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Abstract
Aim of study: ForestAz application was developed to (i) map Azorean forest areas accurately through semiautomatic supervised clas-

sification; (ii) assess vegetation condition (e.g., greenness and moisture) by computing and comparing several spectral indices; and (iii) 
quantitatively evaluate the stocks and dynamics of aboveground carbon (AGC) sequestrated by Azorean forest areas.

Area of study: ForestAz focuses primarily on the Public Forest Perimeter of S. Miguel Island (Archipelago of the Azores, Portugal), with 
about 3808 hectares.

Materials and methods: ForestAz was developed with Javascript for the Google Earth Engine platform, relying solely on open satellite 
remote sensing data, as Copernicus Sentinel-1 (Synthetic Aperture Radar) and Sentinel-2 (multispectral).

Main results: By accurately mapping S. Miguel island forest areas using a detailed species-based vegetation mapping approach; by 
allowing frequent and periodic monitoring of vegetation condition; and by quantitatively assessing the stocks and dynamics of AGC by 
these forest areas,  this remote sensing-based application may constitute a robust and low-cost operational tool able to support local/regional 
decision-making on forest planning and management.

Research highlights: This collaborative initiative between the University of the Azores and the Azores Regional Authority in Forest 
Affairs was selected to be one of the 99 user stories by local and regional authorities described in the catalog edited by the European Com-
mission, the Network of European Regions Using Space Technologies (NEREUS Association), and the European Space Agency (ESA).

Additional key words: Sentinel-1; Sentinel-2; Copernicus; Vegetation Indices; Forest Mapping; Forest Management; Aboveground 
Carbon 

Abbreviations used: AGC (Aboveground Carbon); ARFI (Azorean Regional Forest Inventory); BSI (Bare Soil Index); CART (Clas-
sification and Decision Tree); DRRF (Azores Regional Authority in Forest Affairs); ESA (European Space Agency); GEE (Google Earth 
Engine); GIS (Geographical Information Systems); GRD (Ground Range Detected); LULC (Land Use / Land Cover); NBR (Normalized 
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Introduction
Getting a better comprehension of the effects of forests 

in the carbon cycle and climate change requires to accu-
rately monitor forest resources in shorter periods of time 
(Wittke et al., 2019). Carbon is stored in living biomass 
by photosynthesis and returned to the atmosphere throu-
gh the processes of respiration, decomposition, and com-
bustion. Anthropogenic activities can alter carbon levels 

in these systems by facilitating the release or storage of 
carbon in different carbon pools (IPCC, 2000). It is well 
known the critical role of forests to mitigate climate chan-
ge due to their contribution through their carbon sink and 
carbon storage properties (Calado et al., 2015). 

The Azorean Regional Forest Inventory (ARFI) is the 
primary forest planning and management tool in this ar-
chipelagic Portuguese and European Union's Outermost 
Region. Until 2020, it has also been the most widely used 
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Land Use / Land Cover (LULC) map in the Azores Au-
tonomous Region (Portugal), being mostly used for fo-
restry policies and spatial planning by local and regional 
authorities. Through the combination of Geographical 
Information Systems (GIS) based on on-screen photo-in-
terpretation of very-high spatial resolution aerial imagery 
from 1998 (black and white) and 2007 (natural color), and 
exhaustive field campaigns for survey and validation (Gil 
et al., 2014), the current ARFI version was produced in 
2007 by the Azores Regional Authority in Forest Affairs 
(DRRF). Because the overall cost of this methodological 
procedure is very high (in terms of  both human, logis-
tics, and data resources) and time-consuming, periodic 
updates to this cartographic product are not performed as 
frequently as needed for spatial planning and forest mana-
gement purposes (Gil et al., 2018).

In order to overcome these limitations, the creation 
of a remote sensing framework based on Google Earth 
Engine (GEE) (Gorelick et al., 2017) entitled ForestAz 
app was proposed to: (1) accurately map Azorean forest 
areas using semiautomatic supervised classification; (2) 
assess vegetation condition (e.g., greenness and moisture) 
by computing and comparing several spectral indices; and 
(3) quantitatively assess the stocks and dynamics of abo-
veground carbon (AGC) sequestrated by Azorean forest 
areas. ForestAz app was developed to constitute a robust 
and low-cost operational tool to support local/regional de-
cision-making on forest planning and management.

To our knowledge, ForestAz constitutes the first 
GEE-based operational tool directly developed for lo-
cal/regional authorities to increase their workflow's 
cost-effectiveness in forest mapping and assessment for 
planning and management purposes. In fact, GEE is beco-
ming a game-changer tool for supporting forest sciences 
(Jahromi et al., 2021), and several works effectively used 
multi-source and multi-resolution GEE-based approaches 
for forest classification/mapping (e.g., Kaplan, 2021; Li 
J et al., 2021; Li R et al., 2021) and forest assessment, 
including aboveground biomass and carbon estimations 
(e.g., Sánchez-Ruiz et al., 2019; Venkatappa et al., 2020; 
Feyen et al., 2021). 

Material and methods 
The Azores Islands are located in the North Atlantic 

and are an archipelago consisting of nine volcanic is-
lands. São Miguel, the largest (74677 hectares) and most 
populated island (about 133 thousand inhabitants) within 
the Azores archipelago, is located about 1500 km from 
mainland Europe (centroid coordinates: X: 632351.58 m., 
Y: 4182515.23 m., UTM WGS84 26N). The Public Fo-
rest Perimeter is located in the eastern part of  S. Miguel 
Island, characterized by steep areas with slopes higher 

than 20% and including the island's highest point, Pico da 
Vara, with 1105 meters of altitude (Gil, 2005).

ForestAz focuses primarily on the Public Forest Pe-
rimeter of S. Miguel Island (Archipelago of the Azores, 
Portugal), with about 3808 hectares.

The ForestAz application 

In this section, every current function of the Google 
Earth Engine-based "ForestAz App" (Fig. 1) is described, 
and its potential results aiming at mapping, assessing, and 
monitoring forest areas in S. Miguel Island (Azores, Por-
tugal) are demonstrated, namely regarding data selection, 
data processing, supervised classification, results' analy-
sis, and visualization. The methodology is organized to 
clearly comprehend the whole computational workflow 
followed by this GEE-based application developed with 
Javascript, publicly available at https://manuferu.users.
earthengine.app/view/forestaz. In addition, all the code 
and layers used along with a user guide describing step by 
step how to access the data can be found at: https://github.
com/Manuferu/ForestAZ.

Selection of remote sensing datasets

This application was designed to rely mostly on open 
satellite remote sensing data, as Copernicus Sentinel-1 
(Synthetic Aperture Radar) and Sentinel-2 (multispectral). 
Sentinel-2 Multispectral Instrument (MSI) Level-2A ima-
gery collection was downloaded by Google and ingested 
in the GEE API. It was atmospherically corrected and or-
thorectified using the sen2cor algorithm (Main-Knorn et 
al., 2017) before its ingestion to GEE. All available Sen-
tinel-2 images within GEE were taken into account. Two 
different filter options were developed to make an opti-
mized selection: a) date; b) cloud coverage. The applica-
tion has the option to define the time range for the images 
search and selection. On the other hand, it has the option 
to complement and add cloud cover search. All this filte-
ring procedure is performed by the algorithm by querying 
the metadata attributes. Although one of the major draw-
backs is the frequent cloud coverage over the archipelago, 
the high temporal resolution of the image acquisition may 
mitigate the impact of this issue (Gil et al., 2012). A cloud 
filter option was added to the application to address this 
issue (e.g., "Maximum cloud cover: 20 %"). However, the 
most relevant disadvantage of this method is the measu-
rement of cloud coverage at the full-scene level, which 
could mislead the user regarding the cloud presence over 
the specific study area (a subset of the image). Thus, we 
masked out all the cloud and cirrus coverage in the avai-
lable imagery to mitigate this problem.

https://manuferu.users.earthengine.app/view/forestaz
https://manuferu.users.earthengine.app/view/forestaz
https://github.com/Manuferu/ForestAZ
https://github.com/Manuferu/ForestAZ
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Sentinel-1 Synthetic Aperture Radar (SAR) Ground 
Range Detected (GRD) C-band log scaling was used for 
this project. Each scene was preprocessed using the Sen-
tinel-1 toolbox  (Veci et al., 2014) through the following 
steps: thermal noise removal; radiometric calibration; and 
terrain correction using Shuttle Radar Topography Mis-
sion (SRTM). In addition, due to the abrupt topography 
of S. Miguel Island, we have introduced a further change 
from GRD to ARD (Analysis Ready) data by performing 
border noise correction, speckle filtering, and radiometric 
terrain normalization to mitigate radiometric distortions 
caused by topography (Mullissa et al., 2021).

Computation of vegetation indices-based 
monitoring

Empirical studies have demonstrated the correlation 
between vegetation indices and vegetation parameters 
(Freitas et al., 2005; Glenn et al., 2008; Sun et al., 2019). 
In addition, they have been shown helpful for vegetation 
condition assessment meanwhile have set a standardiza-
tion to vegetation dynamics interpretation (Schultz et al., 
2016). ForestAz is especially focused on characterizing 
and representing the patterns followed by man-planted 
forests and woody invasive plants patches to support fo-
rest planning and management in the Azores islands. To 
achieve this goal, some of the most representative and 
widely used vegetation indices (Xue & Su, 2017) were 
selected, namely the normalized difference vegetation in-
dex (NDVI; Rouse et al., 1974; Tucker, 1979; Bannari et 

al., 1995), the normalized difference water index (NDWI; 
Gao, 1996), the normalized burn ratio (NBR; Key et al., 
2002), the normalized pigment chlorophyll ratio index 
(NPCI; Main et al., 2011), and the bare soil index (BSI; 
Rasul et al., 2018). This application considers vegetation 
indices mapping and visualization as an early-stage ex-
planation of forest cover change assessment. Therefore, 
it provides a dashboard showing the maps and line plots 
of all vegetation indices, allowing them to be compared 
(Fig. 2).

Forest type classification with Sentinel data

Sentinel-2 spectral bands 2-8 and 10-12 spectral were 
used in the classification workflow. Bands 2, 3, 4 and 8 
had a spatial resolution of 10 m. Although the other bands 
had lower spatial resolution, a 10 m spatial resolution 
constituted the reference for the processing of ForestAz 
app products. Combining both SAR and optical remote 
sensing data can perform well as it might constitute an ad-
vantage for classification tasks, leading to better mapping 
accuracy (Yuan et al., 2020; Mngadi et al., 2021; Singh & 
Tiwari, 2021). In general terms, the main benefit of inte-
grating both optical and radar imagery for classification 
purposes lies in the fact of synergistically combining mul-
tispectral information and structural properties (Joshi et 
al., 2016). Since the ForestAz application works with one 
single Sentinel-2 image at a time, the workflow imple-
mented to integrate both optical and SAR data was to look 
for the Sentinel-1 image closest in time to the selected 

Figure 1. Overview of the ForestAz app Graphical User Interface. Left panel shows all the filte-
ring options as well as the list of images filters in scroll down option. At the center, the dashboards 
with line plots of different vegetation indices and bands. On the visualization part, the island of S. 
Miguel, with the normalized difference vegetation index (NDVI) applied and clouds masked out.



4 Manuel Fernández-Urrutia and Artur Gil

Forest Systems August 2022 • Volume 31 • Issue 2 • eRC01

Sentinel 2 image. Once the algorithm identifies the most 
comparable SAR image, it grabs the "VV" and "VH" 
bands from Sentinel-1 and adds these to the Sentinel-2 
image previously selected by the user (Fig. 2).

A key aspect of the application was the supervised 
classification. The aim of this supervised classification 
was not only to map forest areas (at the forest species/
patch level) within the selected case study area ("Public 
Forest Perimeter") but also to provide information on the 
amount of AGC amount sequestrated by these forest co-
vers, to support decision-making in forest planning and 
management. To perform and evaluate different classifi-
cation methods, we implemented and tested two of the 
most used classification methods: Random Forests (RF) 
and Classification and Decision Tree (CART). Those 
classifiers are available at GEE API. CART is a non-para-
metric pattern recognition-based classification method. It 

builds and identifies a decision tree using training data to 
find the correct classification accuracy (Breiman, 2011). 
On the other hand, RF makes predictions using a set of 
CARTs. The trees are created using a bagging approach, 
allowing the classifier to select several times the same 
sample, while others may not (Belgiu & Dragut, 2016).  
The way the classifiers build trees and separates node by 
node is part of the GEE API.

From the current Azores Regional Forest Inventory 
version, we identified seven main categories of forest/ve-
getation cover (Fig. 2). We created an averaged sample of 
100 stratified random points per class to be ingested into 
the GEE asset repository, based on GIS-based photo-in-
terpretation of the most recently available aerial imagery 
and fieldwork validation.

The accuracy of a classifier refers to the probability 
of correctly classifying the set of points randomly taken 

Figure 2. A) Vegetation indices monitoring methodological workflow. B) Forest mapping with 
Sentinel-based methodological workflow. C) Methodological workflow for estimating forest/
vegetation-related aboveground carbon (AGC) stocks.

Forest inventory
S. Miguel (Shp.)

Invasive species
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(Foody, 2002). To avoid one of the main concerns while 
using classifiers, we split the number of points into tra-
ining points and validation points, with a proportion of 
respectively 70% as model training points and 30% as va-
lidation points. The accuracy assessment of the classifica-
tion maps is always performed by computing overall and 
"per class" user accuracy and producer accuracy, using 
only the validation datasets (Congalton & Green, 2019).

Estimation of forest/vegetation-related AGC

Developing and testing straightforward, low-cost, 
and effective remote sensing-based operational approa-
ches able to mapping, assessing, and monitoring fores-
ted/vegetated AGC stocks are paramount to support 
decision-making in land and forest planning and mana-
gement in small oceanic islands (Massetti & Gil, 2020). 

The values of AGC per hectare (Mg C ha-1) for each 
forest/vegetation category mapped in the ARFI (for S. 
Miguel Island), introduced below, were obtained ac-
cording to the reviews made for Macaronesian forests 
(Madeira Island – Archipelago of Madeira; and S. Mi-
guel Island – Archipelago of the Azores) by Calado et 
al. (2015) and Massetti & Gil (2020), namely: Acacia 
melanoxylon, 126.1 Mg C ha-1; Cryptomeria japonica, 
76.8 Mg C ha-1; Eucalyptus globulus, 92.2 Mg C ha-1; 
Myrica faya, 79 Mg C ha-1; Pinus pinaster, 89.7 Mg C 
ha-1; Pittosporum undulatum, 128.65 Mg C ha-1; other 
native vegetation patches, 79 Mg C ha-1.

Taking the values listed above (per species and 
hectare), ForestAZ calculates the area per species by 

multiplying the total number of pixels mapped for a 
specific class in the forest cover map to the respective 
pixel area (100 m²). By running the code, there will be 
an automatic generation of tables and graphs with AGC 
values for the "Public Forest Perimeter" area (Fig. 2C).

Results and discussion
The Google Earth Engine-based ForestAz app is 

available online at https://manuferu.users.earthengine.app/
view/forestaz. The code and further description of contents 
and methodology can be found at https://github.com/
Manuferu/ForestAZ and can be freely accessed, modified, 
and improved to be used in other geographical areas 
contexts. The code is designed to paste it straight forward 
to GEE's playground. 

Vegetation indices mapping and time series 
evolution

By accurately mapping S. Miguel island forest areas 
using a detailed species-based vegetation mapping 
approach (instead of a standard and generic LULC mapping 
approach), and by allowing frequent and periodic monito-
ring of vegetation condition (e.g., greenness and moisture), 
ForestAz will allow forest managers accessing relevant in-
formation and comparing different patterns in a dashboard 
layout for a more targeted and accurate assessment.

Fig. 3 shows an example of an NDVI run in a Sentinel-2 
image. In addition, it shows the generated time-series line 

Figure 3. Examples of outputs provided by the ForestAz app: Vegetation indices time-series 
evolution and comparison between two dates; classifier stats (upper-center); forest mapping and 
aboveground carbon (AGC) assessment in Mg C ha-1 and % (lower right).  

https://manuferu.users.earthengine.app/view/forestaz
https://manuferu.users.earthengine.app/view/forestaz
https://github.com/Manuferu/ForestAZ
https://github.com/Manuferu/ForestAZ
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plots within the same period of time of three different ve-
getation indices. As it is represented, all this information is 
displayed together, making it possible to change the vege-
tation index to visualize and see the evolution of all vege-
tation indices available in the application simultaneously.

Forest mapping and AGC pie chart and tables

By quantitatively assessing the stocks and dynamics 
of AGC sequestrated by these forest areas,  this remote 
sensing-based application constitutes a robust and low-
cost operational tool able to support local/regional deci-
sion-making on forest planning and management (e.g., 
allowing more targeted and less random on-site assess-
ment, monitoring, conservation/restoration, and law en-
forcement measures). 

Fig. 3 shows an example of forest mapped using CART 
classifier along with a pie chart where the forest managers 
will have a clear picture of the different quantities of AGC 
sequestrated by species. In addition, an additional table 
was generated by the application to display results, inclu-
ding the information above mentioned of the amount of 
sequestrated AGC stocks per species per hectare, along 
with the total quantity. Once the user takes the option of 
either classifier, the AGC pie chart and tables are automa-
tically generated and displayed in the console section of 
the application.
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