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On Li–Yorke chaotic transformation groups
modulo an ideal

Sobre grupos de transformación caóticos Li-Yorke módulo un ideal

Mehrnaz Pourattar1,a, Fatemah Ayatollah Zadeh Shirazi2,b

Abstract. In the following text we introduce the notion of chaoticity modulo
an ideal in the sense of Li–Yorke in topological transformation semigroups and
bring some of its elementary properties. We continue our study by characteriz-
ing a class of abelian infinite Li–Yorke chaotic Fort transformation groups and
show all of the elements of the above class is co–decomposable to non–Li–Yorke
chaotic transformation groups.

Keywords: Fort space, Ideal, Li–Yorke chaos, Transformation semigroup.

Resumen. En el siguiente texto definimos el concepto de caoticidad módulo
un ideal en el sentido de Li-Yorke en semigrupos de transformación topológicos
y presentamos algunas de sus propiedades. Continuamos nuestro estudio car-
acterizando una clase de grupos de transformación de Fort caóticos Lie-Yorke
infinitos abelianos y mostrando que todos los elementos de esta clase dada
arriba es co-descomponible a grupos de transformación no Li–Yorke
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1. Introduction

Different senses of chaos in dynamical systems like Devaney chaos [1, 4, 22], Li–
Yorke chaos [14], distributional chaos [13], ω–chaos [12], e–chaos [18], . . . for dy-
namical systems have been studied in several texts, the main emphasis in these
researches are on (compact) metric dynamical systems. Moreover, recently have
been done researches on chaos in transformation groups [21], maps on transfor-
mation groups [17] and uniform phase spaces [2]. On the other hand different
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compactifications (and amongst them one–point–compactification) have their
significant role in point set topology and topological dynamics [9, 11, 19]. In
this text we present a definition for Li–Yorke chaos in transformation semi-
groups (modulo an ideal) with infinite phase semigroup and study this concept
in the category of transformation groups with one–point–compactification of a
discrete space (i.e., a Fort space) as phase space.

2. Preliminaries

As it has been mentioned in Introduction in this text we deal with Li–Yorke
chaos in transformation semigroups with a uniform space as phase space, so we
need backgrounds on transformation semigroups, uniform spaces and Li–Yorke
chaos, also we bring backgrounds on Fort spaces too regarding our examples.

2.1. Background on uniform spaces

Suppose F is a collection of subsets of X ×X such that:

• ∀α ∈ F (∆X ⊆ α),

• ∀α, β ∈ F (α ∩ β ∈ F),

• ∀α ∈ F ∀β ⊆ X ×X (α ⊆ β ⇒ β ∈ F),

• ∀α ∈ F (α−1 ∈ F),

• ∀α ∈ F ∃β ∈ F (β ◦ β ⊆ α),

where ∆X = {(x, x) : x ∈ X} and α−1 = {(y, x) : (x, y) ∈ α} also α ◦ β =
{(x, z) : ∃y ((x, y) ∈ β ∧ (y, z) ∈ α)} (for α, β ⊆ X × X), then we call F a
uniform structure on X, also we call the elements of F entourages on X. For
α ∈ F and x ∈ X let α[x] = {y ∈ X : (x, y) ∈ α}, then {U ⊆ X : ∀y ∈ U ∃β ∈
F (β[y] ⊆ U)} is a topology on X, we call it uniform topology on X induced
by uniform structure F and call (X,F) or briefly X a uniform space. We call
the topological space Y uniformzable if there exists a uniform structure E on
Y such that uniform topology induced by E coincides with original topology
on Y , also in this case we say E is a compatible uniform structure on Y .
Compact Hausdorff spaces are uniformzable and admit a unique compatible
uniform structure. In particular compact metric space in (X, d) {α ⊆ X ×
X : ∃ε > 0 (Oε ⊆ α)} is unique compatible uniform structure on X (where
Oε = {(z, w) ∈ X × X : d(z, w) < ε} for every ε > 0). For more details on
uniform spaces see [5, 7].

2.2. Ideals and Fort spaces

Let’s recall that we say the nonempty collection I of subsets of W is an ideal
on W if for all A,B ∈ I and C with C ⊆ A we have A ∪ B,C ∈ I, in
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particular ∅ ∈ I. Although most of the authors in ideal I on W have supposed
X /∈ I [10] we allow this condition too (so I = P(W ) is allowed in this text,
where P(W ) = {A : A ⊆W} is the collection of all subsets of W ).

Suppose b ∈ F and equip F with topology {U ⊆ F : b /∈ U ∨ (F \ U is
finite)}, then we say F is a Fort space with particular point b (it’s evident
that Fort space F with particular point b is just one point compactification (or
Alexandroff compactification) of discrete space F \ {b}) [20].

2.3. Background on Li–Yorke chaos in dynamical systems

By a dynamical system (X, f) we mean a topological space X and continuous
map f : X → X. In dynamical system (X, f) with compact metric phase space
(X, d) we say x, y ∈ X are

1. proximal if lim inf
n→∞

d(fn(x), fn(y)) = 0,

2. asymptotic if lim
n→∞

d(fn(x), fn(y)) = 0,

3. scrambled if lim inf
n→∞

d(fn(x), fn(y)) = 0 and lim sup
n→∞

d(fn(x), fn(y)) > 0.

We say the dynamical system (X, f) is Li–Yorke chaotic if it has an uncountable
subset like A such that every distinct x, y ∈ A are scrambled. So for unique
compatible uniform structure on X, F = {α ⊆ X × X : ∃ε > 0 (Oε ⊆ α)},
which is introduced in subsection 2.1, we may use the following definitions too,
we say x, y ∈ X are

1′. proximal if there exist z ∈ X and net {nα}α∈Γ in N with

lim
α∈Γ

fnα(x) = z = lim
α∈Γ

fnα(y) ,

2′. asymptotic if for every α ∈ F the set {n ∈ N : (fn(x), fn(y)) /∈ α} is
finite,

3′. scrambled if they are proximal and non–asymptotic.

2.4. Background on transformation semigroup

By a transformation semigroup (resp. transformation group) (X,S, π) or sim-
ply (X,S) we mean a compact Hausdorff space X, discrete topological semi-
group (resp. group) S with identity e and continuous map π : X × S → X

(x,s) 7→xs
such

that for all x ∈ X and s, t ∈ S we have xe = x, x(st) = (xs)t [6]. In partic-
ular, every dynamical system (X, f) may be considered as the transformation
semigroup (X,N ∪ {0}, πf ) where πf (x, n) = fn(x) (x ∈ X,n ≥ 0).

We say (X, (Gα;α ∈ Γ)) is a multi–transformation semigroup (resp. multi–
transformation group) if for each α ∈ Γ, (X,Gα) is a transformation semigroup
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(resp. transformation group), moreover for each distinct α1, . . . , αn ∈ Γ and
x ∈ X, s1 ∈ Gα1

, . . . sn ∈ Gαn we have

(· · · (xs1)s2) · · · )sn = (· · · (xsσ(1))sσ(2)) · · · )sσ(n)

for each permutation σ : {1, . . . , n} → {1, . . . , n}.
For transformation semigroup (resp. transformation group) (X,G), we

say the multi–transformation semigroup (resp. multi–transformation group)
(X, (Gα;α ∈ Γ)) is a co–decomposition of (X,G) if Gαs are distinct sub–
semigroups (resp. subgroups) of G, and G is the semigroup (resp. group)

generated by
⋃
α∈Γ

Gα [15].

Definition 2.1. In transformation semigroup (X,S) with uniform phase space
(X,F) suppose I is an ideal on semigroup S. We say x, y ∈ X are:

• proximal if there exists z ∈ X and a net {gα}α∈Γ in S with [6]

lim
α∈Γ

xgα = z = lim
α∈Γ

ygα ,

• asymptotic modulo I if for every α ∈ F we have {s ∈ S : (xs, ys) /∈ α} ∈
I,

• scrambled modulo I if they are proximal and non–asymptotic modulo I,

• stab(x) := {g ∈ S : xg = x} is the stablizer of x.

We denote the collection of all proximal pairs of (X,S) with Prox(X,S). More-
over we have Prox(X,S) =

⋂
{αS−1 : α ∈ F} where for all α ∈ F we have

αS−1 = {(z, w) ∈ X×X : ∃s ∈ S ((zs, ws) ∈ α)} [8]. Also we denote the collec-
tion of all asymptotic pairs (z, w) modulo ideal I (i.e., z, w ∈ X are asymptotic
modulo ideal I) with AsymI(X,S).

Also we say D ⊆ X with at least two elements is an scrambled set modulo I
if for all distinct z, w ∈ D we have (z, w) ∈ Prox(X,S)\AsymI(X,S). We say
(X,S) is Li–Yorke chaotic modulo I if it contains an uncountable scrambled
subset modulo I.

Definition 2.2. In transformation semigroup (X,S), Pfin(S) := {D ⊆ S :
D is finite} is an ideal on S, let

Asym(X,S) := AsymPfin(S)(X,S) .

We say (X,S) is Li–Yorke chaotic if it is Li–Yorke chaotic modulo Pfin(S).
Also we say x, y ∈ X are asymptotic (resp. scrambled) if they are asymptotic
modulo Pfin(S) (resp. scrambled modulo Pfin(S)).

Note 1. Consider dynamical system (X, f) with compact metric phase space
X and transformation semigroup (X,N ∪ {0}) with xn := fn(x) (for all x ∈
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X,n ≥ 0), then (X, f) is a Li–Yorke chaotic dynamical system if and only if
(X,N ∪ {0}) is a Li–Yorke chaotic transformation semigroup.

Note 2. For compact metric space X with compatible metric d, and infinite
countable semigroup S = {t1, t2, . . .} (with distinct tns), in transformation
semigroup (X,S) the following statements are equivalent:

A. (X,S) is Li–Yorke chaotic (according to Definition 2.2),

B. There exists an uncountable subset A of X such that for any distinct
points x, y ∈ A we have (x, y) ∈ Prox(X,S) (i.e. there exists a sequence
{sn}n≥1 in S with limn→∞ d(xsn, ysn) = 0), and there exists (rn)n≥1 ∈∏
n≥1

S \ {t1, . . . , tn} with lim
n→∞

d(xrn, yrn) > 0.

C. for any increasing sequence F = {Fn}n≥1 of compact subsets of S there
exists an uncountable subset AF of X such that for any distinct points
x, y ∈ AF we have (x, y) ∈ Prox(X,S), and there exists (rn)n≥1 ∈

∏
n≥1

S\

Fn with lim
n→∞

d(xrn, yrn) > 0 (i.e., (X,S) is Li–Yoke chaotic according

to [3, Definition 1.2]).

Proof. Let’s consider the following two claims for every x, y ∈ X:
Claim 1. If (x, y) /∈ Asym(X,S), then for any increasing sequence {Fn}n≥1

of finite subsets of S, there exists (rn)n≥1 ∈
∏
n≥1

S \Fn with lim
n→∞

d(xrn, yrn) >

0.
Proof of Claim 1. Suppose (x, y) /∈ Asym(X,S), then there exists δ > 0

such that D := {s ∈ S : d(xs, ys) > δ}(= {s ∈ S : (xs, ys) /∈ Oδ}) is infinite.
Now consider increasing sequence {Fn}n≥1 of finite subsets of S, for all n ≥ 1
there exists pn ∈ D \ Fn also we may suppose pns are paiwise distinct, thus
for all n ≥ 1, d(xpn, ypn) > δ which leads to ε := lim inf

n→∞
d(xpn, ypn) ≥ δ, so

{pn}n≥1 has a subsequence {pnk}k≥1 with ε = lim
k→∞

d(xpnk , ypnk) > 0, For all

k ≥ 1 we have nk ≥ k and Fk ⊆ Fnk , hence pnk ∈ S \ Fnk ⊆ S \ Fk. Thus
(pnk)k≥1 ∈

∏
k≥1

S \ Fk which completes the proof of Claim 1.

Claim 2. If there exists (rn)n≥1 ∈
∏
n≥1

S\{t1, . . . , tn} with lim
n→∞

d(xrn, yrn)

> 0, then (x, y) /∈ Asym(X,S).
Proof of Claim 2. For all n ≥ 1 there exists sn ∈ S \ {t1, . . . , tn} with

ε := lim
n→∞

d(xsn, ysn) > 0, so there exists N ≥ 1 with d(xsn, ysn) > ε/2

for all n ≥ N which leads to {sn : n ≥ N} ⊆ {s ∈ S : d(xs, ys) > ε/2}.
If {sn : n ≥ N} is finite, then there exists M ≥ 1 with {sn : n ≥ N} ⊆
{t1, . . . , tM} in particular sN+M ∈ {t1, . . . , tM} which is in contradiction with
sN+M ∈ S \ {t1, . . . , tN+M}, hence {sn : n ≥ N} is infinte. Therefore {s ∈
S : d(xs, ys) > ε/2}(= {s ∈ S : (xs, ys) /∈ Oε/2}) is infinite too and (x, y) /∈
Asym(X,S).

Now we are ready to prove the Note.
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“(A) ⇒ (C)” Use Claim 1 and the fact that the collection of finite subsets
of S is equal to the collection of compact subsets of S (since S is finite).

“(C) ⇒ (B)” It is obvious, since {{t1, . . . , tn}}n≥1 is an incresing sequence
of compact subsets of S.

“(B) ⇒ (A)” Use Claim 2.

3. Asymptoticity and Li–Yorke chaoticity
modulo an ideal

In this section we bring some elementary properties of Li–Yorke chaoticity mod-
ulo an ideals in transformation semigroups, in topics like products, quotient,
co–decomposition, . . . in transformation semigroups.

Theorem 3.1. In transformation semigroup (X,S) suppose I and J are ideals
on S with I ⊆ J . We have:
• AsymI(X,S) ⊆ AsymJ (X,S),
• if D ⊆ X is an scrambled set modulo J , then it is an scrambled set modulo

I,
• if (X,S) is Li–Yorke chaotic modulo J , then it is Li–Yorke chaotic modulo

I.

Proof. Use the definition of asympoticity and Li–Yorke chaoticity modulo an
ideal.

In the transformation semigroup (X,S) if T is a sub–semigroup of S, then
we may consider transformation semigroup (X,T ) (with induced action of S
on X) in a natural way too, in the following Theorem we deal with this type
of transformation semigroups.

Theorem 3.2. In transformation semigroup (X,S) suppose T is a sub–semigroup
of S and I is an ideals on T , then:

1. AsymI(X,S) ⊆ AsymI(X,T ),

2. if D ⊆ X is an scrambled set modulo I in (X,T ), then it is an scrambled
set modulo I in (X,S),

3. if (X,T ) is Li–Yorke chaotic modulo I, then (X,S) is Li–Yorke chaotic
modulo I,

4. if (X,S) is co–decomposable to Li–Yorke chaotic modulo I transformation
semigroups if and only if it is Li–Yorke chaotic modulo I (so with phase
semigroups all of them containing

⋃
I).

Proof. First of all note that I is an ideal on S. Consider compatible uniform
structure F on X.
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1) For x, y ∈ X we have (use {s ∈ T : (xs, ys) /∈ U} ⊆ {s ∈ S : (xs, ys) /∈ U}):

(x, y) ∈ AsymI(X,S)⇒ (∀U ∈ F {s ∈ S : (xs, ys) /∈ U} ∈ I)

⇒ (∀U ∈ F {s ∈ T : (xs, ys) /∈ U} ∈ I)

⇒ (x, y) ∈ AsymI(X,T ) .

2) Use item (1) and Prox(X,T ) ⊆ Prox(X,S).
3) Use item (2).
4) If (X,S) is Li–Yorke chaotic modulo I, then (X,S) is a co–decomposition
of itself to Li–Yorke chaotic modulo I transformation semigroups. On the
other hand if (X, (Sα : α ∈ Γ)) is co–decomposition of (X,S) to Li–Yorke
chaotic modulo I transformation semigroups such that for all α ∈ Γ we have⋃
I ⊆ Sα, then choose α0 ∈ Γ. Since (X,Sα0) is Li–Yorke chaotic modulo

I, Sα0 is a subsemigroup of S and I is an ideal on Sα0 too, then (X,S) is
Li–Yorke chaotic modulo I by item (2).

In transformation semigroup (X,S) we say nonempty subset Y of X is invariant
if Y S := {ys : y ∈ Y, s ∈ S} ⊆ Y . If Y is a closed invariant subset of X then
we may consider transformation semigroup (Y, S) with induced action of S on
X.
Note 3. In transformation semigroup (X,S) suppose Y is a closed invariant
subset of X and I is an ideal on S, then
• AsymI(Y, S) ⊆ AsymI(X,S),
• if D ⊆ Y is an scrambled set modulo I in (X,S), then it is an scrambled

set modulo I in (Y, S),
In the following Theorem we deal; with product of transformation semi-

groups.

Theorem 3.3. Suppose {(Xα, S) : α ∈ Γ} is a nonempty set of transformation
semigroups and I is an ideal on S. In transformation semigroup (

∏
α∈Γ

Xα, S)

with

(xα)α∈Γs := (xαs)α∈Γ ((xα)α∈Γ ∈
∏
α∈Γ

Xα, s ∈ S)

we have:
1. AsymI(

∏
α∈Γ

Xα, S) = {((zα)α∈Γ, (wα)α∈Γ) : ∀α ∈ Γ ((zα, wα) ∈

AsymI(Xα, S))},
2. if (zα)α∈Γ, (wα)α∈Γ are scrambled modulo I (in transformation semi-

group (
∏
α∈Γ

Xα, S)), then there exists β ∈ Γ such that zβ , wβ are scrambled

modulo I (in transformation semigroup (Xβ , S)),
3. for β ∈ Γ suppose p, q ∈ Xβ and for each α ∈ Γ choose zα ∈ Xα, let

xα :=

{
p α = β ,
zα α 6= β ,

yα :=

{
q α = β ,
zα α 6= β ,
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then (xα)α∈Γ, (yα)α∈Γ are scrambled modulo I (in transformation semigroup
(
∏
α∈Γ

Xα,
∏
α∈Γ

Sα)), if and only if p, q are scrambled modulo I (in transformation

semigroup (Xβ , S)),
4. if there exists β ∈ Γ such that (Xβ , S) is Li–Yorke chaotic modulo I,

then (
∏
α∈Γ

Xα, S) is Li–Yorke chaotic modulo I,

Proof. 1) For compact Hausdorff topological space Y suppose FY is the unique
compatible uniform structure on Y . For β ∈ Γ and U ∈ FXβ let:

Mβ(U) := {((zα)α∈Γ, (wα)α∈Γ) ∈
∏
α∈Γ

Xα ×
∏
α∈Γ

Xα : (zβ , wβ) ∈ U} .

Now suppose ((zα)α∈Γ, (wα)α∈Γ) ∈ AsymI(
∏
α∈Γ

Xα, S), thus for each β ∈ Γ

and U ∈ FXβ (use Mβ(U) ∈ F ∏
α∈Γ

Xα)) we have

{s ∈ S : (zβs, wβs) /∈ U} = {s ∈ S : ((zαs)α∈Γ, (wαs)α∈Γ) /∈Mβ(U)} ∈ I

which leads to (zβ , wβ) ∈ AsymI(Xβ , S). Therefore:

AsymI(
∏
α∈Γ

Xα, S)⊆{((zα)α∈Γ, (wα)α∈Γ) :∀α ∈ Γ((zα, wα)∈AsymI(Xα, S))} .

Now suppose for each α ∈ Γ we have (pα, qα) ∈ AsymI(Xα, S) and A ∈
F ∏
α∈Γ

Xα . There exist α1, . . . , αn ∈ Γ and U1 ∈ FXα1
, . . . , Un ∈ FXαn with

⋂
1≤i≤n

Mαi(Ui) ⊆ A . (*)

For each i ∈ {1, . . . , n} we have (pαi , qαi) ∈ AsymI(Xαi , S), thus {s ∈ S :
(pαis, qαis) /∈ Ui} ∈ I, so:⋃

1≤i≤n

{s ∈ S : (pαis, qαis) /∈ Ui} ∈ I (**)

thus:
{s ∈ S : ((pαs)α∈Γ, (qαs)α∈Γ) /∈ A}

(∗)
⊆{s ∈ S : ((pαs)α∈Γ, (qαs)α∈Γ) /∈

⋂
1≤i≤n

Mαi(Ui)}

=
⋃

1≤i≤n

{s ∈ S : ((pαs)α∈Γ, (qαs)α∈Γ) /∈Mαi(Ui)}

=
⋃

1≤i≤n

{s ∈ S : (pαis, qαis) /∈ Ui}
(∗∗)
∈ I
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which shows {s ∈ S : ((pαs)α∈Γ, (qαs)α∈Γ) /∈A} ∈ I and ((pαs)α∈Γ, (qαs)α∈Γ)
∈ AsymI(

∏
α∈Γ

Xα, S). Therefore:

AsymI(
∏
α∈Γ

Xα, S)⊇{((zα)α∈Γ, (wα)α∈Γ) :∀α∈ Γ((zα, wα)∈AsymI(Xα, S))} .

2) Use Prox(
∏
α∈Γ

Xα, S) ⊆ {((zα)α∈Γ, (wα)α∈Γ) : ∀α ∈ Γ ((zα, wα) ∈

Prox(Xα, S))} and item (1).
3) If p, q are scrambled modulo I in transformation semigroup (Xβ , S), then
by item (2), then (xα)α∈Γ, (yα)α∈Γ are scrambled modulo I in transformation
semigroup (

∏
α∈Γ

Xα,
∏
α∈Γ

Sα).

Now suppose (xα)α∈Γ, (yα)α∈Γ are scrambled modulo I in transformation
semigroup (

∏
α∈Γ

Xα,
∏
α∈Γ

Sα), then by item (2) there exists α ∈ Γ such that

xα, yα are scrambled modulo I in transformation semigroup (Xα, S). If α 6= β,
then (xα, yα) = (zα, zα) ∈ ∆Xα ⊆ AsymI(Xα, S) which is a contradiction to
the fact that xα, yα are scrambled modulo I and hence non–asymptotic modulo
I, therefore α = β and p(= xβ), q = (yβ) are scrambled modulo I.
4) Use (2).

Corollary 3.4. Suppose {(Xα, Sα) : α ∈ Γ} is a nonempty set of transforma-
tion semigroupsand for each α ∈ Γ, Iα is an ideal on Sα. In transformation
semigroup (

∏
α∈Γ

Xα,
∏
α∈Γ

Sα) with

(xα)α∈Γ(sα)α∈Γ := (xαsα)α∈Γ ((xα)α∈Γ ∈
∏
α∈Γ

Xα, (sα)α∈Γ ∈
∏
α∈Γ

Sα)

for each β ∈ Γ and D ∈ Iβ let Hβ(D) = {(sα)α∈Γ ∈
∏
α∈Γ

Sα : sβ ∈ D} and

suppose I is an ideal on
∏
α∈Γ

Sα generated by {Hα(D) : α ∈ Γ, D ∈ Iα}. Also

suppose R is an ideal on
∏
α∈Γ

Sα. Then we have:

1. AsymI(
∏
α∈Γ

Xα,
∏
α∈Γ

Sα) is the set

{((zα)α∈Γ, (wα)α∈Γ) : ∀α ∈ Γ ((zα, wα) ∈ AsymIα(Xα, Sα))} ,

2. if (zα)α∈Γ, (wα)α∈Γ are scrambled modulo I (in transformation semigroup
(
∏
α∈Γ

Xα,
∏
α∈Γ

Sα)), then there exists β ∈ Γ such that zβ , wβ are scrambled mod-

ulo Iβ (in transformation semigroup (Xβ , Sβ)),
3. with the same (xα)α∈Γ, (yα)α∈Γ as in item (3) of Theorem 3.3, (xα)α∈Γ,

(yα)α∈Γ are scrambled modulo I (in transformation semigroup (
∏
α∈Γ

Xα,
∏
α∈Γ

Sα)),

if and only if p, q are scrambled modulo Iβ (in transformation semigroup (Xβ , Sβ)),
4. if there exists β ∈ Γ such that (Xβ , Sβ) is Li–Yorke chaotic modulo Iβ,

then (
∏
α∈Γ

Xα,
∏
α∈Γ

Sα) is Li–Yorke chaptic modulo I,
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Proof. Use a similar method described in Theorem 3.3 and Prox(
∏
α∈Γ

Xα,
∏
α∈Γ

Sα)

= {((zα)α∈Γ, (wα)α∈Γ) : ∀α ∈ Γ ((zα, wα) ∈ Prox(Xα, Sα))}.

Note 4. In transformation semigroups (X,S), (Y, S) suppose ϕ : (X,S) →
(Y, S) is a homomorphism and I is an ideal of S, then for ϕ×ϕ :X×X→Y ×Y

(x,y)7→(ϕ(x),ϕ(y))

we have ϕ × ϕ(Prox(X,S)) ⊆ Prox(Y, S) [6], and ϕ × ϕ(AsymI(X,S)) ⊆
AsymI(Y, S), suppose (x, y) ∈ AsymI(X,S) and U is an entourage of Y , since
ϕ : X → Y is continuous and X,Y compact Hausdorff spaces, ϕ : X → Y is
uniformly continuous too. Thus there exists entourage V of X with ϕ×ϕ(V ) ⊆
U . Using (x, y) ∈ AsymI(X,S) and ϕ(zs) = ϕ(z)s for all z ∈ X, s ∈ S, we
have:

{s ∈ S : (ϕ(x)s, ϕ(y)s) /∈ U} = {s ∈ S : (ϕ(xs), ϕ(ys)) /∈ U}
⊆ {s ∈ S : (xs, ys) /∈ V } ∈ I ,

therefore {s ∈ S : (ϕ(x)s, ϕ(y)s) /∈ U} ∈ I and (ϕ(x), ϕ(y)) ∈ AsymI(Y, S).

In transformation semigroup (X,S) suppose < is a closed invariant relation
on X, then one may consider transformation semigroup (X< , S) [6, 16]. Using

Note 3 and natural quotient homomorphism π< : (X,S)→ (X< , S) we have the
following Corollary.

Corollary 3.5. In transformation semigroup (X,S) suppose < is a closed
invariant relation on X and I is an ideal on S, then π<×π<(AsymI(X,S)) ⊆
AsymI(X< , S).

Let’s recall that in transformation semigroup (X,S) with compatible uni-
form structure F on X for all α ∈ F let αS−1 := {(z, w) ∈ X × X : ∃s ∈
S (zs, ws) = (x, y)}, then Prox(X,S) =

⋂
{αS−1 : α ∈ F} [8].

Theorem 3.6. In transformation semigroup (X,S) with card(S) ≥ 2 we have:

Prox(X,S) =
⋃
{AsymI(X,S) : I is an ideal on S with I 6= P(S)}.

Proof. For ideal I on S with I 6= P(S) suppose (x, y) ∈ AsymI(X,S) and
F is the compatible uniform structure on X. For every α ∈ F , we have
{s ∈ S : (xs, ys) /∈ α} ∈ I, thus {s ∈ S : (xs, ys) /∈ α} 6= S and there exists
s ∈ S with (xs, ys) ∈ α, so (x, y) ∈ αS−1. Therefore (x, y) ∈

⋃
{αS−1 : α ∈

F} = Prox(X,S).

On the other hand suppose (x, y) ∈ Prox(X,S), thus (x, y) ∈
⋂
{αS−1 :

α ∈ F} and for every α ∈ F , there exists s ∈ S with (xs, ys) ∈ α so Jα :=
{t ∈ S : (xt, yt) /∈ α} 6= S. Let I := {A ⊆ S : ∃α ∈ F (A ⊆ Jα)}. For each
α, β ∈ F we have α ∩ β ∈ F and Jα ∪ Jβ = Jα∩β , thus I is an ideal on S and
(x, y) ∈ AsymI(X,S). Moreover for all α ∈ F we have Jα 6= S thus S /∈ I and
I 6= P(S).
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Note 5. In transformation semigroup (X,S) suppose I is an ideal on S,
being asymptotic modulo I is an equivalence relation on X, since if x, y are
asymptotic modulo I and y, z are asymptotic modulo I, then for each α ∈ FX
there exists β ∈ FX with β ◦ β ⊆ α and we have {t ∈ S : (xt, yt) /∈ β}, {t ∈
S : (yt, zt) /∈ β} ∈ I thus {t ∈ S : (xt, zt) /∈ α} ⊆ {t ∈ S : (xt, yt) /∈ β} ∪ {t ∈
S : (yt, zt) /∈ β} ∈ I which leads to {t ∈ S : (xt, zt) /∈ α} ∈ I. Hence x, z are
asymptotic modulo I too.

4. Li–Yorke chaotic Fort transformation groups

In this section suppose F is an infinite Fort space with particular point b. For
each D ⊆ F let:

αD := ((F \D)× (F \D)) ∪ {(z, z) : z ∈ D} ,

then

K := {U ⊆ F × F : there exists finite subset D ⊆ F \ {b} with αD ⊆ U}
is the unique compatible uniform structure of F .

Lemma 4.1. In infinite Fort transformation group (F,G) we have:
1) {(b, x) : xG is infinite} ∪ {(x, b) : xG is infinite} ⊆ Prox(F,G).
2) For

P :={(x, x) : x ∈ F}∪
{(b, x) : xG is infinite} ∪ {(x, b) : xG is infinite}∪
{(x, y) : xG and yG are infinite}

we have Prox(F,G) ⊆ P .
3) Moreover if G is abelian too, then Prox(F,G) = P .

Proof. First note that in the transformation group (F,G) we have bG = {b}
and for all x ∈ X:

xG =

{
xG xG is finite,
xG ∪ {b} xG is infinite,

also for x 6= b, b /∈ xG. 1) For x ∈ F we have:

(x, b) ∈ Prox(F,G)⇔ ∃{gα}α∈Γ ⊆ G lim
α∈Γ

xgα = lim
α∈Γ

bgα = b

⇔ b ∈ xG
⇔ b ∈ xG ∨ (xG is infinite)

⇔ x ∈ bG ∨ (xG is infinite)

⇔ x = b ∨ (xG is infinite)

Thus if xG is infinite then (x, b) ∈ Prox(F,G) which completes the proof of
(1).

2) Suppose (x, y) ∈ Prox(F,G) we have the following cases:
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• Case A. x = b∨y = b. Without any loss of generality we may suppose y =
b and (x, y) = (x, b). Using the proof of item (1), and (x, b) ∈ Prox(F,G)
we have “x = b ∨ (xG is infinite)” which leads to (x, y) = (x, b) ∈ P .

• Case B. xG and yG are infinite. In this case it is clear that (x, y) ∈ P .

• Case C. x 6= b∧ y 6= b∧ (xG is finite or yG is finite). In this case we may
suppose x 6= b and xG is finite. Since (x, y) ∈ Prox(F,G), there exists a
net {gα}α∈Γ inG such that lim

α∈Γ
xgα = lim

α∈Γ
ygα =: z thus z ∈ xG = xG 63 b

so z 6= b and {z} is an open neighbourhood of z (since b is the unique
limit point of F ) and there exists α ∈ Γ with xgα = z = ygα which shows
x = y and (x, y) = (x, x) ∈ P

Using the above items we have (x, y) ∈ P and Prox(F,G) ⊆ P .
3) Using (1) and (2) we have:

{(b, x) : xG is infinite} ∪ {(x, b) : xG is infinite} ⊆ Prox(F,G) ⊆
{(x, x) : x ∈ F} ∪ {(b, x) : xG is infinite} ∪ {(x, b) : xG is infinite} ∪ {(x, y) :

xG and yG are infinite} = P

Suppose G is abelian, in order to prove Prox(F,G) = P we should prove for
x, y ∈ F with infinite xG, yG we have (x, y) ∈ Prox(F,G). So consider x, y ∈ F
with infinte xG, yG. We have the following cases:

• Case I. There exists sequence {gn}n≥1 in G such that both sequences
{xgn}n≥1 and {ygn}n≥1 are one–to–one. In this case If U is an open
neighbourhood of b, then F \U is finite and there exists N ≥ 1 such that
for all n ≥ N we have xgn, ygn ∈ U . Thus lim

n≥1
xgn = b = lim

n≥1
ygn and

(x, y) ∈ Prox(F,G).

• Case II. For each sequence {gn}n≥1 in G at least one of the sequences
{xgn}n≥1 or {ygn}n≥1 is not one–to–one. In this case using infiniteness
of xG there exists sequence {gn}n≥1 in G with infinite and one–to–one
{xgn}n≥1. If {ygn : n ≥ 1} is infinite, then there exists a subsequence
{gni}i≥1 with one–to–one {ygni}i≥1, therefore both sequences {xgni}i≥1

and {ygni}i≥1 are one–to–one which is in contradiction with our assump-
tion. Thus {ygn : n ≥ 1} is finite, therefore {ygn}n≥1 has a constant
subsequence {ygni}i≥1. Let km := gnmg

−1
n1

(m ≥ 1). Then for all p, q ≥ 1
we have:

xkp = xkq ⇒ xgnpg
−1
n1

= xgnqg
−1
n1

⇒ xgnpg
−1
n1
gn1 = xgnqg

−1
n1
gn1

⇒ xgnp = xgnq

⇒ np = nq (since {xgn}n≥1 is a one− to− one sequence)
⇒ p = q
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moreover since {ygni}j≥1 is a constant sequence, we have ygnp = ygn1

thus y = ygn1
g−1
n1

= ygnpg
−1
n1

= ykp.

So {xkn}n≥1 is a one–to–one sequence and for all n ≥ 1 we have ykn = y.
Similarly there exists a sequence {tn}n≥1 in G such that {ytn}n≥1 is a
one–to–one sequence and xtn = x (n ≥ 1).

For all n ≥ 1 we have xkntn = xtnkn = xkn and ykntn = ytn, therefore
both sequences:

{xkntn}n≥1(= {xkn}n≥1) and {xkntn}n≥1(= {ytn}n≥1)

are one–to–one and infinite sequences which is in contradiction with our
assumption on x, y, hence this case would have not been occured.

Using the above discussion for abelian G we have (x, y) ∈ Prox(F,G) which
completes the proof of (3).

Lemma 4.2. In infinite Fort transformation group (F,G) for x, y ∈ F and
ideal I on G, the following statements are equivalent:

1. (x, y) ∈ AsymI(F,G),

2. for all finite subset D of F \ {b}, we have {g ∈ G : (xg, yg) /∈ αD} ∈ I,

3. for all z ∈ F \ {b} we have {g ∈ G : (xg, yg) /∈ α{z}} ∈ I.

Proof. “(1)⇔(2)” Use definition.

“(2)⇔(3)” Use the fact that for all nonempty finite subset D of F \ {b} we
have αD =

⋂
z∈D

α{z}.

Theorem 4.3. In infinite Fort transformation group (F,G) with ideal I on G
we have:

AsymI(F,G) ={(x, x) : x ∈ F}∪
{(x, y) ∈ F × F : ∀h ∈ G stab(x)h ∪ stab(y)h ∈ I}∪
[{(x, b) ∈ F × F : ∀h ∈ G stab(x)h ∈ I}∪
{(b, y) ∈ F × F : ∀h ∈ G stab(y)h ∈ I} .

Proof. First note that:

(~) for w ∈ F \ {b} and z ∈ F \ wG we have {g ∈ G : wg = z} = ∅ ∈ I

also b /∈ wG.
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For x, y ∈ F \ {b} with x 6= y we have:

(x, b) ∈ AsymI(F,G)⇔ (∀z ∈ F \ {b} ({g ∈ G : (xg, bg) /∈ α{z}} ∈ I))

⇔ (∀z ∈ F \ {b} ({g ∈ G : (xg, b) /∈ α{z}} ∈ I))

⇔ (∀z ∈ F \ {b} ({g ∈ G : xg = z} ∈ I))

(~)⇔ (∀z ∈ xG ({g ∈ G : xg = z} ∈ I))

⇔ (∀h ∈ G ({g ∈ G : xg = xh} ∈ I))

⇔ (∀h ∈ G ({g ∈ G : gh−1 ∈ stab(x)} ∈ I))

⇔ (∀h ∈ G (stab(x)h ∈ I))

Also:
(x, y) ∈ AsymI(F,G)

⇔ (∀z ∈ F \ {b} ({g ∈ G : (xg, yg) /∈ α{z}} ∈ I))

⇔ (∀z ∈ F \ {b} ({g ∈ G : xg = z ∧ yg 6= z} ∪ {g ∈ G : xg 6= z ∧ yg = z} ∈ I))

⇔ (∀z ∈ F \ {b} ({g ∈ G : xg = z} ∪ {g ∈ G : yg = z} ∈ I))

⇔ (∀z ∈ F \ {b} ({g ∈ G : xg = z} ∈ I ∧ {g ∈ G : yg = z} ∈ I))

⇔ ((∀z ∈ F \ {b} {g ∈ G : xg = z} ∈ I) ∧ (∀z ∈ F \ {b} {g ∈ G : yg = z} ∈ I))

(~)⇔((∀z ∈ xG {g ∈ G : xg = z} ∈ I) ∧ (∀z ∈ yG {g ∈ G : yg = z} ∈ I))

⇔ ((∀h ∈ G {g ∈ G : xg = xh} ∈ I) ∧ (∀h ∈ G {g ∈ G : yg = yh} ∈ I))

⇔ ((∀h ∈ G stab(x)h ∈ I) ∧ (∀h ∈ G stab(y)h ∈ I))

⇔ (∀h ∈ G stab(x)h ∪ stab(y)h ∈ I)

In semigroup S we say ideal I on S is S−invariant, if for all A ∈ I and
s ∈ S we have As ∈ I. So in semigroup S, Pfin(S) is an S−invariant ideal
on S (however for nontrivial S with identity e, ideal {{e},∅} on S is not
S−invariant).

Corollary 4.4. In infinite Fort transformation group (F,G) with G−invariant
ideal I on G. Then

AsymI(F,G) = {(x, x) : x ∈ F}∪{(x, y) ∈ F ×F : stab(x)∪ stab(y) ∈ I}∪

{(x, b) ∈ F × F : stab(x) ∈ I} ∪ {(b, y) ∈ F × F : stab(y) ∈ I} .

And:

Asym(F,G) ={(x, x) : x ∈ F}∪
{(x, y) ∈ F × F : stab(x) ∪ stab(y) is finite}∪
{(x, b) ∈ F × F : stab(x) is finite}∪
{(b, y) ∈ F × F : stab(y) is finite} .

Proof. Use Theorem 4.3,
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Theorem 4.5. In infinite Fort transformation group (F,G) suppose I is an
ideal on S, then:

Prox(F,G) \AsymI(F,G)

⊆{(x, b) ∈ F × F : xG is infinite and exists h ∈ G with stab(x)h /∈ I}∪
{(b, x) ∈ F × F : xG is infinite and exists h ∈ G with stab(x)h /∈ I}∪
{(x, y) ∈ F × F : xG, yG are infinite and exists h ∈ G with stab(x)h ∪ stab(y)h /∈ I} .

So if J is a G−invariant ideal on G, then:
Prox(F,G) \AsymJ (F,G)

⊆{(x, b) ∈ F × F : xG is infinite and stab(x) /∈ J }∪
{(b, x) ∈ F × F : xG is infinite and stab(x) /∈ J }∪
{(x, y) ∈ F × F : xG, yG are infinite and stab(x) ∪ stab(y) /∈ J } .

In particular:
Prox(F,G) \Asym(F,G)

⊆{(x, b) ∈ F × F : xG, stab(x) are infinite}∪
{(b, x) ∈ F × F : xG, stab(x) are infinite}∪
{(x, y) ∈ F × F : xG, yG, stab(x) ∪ stab(y) are infinite} .

If G is abelian too, we have equality in all of the above relations.

Proof. Use Lemmas 4.1, 4.3 and Corollary 4.4.

Corollary 4.6. In infinite Fort transformation group (F,G), for S ⊆ F we
have:

1. if S is an scrambled subset of F module ideal I on G, then

S \ ({x ∈ F : xG is infinite and there exists h ∈ G with stab(x)h /∈ I} ∪ {b})

has at most one element.
2. if S is an scrambled subset of F modulo ideal J on G and J is G−invariant,

then

S \ ({x ∈ F : xG is infinite and stab(x) /∈ I} ∪ {b})

has at most one element.
3. if S is an scrambled subset of F , then

S \ ({x ∈ F : xG, stab(x) are infinite } ∪ {b})

has at most one element.

Proof. Use Lemma 4.5.
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Theorem 4.7. Abelian infinite Fort transformation group (F,G) is
1. Li–Yorke chaotic modulo ideal I on G if and only if H := {x ∈ F : xG

is infinite and there exists h ∈ G with stab(x)h /∈ I} is uncountable.
2. Li–Yorke chaotic modulo G−invariant ideal J on G if and only if H :=

{x ∈ F : xG is infinite and stab(x) /∈ J } is uncountable.
3. Li–Yorke chaotic if and only if H := {x ∈ F : xG, stab(x) are infinite}

is uncountable.

Proof. If (F,G) is Li–Yorke chaotic, then it has an uncountable scrambled
subset say S, by Corollary 4.6, S \H is finite, so H is uncountable.

For infinite H and abelian G, H is an scrambled subset of F by Lemma 4.5.
So if H is uncountable, then (F,G) is Li–Yorke chaotic.

Co–decompositions of (F,G) and Li–Yorke chaos

Now in our final notes in this section for infinite abelian group G, we pay
attention to co–decompasability of (F,G) to Li–Yorke chatic transformation
groups and co–decompasability of (F,G) to non–Li–Yorke chatic transforma-
tion groups.

Corollary 4.8. In infinite abelian Fort transformation group (F,G), is Li–
Yorke chaotic (modulo ideal I (on G)) if and only if it is co-decomposible to
Li–Yorke chaotic (modulo ideal I) transformation groups.

Proof. Use Theorem 4.7.

Note 6. Every infinite abelian Fort transformation group (F,G), is co-
decomposible to non–Li–Yorke chaotic transformation groups.

Proof. Suppose (F,G) is an abelian Fort transformation group, then for {Gα :
α ∈ Γ} = {{gn : n ∈ Z} : g ∈ G} with distinct Gαs, (F, (Gα : α ∈ Γ)) is a co–
decomposition of (F,G) to non–Li–Yorke chaotic transformation groups.

Example 4.9. For uncountable G let Pcount(G) = {A ⊆ G : A is countable}.
Now for G = Z × R and Fort space F := R ∪ {∞} with particular point
∞, in transformation groug (F,G) with ∞(n, r) := ∞ and x(n, r) := x + r
(x ∈ R, (n, r) ∈ Z× R we have:

1. xG = R for all x ∈ F \ {∞},
2. stab(x) = Z× {0} for all x ∈ F \ {∞}.
So by Theorem 4.7, (F,G) is Li–Yorke chaotic (modulo Pfin(G)) however

it is not Li–Yorke chaotic modulo Pcount(G).
As a matter of fact for transfinite cardinal numbers α, β if there exists

abelian group K with β ≤ card(K) < α, in group G := K × R consider two
ideals I := {A ⊆ G : card(A) < β} and J := {A ⊆ G : card(A) < α},
then I ⊆ J . Consider Fort space F := R ∪ {∞} with particular point ∞,
in transformation group (F,G) with ∞(k, r) := ∞ and x(k, r) := x + r (x ∈
R, (k, r) ∈ K × R we have
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• xG = R for all x ∈ F \ {∞},
• stab(x) = K × {0} for all x ∈ F \ {∞}.
So by Theorem 4.7, (F,G) is Li–Yorke chaotic (modulo I) however it is not

Li–Yorke chaotic modulo J .

Acknowledgment

The authors would like to express their thanks to the referee for his/her useful
comments.

References

[1] J. Banks, J. Brooks, G. Cairns, G. Davis, and P. Stacey, On Devaney’s
definition of chaos, Amer. Math. Monthly 99 (1992), no. 4, 332 – 334.

[2] T. Ceccherini-Silberstein and M. Coornaert, Sensitivity and Devaney’s
chaos in uniform spaces, J. Dyn. Control Syst. 19 (2013), no. 3, 349 –
357.

[3] X. Dai and X. Tang, Devaney chaos, Li-Yorke chaos, and multi–
dimensional Li–Yorke chaos for topological dynamics, J. Differential Equa-
tions 263 (2017), no. 9, 5521 – 5553.

[4] R. L. Devaney, An introduction to chaotic dynamical systems, The Ben-
jamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1986.

[5] J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966.

[6] R. Ellis, Lectures on topological dynamics, W. A. Benjamin, Inc., New
York, 1969.

[7] R. Engelking, General topology, 2 ed., Sigma Series in Pure Mathematics,
6, Heldermann Verlag, Berlin, 1989.

[8] A. I. Gerko, On the disjointness of some types of extensions of topological
transformation semigroups, Mat. Zametki 73 (2003), no. 4, 527 – 544
(Russian), translation in Math. Notes 73 (2003), no. 4, 496–510.

[9] L. Google and M. Megrelishvili, Semigroup actions: proximities, compact-
ifications and normality, Topology Proc. 35 (2010), 37 – 71.

[10] M. Holz, K. Steffens, and E. Weitz, Introduction to cardinal arithmetic,
Birkhauser–Verlag, Basel, 1999.

[11] J. van Mill, On the G-compactifications of the rational numbers, Monatsh.
Math. 157 (2009), no. 3, 257 – 266.

Bolet́ın de Matemáticas 27(1) 25-42 (2020)



42 Mehrnaz Pourattar & Fatemah Ayatollah Zadeh Shirazi

[12] Sh. H. Li, ω–chaos and topological entropy, Trans. Amer. Math. Soc. 339
(1993), no. 1, 243 – 249.

[13] P. Oprocha, Distributional chaos revisited, Trans. Amer. Math. Soc. 361
(2009), no. 9, 4901 – 4925.

[14] S. Ruette and L. Snoha, For graph maps, one scrambled pair implies Li-
Yorke chaos, Proc. Amer. Math. Soc. 142 (2014), no. 6, 2087 – 2100.

[15] M. Sabbaghan, F. Ayatollah Zadeh Shirazi, and A. Hosseini, Co–
decomposition of a transformation semigroup, Ukrainian Math. J. 65
(2014), no. 11, 1670 – 1680.

[16] M. Sabbaghan, K. Tso, and T.–S. Wu, Abelian minimal transformation
semigroups, Topology Appl. 60 (1994), no. 3, 201 – 227.

[17] E. Shah, Devaney’s chaos for maps on G-spaces, Taiwanese J. Math. 22
(2018), no. 2, 339 – 348.

[18] S. Shah and T. Das, On e-chaos, Int. J. Math. Anal. (Ruse) 7 (2013),
no. 9–12, 571 – 578.

[19] F. Ayatollah Zadeh Shirazi, M. A. Mahmoodi, and M. Raeisi, On distality
of a transformation semigroup with one point compactification of a discrete
space as phase space, Iran. J. Sci. Technol. Trans. A Sci. 40 (2016), no. 4,
209 – 217.

[20] L. A. Steen and J. A. Seebach, Counterexamples in topology, Holt, Rine-
hart and Winston, Inc., 1970.

[21] H. Wang, X. Long, and H. Fu, Sensitivity and chaos of semigroup actions,
Semigroup Forum 84 (2012), no. 1, 81 – 90.

[22] X. Wang and Y. Huang, Devaney chaos revisited, Topology Appl. 160
(2013), no. 3, 455 – 460.
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