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Abstract. - In this work a master-slave configuration to obtain synchronization between the Rayleigh and 

the Duffing oscillators is studied. For this configuration, we analyze the system when the dissipative 

coupling and one that combines the elastic and dissipative couplings are used. We analyzed the coupling 

parameters to find the range where synchronization between the oscillators is achieved. We found 

synchronization in the oscillators for large values of the coupling parameter. Our numerical findings show 

that for the dissipative coupling, there exists partial synchronization while for the others there is complete 

synchronization. 

Keywords:  Nonlinear dynamics; Control of chaos; Synchronization. 

 

 

Resumen. - En este trabajo se estudia una configuración maestro-esclavo para obtener sincronización 

entre los osciladores Rayleigh y Duffing. Para esta configuración, analizamos el sistema cuando se utiliza 

el acoplamiento disipativo y uno que combina los acoplamientos elástico y disipativo. Analizamos los 

parámetros de acoplamiento para encontrar el rango donde se logra la sincronización entre los osciladores. 

Encontramos sincronización en los osciladores para valores grandes del parámetro de acoplamiento. 

Nuestros hallazgos numéricos muestran que para el acoplamiento disipativo existe una sincronización 

parcial mientras que para los demás existe una sincronización completa. 

Palabras clave: Dinámica no lineal; Control del caos; Sincronización. 
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1. Introduction 

 

Since the seminal work of Pecora and Carroll on 

synchronization [1], numerous works on chaos 

that comprises diverse areas such as lasers, 

chemical reactions, electronic circuits, biological 

systems, among others, have been studied. In 

particular, low-dimensional systems have been 

of interest in order to understand the 

synchronization and chaotic behavior in nature. 

The most studied and representative systems are 

the Lorenz, Chua, Rössler, van der Pol, Rayleigh, 

Duffing and their variations [2-7]. 

 

The Rayleigh oscillator is much like the van der 

Pol oscillator. The Rayleigh and Duffing 

oscillators are the paradigmatic circuits to study 

chaos in systems of low-dimensional. The first 

gives a limit cycle and the last provides the 

prototype of a strange attractor. It is well known, 

that a limit cycle is a closed trajectory in phase 

space having the property that at least one other 

trajectory spirals into it, when 𝑡 → ±∞. In other 

words, the limit cycle is an isolated trajectory; it 

spirals either towards or away from the limit 

cycle. An attractor is called strange if it has a 

fractal structure. This is often the case when the 

dynamics on the attractor is chaotic. If a strange 

attractor is chaotic, it exhibits sensitive 

dependence on the initial conditions. Studies 

focused on the Rayleigh oscillator reveal that it 

possesses a rich dynamical structure, especially 

when the oscillator is forced. This system 

exhibits complex bifurcation structures with an 

important number of periodic states, a chaotic 

region and islands of periodic states, showing, in 

addition, transitions from chaos to stable states. 

The dynamics based on identical or distinct linear 

oscillators presenting the same kind of attractors 

is still under study [8,9].  Nevertheless, the 

dynamics of these systems in states of different 

attractors is of current interest and it could give 

rise to important information. The control of 

chaos is concerned with using some designed 

control to modify the characteristics of a 

nonlinear system. A number of methods such as 

active control, adaptive control, optimal control 

and sliding mode control exist for the control of 

chaos in systems [10-13]. Several kinds of 

synchronization play an important role in the 

study of chaos such as phase synchronization, 

anticipated synchronization, generalized 

synchronization, projective synchronization, that 

have been studied and applied to a chaotic and 

unified system by J. Yan et. al [14]. A. Razminia 

et. al [15] have obtained complete 

synchronization in chaotic systems of fractional 

order through sliding mode control. A. Ouannas 

et. al [16] present new approaches to study 

coexistence of some kinds of synchronization 

between hyperchaotic systems such as hybrid 

synchronization and anti-synchronization. E. 

Campos et. al [17] analyzed the multimodal 

synchronization on the master-slave 

configuration. J.S. González et. al [18] studied 

the synchronization between two different 

coupled chaotic oscillators with an external 

force. The itinerary synchronization between 

piecewise linear systems with different number 

of attractors was studied by A. Anzo-Hernández 

et. al [19]. The hybrid function projective 

synchronization of chaotic systems has been 

developed and used on systems where the 

parameters of the system are unknown by 

applying adaptive control, A. Khan et. al [20]. A. 

Karimov et. al [21] have studied the adaptive 

generalized synchronization between an analog 

circuit and a computer model by comparing the 

numerical methods used on the computer 

simulation of chaotic systems. 

 

Some applications of the Rayleigh and Duffing 

oscillators go from physics to biology, 

electronics, chemistry and many other fields. For 

instance, a possible application of 

synchronization in chaotic signals is to 

implement secure communication systems, since 

chaotic signals are usually broadband, noise like, 
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and difficult to predict the behavior. They can 

also be used for masking information bearing 

waveforms [22,23,24]. In robotics, the oscillators 

have been included to control joint hips and 

knees of human-like robots to ensure the 

mechanical system follows the right path. The 

generated signals can be used as reference 

trajectories for the feedback control [25,26]. 

Other application is in artificial intelligence. In 

fact, the oscillators have shown usefulness to 

training neuronal network and recognition of 

chaotic systems [27,28]. 

 

As far as the coupling between the Rayleigh and 

Duffing oscillators is referred, we can mention 

three different couplings, namely: gyroscopic, 

dissipative and elastic [29-34]. Among the 

diverse way of coupling, the most used are the 

elastic and dissipative ones [34,35,36]. In a 

previous work [34], it is analyzed a different 

approach of synchronizing two distinct 

oscillators of low-dimensional, using the 

aforementioned couplings. Uriostegui et. al [37] 

studied synchronization between the van der Pol 

and Duffing oscillators by using the elastic, 

dissipative and a combination of both couplings. 

It was found that the elastic coupling leads to no 

synchronization, whilst with the dissipative one 

it is reached partial synchronization. For the 

combination of both couplings, it is reached 

complete synchronization. 

 

In this work, we study and compare two types of 

couplings by using the Rayleigh and Duffing 

systems: the dissipative and the used previously 

by Uriostegui et. al [34].  It is important to 

remark that the studies in the literature on this 

kind of synchronization is based only on one 

coupling. An outline of this work is as follows. 

In Sec. 2, it is briefly studied the main features of 

the Rayleigh and Duffing oscillators.  In Sec. 3, 

we study and compare two types of couplings 

using the Rayleigh and Duffing systems upon the 

master-slave configuration. In Sec. 4, some 

conclusions and an outlook are presented. 

 

2. Dynamics of the oscillators 

 

The dynamics of the forced Rayleigh oscillator is 

described by the following nonlinear differential 

equation: 

 

�̈� − 𝜇(1 − �̇�2)�̇� +
𝑑𝑈1

𝑑𝑥
= 𝐴1 cos(𝜔1𝑡),      (1) 

  

The Rayleigh oscillator is characterized by 

nonlinear damping. The 𝑥 variable denotes the 

position, 𝑡 the time, and 𝜇 > 0 is a parameter that 

governs the nonlinearity and damping. The 

external forcing is given by the harmonic 

function, with amplitude 𝐴1 and frequency 𝜔1. 

We have defined the function: 

 

𝑈1(𝑥) =
1

2
𝑥2.                          (2) 

 

as the Rayleigh potential, which represents a 

single-well (see Fig. 1 (a)). The potential has a 

minimum located at  𝑥 = 0. In order to express 

Eq. (1) as a dynamical system and to analyze the 

fixed points, we set �̇� = 𝑢 and drop the forcing 

to obtain 

 
�̇� = 𝑢,

�̇� = 𝜇(1 − 𝑢2)𝑢 − 𝑥.
                 (3) 

 

We can observe from Eq. (3) that the only fixed 

point is located at (𝑥 = 0, 𝑢 = 0). For the case 

when 𝐴1 = 0, the Rayleigh oscillator satisfies the 

Rayleigh-Liénard theorem, giving a limit cycle in 

the phase space, around the origin. 

 

On the other hand, the Duffing oscillator is a 

nonlinear dynamical system governed by 

 

�̈� + 𝛼�̇� +
𝑑𝑈2

𝑑𝑦
= 𝐴2 cos(𝜔2𝑡),             (4) 
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where 

𝑈2(𝑦) = −
1

2
𝑦2 +

1

4
휀𝑦4.                     (5) 

 

and 𝛼 is positive and it denotes a dissipative 

parameter, 휀 is a positive constant that controls 

the nonlinearity of the system, and 𝐴2 is the 

amplitude of the external forcing, being 𝜔2 its 

frequency. The potential in Eq. (5) represents a 

double-well shown in Fig. 1 (b). The local 

minima of this potential are located in 𝑦 = ±
1

√𝜀
  

and the local maximum is located at 𝑦 = 0. As a 

dynamical system the Duffing equation in (4) (no 

forcing) can be cast as 

  
�̇� = 𝑣,

�̇� = −𝛼𝑣 + 𝑦 − 휀𝑦3,
                 (6) 

 

where we set �̇� = 𝑣. The fixed points for this 

system are located in the phase space at 

(𝑦 = 0, 𝑣 = 0) and (𝑦 = ±
1

√𝜀
, 𝑣 = 0). The first 

one at (𝑦 = 0, 𝑣 = 0) is a saddle point, while the 

others, depending on the parameter α, they can be 

stable or unstable points. For 𝛼 > 0 the points 

result stables, for the 𝛼 = 0 case, the resulting 

dynamics is of type center and for 𝛼 < 0 case, 

the points result unstable. In particular, when the 

damping is positive (𝛼 > 0), the trajectory of the 

system is spiral stable, conversely, for a damping 

negative (𝛼 < 0), the trajectory is spiral unstable 

at the fixed points (𝑦 = ±
1

√𝜀
, 𝑣 = 0) in both 

cases. 
 

(a) (b)  
 

Figure 1. The potentials 𝑈1(𝑥) and 𝑈2(𝑦).  (a) The 

potential corresponds to the Rayleigh oscillator. (b) The 

Duffing oscillator (ε = 1). 

3. Master-slave synchronization 

 

In this section, two different couplings for the 

Rayleigh and Duffing systems are studied and 

compared among themselves, namely:  the 

dissipative and the one that combines elastic and 

dissipative couplings employed by Uriostegui et. 

al [34]. Let us stress that most of the research on 

synchronization is based on autonomous systems 

of three-dimensional or higher [38,39,40]. Three 

of the most studied nonautonomous systems of 

low-dimensional with forcing are the Duffing, 

van der Pol, Rayleigh and their variations, since 

much of the dynamical features embedded in the 

physical systems can be realized on these 

systems [41,42,43]. One important implication is 

that a two-dimensional continuous dynamical 

system cannot give rise to strange attractors. In 

particular, chaotic behavior arises only in 

continuous three-dimensional dynamical 

systems or higher.  Most of the research on 

synchronization is based on autonomous systems 

that satisfy the Poincaré-Bendixson theorem. 

Nevertheless, let us stress that the Rayleigh and 

Duffing oscillators being two-dimensional, need 

an external forcing to present chaos. 

 

The dynamics for each oscillator under study is 

described by the equations in (1) and (4). The 

values of the parameters we use are as follows: 

=1.2, α=0.3, ε=1, A1 =2.8, ω1 =0.2, A2 =0.5 and 

ω2 =1.3. In Figs. 2 and 3 it is displayed the 

respective trajectories with the initial conditions 

x (0) = 1, y (0) = 2, u (0) = 1 and v (0) = -1. Let 

us mention that the very same values of the 

parameters and the initial conditions will be used 

in the subsequent numerical simulations. The 

numerical simulations were performed using the 

fourth order of the Runge–Kutta method. 
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Figure 2. Rayleigh oscillator described by Eq. (1). 

 

 
Figure 3. Duffing oscillator described by Eq. (4). 

 

In the configuration master-slave, the Duffing 

oscillator acts as master and the Rayleigh 

oscillator as slave. For this case we have 

 

𝑀𝑎𝑠𝑡𝑒𝑟: {
�̇� = 𝑣,

�̇� = −𝛼𝑣 + 𝑦 − 휀𝑦3+𝐴2 cos(𝜔2𝑡),
                         (7) 

 

𝑆𝑙𝑎𝑣𝑒: {
�̇� = 𝑢,

�̇� = 𝜇(1 − 𝑢2)𝑢 − 𝑥+𝐴1 cos(𝜔1𝑡) + 𝐻(𝑣 − 𝑢).
       (8) 

 

In this instance, the coupling used corresponds to 

a dissipative coupling and it is represented by 

𝐻(𝑣 − 𝑢), being 𝐻 a coupling parameter to be 

varied. For the 𝐻 = 0 case, the system 

decouples. The coupling is linear feedback to the 

slave oscillator and it can be seen as a 

perturbation for each oscillator in the system, 

proportional to the difference of the velocity, 

named in literature a dissipative coupling. We are 

interested in studying how the dynamics of the 

system evolves as the constant coupling 𝐻 

changes. 

 

In general, the synchronization problem reduces 

to finding a suitable value of the coupling 

strength 𝐻, (denoted by 𝐻∗) being in the range 

𝐻 ≥ 𝐻∗ > 0, such that the master and slave 

systems synchronize. Thus, for a coupling 

strength 𝐻∗, when the complete synchronization 

is reached, the error function goes to zero: 

 
lim
𝑡→∞

|𝑦(𝑡) − 𝑥(𝑡)| = lim
𝑡→∞

|𝑣(𝑡) − 𝑢(𝑡)| = 0.       (9) 

 

When the system is in practical synchronization, 

for a certain value of 𝐻∗, the error functions 

satisfy 

 
lim
𝑡→∞

|𝑦(𝑡) − 𝑥(𝑡)| ≤ 𝛿,                (10) 

 

lim
𝑡→∞

|𝑦(𝑡) − 𝑥(𝑡)| ≤ 𝜏,                (11) 

 

for given positive values 𝛿, 𝜏 > 0, and arbitrary 

initial conditions. This definition is used, 

because, sometimes, the errors do not exactly 

converge to zero, but in practice we can still 

speak of synchronized systems. In some cases, it 

can be reached complete synchronization in a 

single state of the system while in the other, it can 

be only obtained practical or null 

synchronization. Although, in practice, such as in 

analog circuits, we have no total control on the 

parameters used (e.g., resistors, capacitors, 

transistors), which makes not possible 

reproducing the required conditions in the 

numerical simulations. This could give no 

complete synchronization. The partial 

synchronization is the phenomenon when, in a 

dynamical system, only part of the state variables 

synchronizes and the others do not. 

 

Let us consider the error functions |𝑦(𝑡) − 𝑥(𝑡)| 
and |𝑣(𝑡) − 𝑢(𝑡)| by taking 𝐻 as a control 

parameter to be varied in small steps from 0 to 

200. For our case, the error functions allow us to 
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find the range of values for 𝐻 in which the 

synchronization is reached in the projections 

onto the (𝑥, 𝑦) and (𝑢, 𝑣) planes, as it can be 

shown in Figs. 4 and 5. Notice that in the 

projection onto the (𝑥, 𝑦) plane no complete 

synchronization exists since the error function 
|𝑦(𝑡) − 𝑥(𝑡)| do not exactly converge to zero; 

the |𝑣(𝑡) − 𝑢(𝑡)| function goes to zero for large 

values of 𝐻. For the projection onto the (𝑢, 𝑣) 

plane, the complete synchronization could be 

reached for rather large values of 𝐻. In order to 

see this, let us observe that the errors 𝑒1 = 𝑦 − 𝑥 

and 𝑒2 = 𝑣 − 𝑢 can be calculated from Eqs. (7) 

and (8) as: 

 
�̇�1 = �̇� − �̇� = 𝑒2, 
�̇�2 = �̇� − �̇� = −𝛼𝑣 + 𝑦 − 휀𝑦3+𝐴2 cos(𝜔2𝑡) 

−𝜇(1 − 𝑢2)𝑢 + 𝑥−𝐴1 cos(𝜔1𝑡) − 𝐻(𝑒2).                  (12) 

 

 
Figure 4. The error function |𝑦(𝑡) − 𝑥(𝑡)| varying the 

parameter 𝐻. 

 

 
Figure 5. The error function |𝑣(𝑡) − 𝑢(𝑡)| varying the 

parameter 𝐻. 

 

The plots of |𝑒1| and |𝑒2| as a function of 𝑡 for a 

value of 𝐻 = 200, are depicted in Fig. 6. 

 
Figure 6. Error functions |𝑒1| and |𝑒2|, for 𝐻 = 200. 

 

In Figure 7, it can be appreciated from a time-

series plot of 𝑥(𝑡) and 𝑦(𝑡) that the signals are 

not in complete synchronization. On the 

contrary, in Figure 8 the time-series plot of 𝑢(𝑡) 

and 𝑣(𝑡), show that the signals are in complete 

synchronization. 
 

 
Figure 7. Time-series plot 𝑥(𝑡) and 𝑦(𝑡). 
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Figure 8. Time-series plot 𝑢(𝑡) and 𝑣(𝑡). 

Let us analyze the projections onto the (𝑥, 𝑦) and 
(𝑢, 𝑣) planes for a specific value of 𝐻 = 200. In 

this case the master system is in a chaotic regime. 

In Fig. 9 (a) it is shown the behavior of the 

Duffing oscillator (master) and in Fig. 9 (b) the 

Rayleigh oscillator (slave). In Fig. 9 (c) we can 

appreciate the fact that in the projection onto the 
(𝑥, 𝑦) plane there is no complete synchronization 

while in the projection onto the (𝑢, 𝑣) plane there 

is only complete synchronization (Fig. 9 (d)).

(a)  

(b)  

(c)  

(d)  
  

Figure 9. Dissipative coupling case, for 𝐻 = 200. In (a) The Duffing oscillator (master) and in (b) the Rayleigh oscillator 

(slave). In (c) and (d) projections onto the (𝑥, 𝑦) and (𝑢, 𝑣) planes, respectively. 
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A modified master-slave scheme leading to 

synchronization even in the cases where the 

classical master-slave scheme fails, was 

considered in Ref. [34]. The system analyzed in 

this reference can be separated in two parts (see 

Eqs. (13) and (14)). On one side, the system 

combines a non-conventional coupling, where 

linear feedback is made. The elastic coupling is 

proportional to the difference of the position, 

𝐺1(𝑦 − 𝑥), which is introduced in the velocity of 

the slave system. The other part uses also another 

linear feedback proportional to the difference of 

the velocity (dissipative coupling), 𝐺2(𝑣 − 𝑢), 

introduced in the acceleration in the slave system. 

For the Rayleigh and Duffing oscillators, the 

equations that govern the evolution are 

 

𝑀𝑎𝑠𝑡𝑒𝑟: {
�̇� = 𝑣,

�̇� = −𝛼𝑣 + 𝑦 − 휀𝑦3+𝐴2 cos(𝜔2𝑡),
            (13) 

 

𝑆𝑙𝑎𝑣𝑒: {
�̇� = 𝑢 + 𝐺1(𝑦 − 𝑥),

�̇� = 𝜇(1 − 𝑢2)𝑢 − 𝑥+𝐴1 cos(𝜔1𝑡) + 𝐺2(𝑣 − 𝑢).
    (14) 

 

The errors 𝑒3 = 𝑦 − 𝑥 and 𝑒4 = 𝑣 − 𝑢, are 

determined by subtracting Eqs. (13) and (14), 

given 

 
�̇�3 = �̇� − �̇� = 𝑣 − 𝑢 − 𝐺1𝑒3, 
 

𝑒4 = 𝑣 − 𝑢 = �̇�3 + 𝐺1𝑒3, 
 

�̇�4 = �̇� − �̇� = −𝛼𝑣 + 𝑦 − 휀𝑦3+𝐴2 cos(𝜔2𝑡) 

 

−𝜇(1 − 𝑢2)𝑢 + 𝑥−𝐴1 cos(𝜔1𝑡) − 𝐺2(𝑒4).                (15) 

 

The constant 𝐺1 corresponds to the elastic 

coupling and 𝐺2 to the dissipative coupling. 

Hence, 𝐺1(𝑦 − 𝑥) = 𝐺1(𝑒1) and 𝐺2(𝑣 − 𝑢) =
𝐺2(�̇�3 + 𝐺1𝑒3) which manifest the dependence 

of 𝐺2 on the derivative of error and the coupling 

𝐺1, giving more information about the dynamical 

evolution of the system. Let us introduce the 

vector 

 

(
𝐺1(𝑦 − 𝑥)

𝐺2(𝑣 − 𝑢)
) = (

𝐺1𝑒3

𝐺2�̇�3 + 𝐺2𝐺1𝑒3
).          (16) 

which is the called control vector, and it contains 

the coupling we propose. Notice that the control 

depends on the error and its derivative. As before, 

for the case 𝐺1 = 𝐺2 = 0, the system decouples. 

In order to study the dynamics of the system, we 

vary the couplings 𝐺1 and 𝐺2 keeping one of 

them constant, while the other is varied. Let us 

consider the |𝑦(𝑡) − 𝑥(𝑡)| and |𝑣(𝑡) − 𝑢(𝑡)| 
error functions. We calculate |𝑦(𝑡) − 𝑥(𝑡)| 
keeping 𝐺2 = 100 and varying 𝐺1 in small steps 

from 0 to 10. In a similar way, we obtain the error 

function |𝑣(𝑡) − 𝑢(𝑡)| with 𝐺1 = 5 and varying 

𝐺2 in small steps from 0 to 200. As it can be 

appreciated from Figs. 10 and 11, we obtain 

complete synchronization, since the error 

functions go to zero as the value of 𝐺1 and 𝐺2 are 

increased. The plots of |𝑒3| and |𝑒4| as a function 

of 𝑡, for the values of 𝐺1 = 5 and 𝐺2 = 100, are 

depicted in Fig. 12. 

 

 
Figure 10. The error function |𝑦(𝑡) − 𝑥(𝑡)| varying the 

parameter 𝐺1. 

 

 
Figure 11. The error function |𝑣(𝑡) − 𝑢(𝑡)| varying the 

parameter 𝐺2. 
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Figure 12. Error functions |𝑒3| and |𝑒4| with respective 

values of 𝐺1 = 5 and 𝐺2 = 100. 

 

As it can be observed in Figs. 13 and 14, the time-

series plots of  𝑥(𝑡), 𝑦(𝑡), 𝑢(𝑡), and 𝑣(𝑡) shown 

that the signals are in complete synchronization. 

 

Figure 13. Time-series plot 𝑥(𝑡) and 𝑦(𝑡). 

 
Figure 14. Time-series plot 𝑢(𝑡) and 𝑣(𝑡). 

 

Let us now analyze the projections onto the 
(𝑥, 𝑦) and (𝑢, 𝑣) planes for values of 𝐺1 = 5 and 

𝐺2 = 100. For this case, the Duffing oscillator is 

in a chaotic regime; the Rayleigh oscillator is 

maintained as the slave system. In Figs. 15 (a) 

and (b) the behavior of the Duffing and Rayleigh 

oscillators is shown, respectively, while in (c) 

and (d), it can be observed that complete 

synchronization is reached for these systems. 

 

For certain systems, it is not possible to reach 

synchronization when the classical master-slave 

scheme is used. In some cases, the systems reach 

complete synchronization in a single state of the 

slave system as it occurs for the dynamics 

contained in Eqs. (7) and (8), depending on 𝐻, 

obtaining partial synchronization by using 

dissipative coupling for Rayleigh and duffing 

oscillators. Variations to the master-slave 

scheme for some systems have been proposed to 

solve certain kind of problems [44-47]. In 

particular, in Ref. [34] a modified master-slave 

scheme is considered that leads to 

synchronization even in the cases where the 

classical master-slave scheme fails.
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(a)  

(b)  

(c)  

(d)  

 
Figure 15. Elastic and dissipative couplings for  𝐺1 = 5 and 𝐺2 = 100. In (a) The Duffing oscillator (master) and in (b) the 

Rayleigh oscillator (slave). In (c) and (d) projections onto the (𝑥, 𝑦) and (𝑢, 𝑣) planes respectively. 

 

4. Conclusions 

 

The Rayleigh and Duffing are low-dimensional 

nonautonomous systems that present chaos and 

have been well studied. In this work, we have 

studied the master-slave configuration in the 

Rayleigh and Duffing oscillators, when 

dissipative coupling is used, only complete 

synchronization in the projection onto the (𝑢, 𝑣) 

plane can be reached. As a matter of fact, 

according to the classical master-slave coupling, 

in the best of cases, it is obtained only complete 

synchronization in a single state of the slave 

system studied. On the other hand, the possibility 

of using two coupling (elastic and dissipative, in 

this case), blending up as one, allows the system 

a more interesting dynamics and a broad range 

for the control parameters. In this paper, we have 

analyzed the synchronization in the Rayleigh and 

Duffing oscillators using the combination of the 

elastic and dissipative couplings. We observed 

that, in a difference with other approaches, with 

this new coupling, we were able of obtaining 

complete synchronization in the projections onto 

the (𝑥, 𝑦) and (𝑢, 𝑣) planes. In order to apply 

synchronization in communication systems, it is 

necessary to have a large range of the control 

parameter, which is obtained in the Rayleigh and 

Duffing oscillators, by employing our approach 

of coupling. This kind of coupling will be applied 

in others systems that do not present 

synchronization through the usual methods. 
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