growth variables evaluated at the age of four and 
eight years. Based on the study conducted by Flores Jr et al. 
(2021) with Pinus taeda, high age-age genetic correlations 
were recorded for DBH between the age of 10 and 20 years 
(0.64), whereas low and non-significant age-age genetic co-
rrelations were recorded between the age of 6 and 20 years 
(0.39). Coutinho et al. (2017) showed family ordering corre-
lation higher than 0.80 between the age of 8 and 15 years. 
Kurt & Isik (2021) conducted a study with Pinus brutia and 
recorded positive and high age-age genetic correlations for 
DBH, whose values ranged from 0.72 to 0.99. 

Based on the hypothesis that it is likely finding corre-
lation among ages to achieve early selection, the aim of 
the present study was to draw an early selection strategy in 
progeny tests of P. caribaea var. hondurensis full-siblings 
cultivated in a Cerrado region based on multi-trait BLUP.

 
Material and methods 
Genetic materials and experiment description

The study was carried out in Prata region (MG), Sou-
theastern Brazil (19°30’ S, 43º92’ W, altitude 630 m), 
where one mainly finds the prevalence of tropical climate 
with dry season in Winter (Aw). Mean temperature in the 
site reaches 22 °C, and mean annual rainfall is 1,500 mm. 
Overall, soil in the region is acidic and has low fertility 
(Alvares et al., 2013).

Base population was formed by commercial planta-
tions resulting from seeds provided by the Seed Produc-
tion Area, Agudos County (SP), Poptún, Guatemala. The 
phenotypic selection of matrices was carried out in 1993, 
when trees were at the age of four years, at selection in-
tensity of 1:5000. Selection criteria were volume, stem 
straightness, smallest number of branches, branch thick-
ness, longest distance between internodes and regularity 
between internodes.

Controlled crossing between selected mother trees was 
carried out in 1998, 1999 and 2000. Progeny tests were 
implemented, in 2006, with 79 families of full-siblings, 
based on completely randomized experimental design, 
with 15 repetitions and one plant per plot (3 m × 2 m spa-
cing). Families comprised 25 mothers and 43 fathers; they 
did not follow pre-established crossing designs. 

The following quantitative variables were used in the 
statistical analysis: DBH in cm, total height (H) in m, and 
volume (VOL) in dm3 at the age of 3, 4, 5, 6, 7, 8 and 11 
years. Volume was calculated through Eq. (1):

  (1)

Thinning was performed at the age of six years; all in-
dividuals belonging to 20 families (that have assumingly 
presented the lowest performance) were excluded from 
the experiment. Other 14 families were eliminated at the 
age of eight years; thus, 44 families and 615 individuals 
remained for the test (Table 1). Thus, 615 common indi-
viduals, at all ages, were used in the analysis. Thinning 
was carried out because experiment managers wanted to 
gradually reduce the number of families used in the expe-
riment; families presenting the lowest volumetric growth 
at the age of 6 and 8 years were thinned. 

Statistical analysis 

The multi-feature statistical model was given by Eq. (2):

y = Xb + Za + Wf + ξ + η   (2)

wherein, y is the vector of phenotypic data, b is the vector 
of fixed blocks added to the general average, a is the vec-
tor of individual (randomized) additive genetic effects, 
and f is the full-sibling’s (random) vector of random gene-
tic effects. X, Z and W represent the matrices associating 
fixed and random effects with y (Hernández et al., 2019). 
An autoregressive spatial component was added, and the 
residual vector e was partitioned into spatially dependent 
(ξ) and independent (η) residues. Spatially dependent re-
sidues (ξ) were modeled by using a covariance structure 
that embodies a first-order autoregressive process sepa-
rable into lines (ρcol) and columns (ρrow), whose R matrix 
is 𝑅𝑅 =  (𝜎𝜎𝜉𝜉

2[𝐴𝐴𝑅𝑅1(𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐)⨂𝐴𝐴𝑅𝑅1(𝜌𝜌𝑟𝑟𝑐𝑐𝑟𝑟)] + 𝜎𝜎𝜂𝜂
2𝐼𝐼) ; wherein,𝑅𝑅 =  𝜎𝜎𝜉𝜉

2  is 
the dependent spatially residual variance between column 
and line,𝜎𝜎𝜂𝜂2 is the independent residual variance,  ⨂  is the 

𝑉𝑉𝑉𝑉𝑉𝑉 = [(𝜋𝜋𝐷𝐷𝐷𝐷𝐷𝐷2 40⁄ )] × 𝐷𝐷 × 0.42  
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sense of Kronocker product; and AR1(ρ)represents the 
first-order product of the autoregressive correlation ma-
trix heading towards the column and the line, respecti-
vely. The values of ρcol and ρrow were defined based on the 
lowest values recorded for the Akaike information crite-
rion (Akaike, 1974).

Assumingly, vector a is distributed as follows:
 a∼N (0, Σ𝑎𝑎 ⨂𝐴𝐴);  ; wherein, Σa is the covariance matrix of ran-
dom additive genetic effects and A is the mean relative 
numerator of the relationship matrix based on pedigree 
information, vector f is distributed as f∼N (0, Σ𝑓𝑓 ⨂𝐼𝐼) ; whe-
rein, Σf is the covariance matrix of the family’s random 
genetic effects, vector ξ is distributed as f∼N (0, Σ𝜉𝜉 ⨂ 𝐼𝐼) ); 
wherein, Σξ is the covariance matrix of spatially depen-
dent residues’ random genetic effects and vector η is dis-
tributed as f∼N (0, Σ𝜂𝜂 ⨂𝐼𝐼 ; wherein, Ση is a covariance matrix 
of spatially independent residues’ random effects and I 
is an identity matrix of an order appropriate to the res-
pective random effect. Furthermore, Σa, Σf, Σξ and Ση are 
non-structured covariance structures (Gilmor et al., 2015; 
Alves et al., 2018)

 
Genetic parameter estimates

Variance components were estimated based on the 
Restricted Maximum Likelihood Method (REML). These 
components were found by using the expectation maximi-
zation algorithm (EM), in the R software (R Core Team, 
2021), at function reml90 of the breedR package (Muñoz 
& Sanchez, 2019). 

Heritability itself, (ℎ̂𝑎𝑎2) , was estimated through Eq. (3): 

  (3)

wherein, �̂�𝜎𝑎𝑎2 is additive genetic variance, �̂�𝜎𝑓𝑓2  is fami-
ly variance, �̂�𝜎𝑒𝑒2 is residual variance and �̂�𝜎𝑒𝑒𝑒𝑒2  is spatial 
variance.

Genetic correlation (cor) among ages was estimated 
through Eq. (4): 

(4)

wherein, �̂�𝜎𝑒𝑒2 is additive genetic variance of age x, �̂�𝜎𝑒𝑒2 is ad-
ditive genetic variance of age y, and COVx,y is covariance 
among ages.

Selection efficiency (SE) was calculated through equa-
tion Eq. (5), described by Hayatgheibi et al. (2019):

  
(5)

wherein, iE is selection intensity at early age, hE is herita-
bility root at early age, cora additive genetic correlation 
among ages, iA selection intensity at reference age and hA 

is heritability root at reference age. The same selection 
intensities, at early age and at reference age, were used 
for the calculations. 

Compliance among selected individuals was calcu-
lated based on the Cohen coefficient (Kappa) (Cohen, 
1960), through Eq. (6) described by Resende (2015):

Kappa=  NO-NA ⁄ NP-NA  (6)

wherein, NO is the number of coincident individuals/
families among different ages, NP is the number of data 
pairs and NA is the random number of coincident indivi-
duals/families (NA = NP × selection intensity).

Selection gains (GS) recorded for each feature were 
predicted by taking into consideration selection intensi-
ties equal to 10%, 20% and 30% at the age of 5 years, 
based on the following Eq. (7):

 
    

(7)

wherein, VG is the predicted genetic value and n is the 
number of selected individuals.

The following Eq. (8) was used to calculate the effec-
tive population size (Ne) (Resende, 2015):

(8)

wherein, Nf is the number of selected families, Kf is the 
mean number of selected individuals per family and 𝜎𝜎𝐾𝐾𝐾𝐾2  
is the variance recorded for the number of selected indi-
viduals, per family. 

Results
Variance components

Overall, variance estimates recorded for DBH and VOL 
have increased until the test model reached the age of 8 
years. The reversed outcome was observed for variable H, 
since additive genetic variance �̂�𝜎𝑎𝑎2 and residual variance �̂�𝜎𝑒𝑒2 
estimates decreased, overtime. The greatest contribution 
to total variance was attributed to residual and spatial resi-
dues, in all variables and at all ages (Table 2). 

ℎ̂𝑎𝑎2 =
�̂�𝜎𝑎𝑎2

�̂�𝜎𝑎𝑎2 + �̂�𝜎𝑓𝑓2 + �̂�𝜎𝑒𝑒2 + �̂�𝜎𝑒𝑒𝑒𝑒2
 

𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐶𝐶𝐶𝐶𝐶𝐶𝑥𝑥,𝑦𝑦 √�̂�𝜎𝑥𝑥2 𝑥𝑥 �̂�𝜎𝑦𝑦2  ⁄  

𝑆𝑆𝑆𝑆 = (𝑖𝑖𝐸𝐸ℎ𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎) (𝑖𝑖𝐴𝐴ℎ𝐴𝐴)⁄   

GS = ∑nVG ⁄ n

𝑁𝑁𝑁𝑁 =  (2 × 𝑁𝑁𝑓𝑓 × 𝐾𝐾𝑓𝑓) (𝐾𝐾𝑓𝑓 + 1 + (𝜎𝜎𝐾𝐾𝑓𝑓
2 𝐾𝐾𝑓𝑓⁄⁄  )) 

Year Age # Families # Fathers # Mothers # Individuals Remaining trees

2009 3 79 43 24 1147 94.4%
2013 7 59 38 21 847 69.7%
2017 11 44 33 16 615 50.6%

Table 1. Description of progeny tests applied to full-siblings of Pinus caribaea var. hondurensis, overtime
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Heritability (ℎ̂𝑎𝑎2) was low in all variables and at all 
ages; it increased between the age of 3 and 5 years, for 
DBH and VOL; but it decreased again, at older ages. The 
highest value recorded for (ℎ̂𝑎𝑎2) predicted for DBH was 
observed at the age of 5 years (0.10), at the age of 5 to 8 
years for VOL (0.03), and at the age of three years for H 
(0.09) (Table 2).

Genetic correlation between age and selection 
efficiency

Genetic correlations recorded for DBH and H were high and 
significant. This finding points out that early selection, at the age 
of 3 years, can lead to positive gains at the age of 11 years. Low 

VOL correlations were observed between the age of 3 years and 
the other assessed ages. However, correlations between ages 
were high and significant in the ageover 4 years (Fig. 1).

Selection efficiency takes into consideration (ℎ̂𝑎𝑎2) and cora 
estimates. Early selection reached its peak at the age of 5 
years for DBH, at the age of 5 and/or 6 years for VOL, and at 
the age of 3 years for H (Fig. 2).

Selection strategies  

Selection based on volume at the age of 5 years leads 
to genetic gains in this variable; selection intensity values 
can range from 7.8% to 6.4% and 5.4%, and from 10% to 
20% and 30%. The highest gains were recorded under the 

Age �̂�𝝈𝒂𝒂
𝟐𝟐                         �̂�𝝈𝒇𝒇

𝟐𝟐                        �̂�𝝈𝒆𝒆𝒆𝒆
𝟐𝟐 �̂�𝝈𝒆𝒆

𝟐𝟐 �̂�𝒉𝒂𝒂
𝟐𝟐 

DBH
3 0.174 0.258 0.946 1.478 0.06
4 0.386 0.367 2.230 1.652 0.08
5 0.707 0.478 4.129 1.606 0.10
6 0.745 0.629 6.482 1.269 0.08
7 0.757 0.789 8.456 1.597 0.07
8 0.853 0.944 10.240 1.800 0.06
11 0.746 1.157 13.810 2.462 0.04
5full 0.862 1.507 5.787 0.421 0.10

Volume
3 6.498 42.200 83.490 219.600 0.02
4 18.600 92.600 396.900 520.000 0.02
5 94.590 226.800 1806.000 787.800 0.03
6 188.500 447.000 3980.000 1269.000 0.03
7 328.600 831.000 8180.000 1813.000 0.03
8 447.300 1333.000 13140.00 2308.000 0.03
11 675.800 2484.000 27630.00 3782.000 0.02
5full 97.30 297.00 1853.00 524.000 0.04

Total height
3 0.201 0.165 0.413 1.362 0.09
4 0.103 0.0731 0.272 1.567 0.05
5 0.132 0.0746 1.025 1.824 0.04
6 0.106 0.0812 1.367 1.251 0.04
7 0.112 0.0706 1.960 1.186 0.03
8 0.101 0.114 3.032 1.377 0.02
11 0.081 0.138 5.369 1.114 0.01
5full 0.139 0.543 0.558 3.289 0.03

�̂�𝜎𝑎𝑎2 is additive genetic variance.�̂�𝜎𝑓𝑓2  is family variance. �̂�𝜎𝑒𝑒2 is residual variance. �̂�𝜎𝑒𝑒𝑒𝑒2  is spatial 
variance. (ℎ̂𝑎𝑎2) is heritability, itself. 5full is the analysis performed at the age of 5 years, com-
posed of all individuals in the test.

Table 2. Estimates of variance components and genetic parameters recorded for diameter 
at breast height (DBH), volume and total height, assessed through progeny tests applied to 
full-siblings of Pinus caribaea var. hondurensis at seven different ages

�̂�𝝈𝒂𝒂
𝟐𝟐                         �̂�𝝈𝒇𝒇

𝟐𝟐                        �̂�𝝈𝒆𝒆𝒆𝒆
𝟐𝟐 �̂�𝝈𝒆𝒆

𝟐𝟐 �̂�𝒉𝒂𝒂
𝟐𝟐 �̂�𝝈𝒂𝒂

𝟐𝟐                         �̂�𝝈𝒇𝒇
𝟐𝟐                        �̂�𝝈𝒆𝒆𝒆𝒆

𝟐𝟐 �̂�𝝈𝒆𝒆
𝟐𝟐 �̂�𝒉𝒂𝒂

𝟐𝟐 �̂�𝝈𝒂𝒂
𝟐𝟐                         �̂�𝝈𝒇𝒇

𝟐𝟐                        �̂�𝝈𝒆𝒆𝒆𝒆
𝟐𝟐 �̂�𝝈𝒆𝒆

𝟐𝟐 �̂�𝒉𝒂𝒂
𝟐𝟐 �̂�𝝈𝒂𝒂

𝟐𝟐                         �̂�𝝈𝒇𝒇
𝟐𝟐                        �̂�𝝈𝒆𝒆𝒆𝒆

𝟐𝟐 �̂�𝝈𝒆𝒆
𝟐𝟐 �̂�𝒉𝒂𝒂

𝟐𝟐 
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highest selection intensities, but it also accounted for de-
crease in effective population size. Indirect positive gains 
were also observed in the other variables (Table 3). 

Effective population sizes ranged from 16 to 35.5 (Ta-
ble 3). Kappa coefficient between selected individuals 

reached 65%, at most, at 30% selection intensity (Table 
3). Accordingly, the strategy balancing genetic gains, 
effective population size and coincidence of individuals 
lies on selections carried out at the age of 5 years, based 
on 30% selection intensity.

Figure 1. Additive genetic correlations among ages assessed in progeny tests 
applied to full-siblings of Pinus caribaea var. hondurensis. (a) DBH, (b) Volume 
and (c) Height. **: significant at 1% probability.  

Figure 2. Selection efficiency for DBH, volume and total height in progeny tests applied 
to full-siblings of Pinus caribaea var. hondurensis.  
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Discussion
Variance and heritability components feature the trait 

variation-related genetic control degree; they follow di-
fferent trends throughout tree-growth time (Dong et al., 
2019). Additive genetic variation and (ℎ̂𝑎𝑎2) estimates were 
herein considered low, and it must imply small gains due 
to selection (Souza et al., 2017). These values were lower 
than those recorded by Sampaio et al. (2000) in progeny 
tests applied to P. caribaea var. hondurensis from Isla de 
Guanaja (Honduras) and Poptún (Guatemala), which were 
assessed at the age of 5 years – (ℎ̂𝑎𝑎2) estimates recorded for 
Isla de Guanaja were higher than those recorded for speci-
mens coming from Poptún. Souza et al. (2017) also found 
the highest (ℎ̂𝑎𝑎2) values in a combined provenance/progeny 
test carried out at the age of 5 years to assess variables H 
and VOL. These authors recorded (ℎ̂𝑎𝑎2) estimates of 0.23 
for height, 0.06 for DBH and 0.08 for VOL through joint 
analysis; it took into consideration the five provenances in 
the test. On the other hand, individual analysis based on 
provenance showed significant variation in this parame-
ter; however, overall, they followed the same trend.

Low (ℎ̂𝑎𝑎2) was hypothesized because thinning decrea-
sed population’s genetic variability, since the analysis was 
only applied to individuals that had remained after the se-
cond thinning, at all ages. The thinning procedure redu-
ced by 55% the number of individuals and families. The 
analysis comprising all individuals (n=1138) showed the 
highest family variance estimates and  reduced residual 
and/or spatial variance, whereas additive genetic variance 
and (ℎ̂𝑎𝑎2) recorded rough estimates (Table 2). This outco-
me indicated that low genetic variability featured the in-
vestigated population, rather than resulted from thinning.

Silva et al. (2011) and Moraes et al. (2007) assessed 
genetic tests applied to P. caribaea var. hondurensis be-
fore and after pruning and found that (ℎ̂𝑎𝑎2) values recorded 

for height decreased two years after thinning, whereas va-
lues estimated for DBH and VOL increased. It is impor-
tant highlighting that values found by Silva et al. (2011) 
were lower than the ones recorded in the present study 
(Table 2) and higher than values recorded by Moraes et 
al. (2007). These authors did not use mixed model analy-
ses with spatial components, and it opposed what was 
described by Belaber et al. (2018), who emphasized the 
importance of fitting mixed models capable of identifying 
and measuring the effects of environmental competition 
and heterogeneity on the analysis of experiments con-
ducted at more mature ages, which show higher variation 
levels in trials, as the effect of competition or thinning. 
Spatial models take into consideration continuous envi-
ronmental variations, whereas models, such as the auto-
regressive ones, reflect the existence of correlated errors 
between individuals and their neighbors, if one takes into 
account environmental trends and competition effects du-
ring the adjustment process (Stringer et al., 2011; Silva & 
Kerr, 2013; Hernández et al., 2019). 

Belaber et al. (2018) and Tambarussi et al. (2018) have 
estimated genetic correlations between earlier ages, whe-
reas Coutinho et al. (2017), Flores Jr. et al. (2021) and 
Kurt & Isik (2021) have estimated genetic correlations 
between ages closer to the final age of Pinus species’ cy-
cle. Similar to the present study, it is possible seeing that 
the greater the interval between ages, the lower the corre-
lation between them. According to Kurt & Isik (2021), it 
happens because predicted genetic correlations are main-
ly found when the observed genes are used. Another inte-
resting factor lies on the study by Coutinho et al. (2017), 
who recorded ordering correlations higher than 0.80 be-
tween the age of 8 and 15 years. However, individuals’ 
early selection was only effective in environments whose 
climate and phytogeography were similar to the ones ob-
served in the place where mother trees were selected. 

Selection intensity

10% 20% 30%

Selected individuals 62 123 185
Effective size 16.2 29.0 35.6
Kappa5-11 21% 15% 65%
GSVOL 7.8% 6.4% 5.4%
New mean VOL (dm³) 169.21 166.92 165.35
GSDBH 5.6% 4.5% 3.8%
New mean DBH (cm) 19.23 19.04 18.91
GSH 1.5% 0.3% 0.0%
New mean H (m) 13.40 13.49 13.55

Kappa5-11 is Kappa coefficient at the ages of 5 and 11 years. GSVOL is genetic gain in volume. GSDBH is 
genetic gain in DBH. GSH is genetic gain in total height.

Table 3. Genetic gain, effective population size, new mean and Kappa coefficient recorded for different 
selection intensities carried out in progeny tests applied to full-siblings of Pinus caribaea var. hondurensis, 
at the age of 5 years.
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According to Flores Jr. et al. (2021), the selection pro-
cess shall be carried out when (ℎ̂𝑎𝑎2) presents its maximum 
value in order to maximize genetic gains. In addition, ge-
netic values recorded at selection age must be highly co-
rrelated to those observed at harvest age. Thus, according 
to recommendations by the aforementioned authors, the 
selection process shall be carried out at the age of 10 
years, since it was the age when the highest genetic gain 
and (ℎ̂𝑎𝑎2) estimates were identified. The selection efficien-
cy index used in the present study, as well as by Dong 
et al. (2019), who conducted a study with species Larix 
principis, took into consideration (ℎ̂𝑎𝑎2) and cora estimates. 
Unlike what was found in the present study, Dong et al. 
(2019) reported that variable H reached its selection peak 
at age older than that observed for DBH, as well as that 
the selection efficiency index recorded for both traits has 
quickly increased to its maximum value; subsequently, 
it decreased back. Variable DBH recorded selection effi-
ciency peak at the age of 6 years, whereas H recorded se-
lection efficiency peak age ranging from 8 to 9 years. Kurt 
& Isik (2021) calculated selection efficiency as gain:year 
ratio between early selection and selection in the harvest 
year. According to the aforementioned authors, the opti-
mal early selection age for species P. brutia ranged from 
4 to 6 years. The selection efficiency peak herein recor-
ded for variable VOL was observed at the age of 5 years. 
Early selection based on this variable can be performed 
at the age of 5 years, since it is the main goal of breeding 
programs. 

Gains recorded for variable DBH were higher than 
those recorded by Silva et al. (2011), but, yet, with sma-
ller effective population sizes. Assumingly, effective po-
pulation size n=30 is enough to proceed with a long-term 
genetic enhancement program (Ishibashi et al., 2020). 
Effective population size n=40 can capture alleles at 6% 
frequency (Nunes et al., 2021); it leads to 10% probability 
of losing alleles at 5% frequency in the source population 
(Ingvarsson & Dahlberg, 2019). Small effective popula-
tion sizes can account for accumulation of harming alle-
les, inbreeding, inbreeding depression and reduced popu-
lation ability to respond to environmental changes. These 
issues get worse in commercial forests under long rotation 
times, since the effects of future environmental changes 
are quite uncertain (Ingvarsson & Dahlberg, 2019). Simi-
lar to effective population size, Kappa index plays impor-
tant role in the continuity of breeding programs and in 
generation-advancement processes, since it enables new 
selection and recombination cycles. 

Based on the analyses carried out during the progeny 
tests applied to P. caribaea var. hondurensis at different 
ages, DBH and H recorded strong and significant additive 
genetic correlations at all analyzed ages. Strong correla-
tions were estimated from the age group over 4 years, for 

variable VOL. Selection efficiency recorded for variable 
VOL reached its peak at the age of 5 years. Selection based 
on VOL, at the age of 5 years, at 30% selection intensity, 
was the strategy accounting for balancing genetic gains, 
effective population size and match between individuals.
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