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Abstract 
This paper investigates the influence of the fractional distillation on the yield and quality of biofuels obtained in a laboratory unit (Vigreux 
column) at atmospheric pressure, producing three distilled fractions: (1) green gasoline, (2) green aviation kerosene, and (3) green diesel. 
The quality of the distilled fractions was evaluated through physical-chemical analysis, FTIR spectroscopy, and GC-MS analysis. The 
fractional distillation of the crude biofuel provided biofuels in the form of distilled fractions with most values of physical-chemical 
properties within the limits established by national and international regulatory agencies and with experimental distillation curves similar 
to standard distillation curves. GC-MS analysis showed that the three distilled fractions had higher contents of hydrocarbons than 
oxygenated compounds and contained hydrocarbons characteristic of petroleum derivatives such as gasoline, aviation kerosene, and diesel. 
 
Keywords: pilot scale; bio-oil; distilled fractions. 

 
 

Influencia de la destilación fraccionada en el rendimiento y la 
calidad de los biocombustibles obtenidos mediante el craqueo 

térmico catalítico del aceite de palma crudo 
 

Resumen 
Este trabajo investiga la influencia de la destilación fraccionada en el rendimiento y la calidad de los biocombustibles obtenidos en una 
unidad de laboratorio (columna Vigreux) a presión atmosférica, produciendo tres fracciones destiladas: (1) gasolina verde, (2) queroseno 
verde de aviación y (3) diesel verde. La calidad de las fracciones destiladas se evaluó mediante análisis físico-químico, espectroscopia 
FTIR y análisis GC-MS. La destilación fraccionada del biocombustible crudo proporcionó biocombustibles en forma de fracciones 
destiladas con la mayoría de valores de propiedades físico-químicas dentro de los límites establecidos por las agencias reguladoras 
nacionales e internacionales y con curvas de destilación experimentales similares a las curvas de destilación estándar. El análisis GC-MS 
mostró que las tres fracciones destiladas tenían mayores contenidos de hidrocarburos que los compuestos oxigenados y contenían 
hidrocarburos característicos de derivados del petróleo como gasolina, queroseno de aviación y diesel. 
 
Palabras clave: escala piloto; bio-aceite; fracciones destiladas. 

 
 
 

1. Introduction 
 
The concern to reduce dependence on fossil fuels, as well 

as to reduce pollution caused by the emission of greenhouse 
gases (GHGs) has stimulated the development of studies on 
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the production of fuels from renewable resources [1,2]. In 
this sense, biofuels are considered promising alternatives, as 
they have a chemical composition similar to traditional fossil 
fuels and low pollutant emissions [2,3]. 

Biofuels can be obtained from different sources of 
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biomass, including cellulosic biomass, biomass derived from 
sugar and starch, and biomass based on triglycerides [1,2]. 
Biomass based on triglycerides includes edible vegetable oils 
[4,5], used vegetable oils [6], animal fat [7], and non-edible 
vegetable oils [8,9], and can be converted into biofuels via 
thermal cracking [10,11] or catalytic cracking (also known as 
thermal catalytic cracking) [12–20], which is a simple and 
economical method with products that resemble petroleum 
fuels [21–23]. 

Several types of biomass based on triglycerides have been 
used for the production of biofuels through cracking [4–
6,8,14,24]. Among the biomasses used for this purpose, it is 
possible to highlight the palm oil tree (Elaeis guineenses, 
Jacq.), “dendezeiro” (in Portuguese), which is an oilseed with 
a high yield of crude palm oil per hectare [25]. 

Thermal catalytic cracking products of biomass based on 
triglycerides include gas, organic liquid product (OLP), coke, 
and water [26–28]. The OLP consists of oxygenated 
compounds and hydrocarbons, which correspond to the 
boiling-point range of gasoline, aviation kerosene and diesel 
[9,27,29–31]. Some components, such as oxygenated 
compounds, confer undesirable characteristics to the OLP, 
limiting its use as a direct substitute for liquid transport fuel 
[32–34]. Therefore, various types of distillation, including 
atmospheric pressure distillation, has been applied to the 
fractionation and upgrading of OLP [20,31,33,35–43] in 
order to provide biofuels with better physical-chemical 
property values than those presented by the feed or within the 
limits specified by regulatory agencies of each country [42]. 
Due to the complex composition of the OLP, its boiling point 
starts below 100 °C and reaches the range of 250–280 °C 
[44]. Atmospheric distillation has the advantages of being an 
uncomplicated and mature separation process widely used in 
the petrochemical industry, presenting itself as a technical 
and economically viable way to separate the complex 
composition of OLP into biofuels similar to gasoline, 
aviation kerosene and diesel [3]. 

Capunitan and Capareda [33] performed fractional 
distillation of bio-oil under atmospheric conditions and 
reduced pressure (vacuum). The results showed high yields 
of heavy fractions and a significant reduction in humidity and 
acid value. The chemical composition analysis showed that 
the aromatic and oxygenated compounds were distributed in 
the light and medium fractions (15–20%), while the phenolic 
compounds were concentrated in the heavy fraction (53%). 
The distillation process was effective in separating the 
components and producing a heavy fraction with improved 
properties and composition and which could be further 
utilized as feedstock for future upgrading procedures or as a 
blending material with other liquid fuels. Ferreira et al. [43] 
investigated the deacidification of OLP by laboratory-scale 
fractional distillation using columns of different heights, with 
and without reflux, and at the pilot scale. Biofuels (distillates) 
showed yields at the laboratory scale with and without reflux 
ranging from 62.15 to 76.41 wt % and from 71.65 to 
89.44 wt %, respectively, and 32.68 wt % at the pilot scale. 
For pilot-scale distillation experiments, the acid values of the 
gasoline, kerosene, and light diesel fractions were 0.33, 0.42, 
and 0.34 mg KOH/g, respectively. The GC-MS results of the 
OLP showed 92.84% (by area) of hydrocarbons and 7.16% 

(by area) of oxygenates. The light diesel fraction contained 
100% hydrocarbons with an acid value of 0.34 mg KOH/g, 
proving the feasibility of OLP deacidification by fractional 
distillation. 

In this context, the objective of the present study was to 
investigate the influence of the fractional distillation process 
of OLP on yield and quality of biofuels similar to petroleum 
products such as gasoline, aviation kerosene, and diesel fuel. 

 
2. Materials and methods 

 
2.1. Organic liquid product 

 
In this study, the feedstock used was an OLP obtained by 

thermal catalytic cracking of crude palm oil at a pilot plant 
using 20 wt % of sodium carbonate (Na2CO3) as the catalyst, 
as described by Mota et al. [20]. These authors characterized 
the OLP using physical-chemical and FTIR analyses. 

 
2.2. Experimental apparatus and procedure 

 
The OLP was distilled into three fractions (green 

gasoline, green aviation kerosene, and green diesel) using the 
experimental apparatus described by Mota et al. [20]. 

OLP was submitted to laboratory-scale fractional 
distillation using a Vigreux Column with three stages. To 
obtain three fractions, the OLP was distilled within the 
following distillation temperature ranges: 90–160 °C (green 
gasoline); 160–245 °C (green aviation kerosene); and 245–
340 °C (green diesel). The distillation temperature intervals 
were reported to give hydrocarbon fractions with similar 
properties to particular petroleum products. 

The fractional distillation of OLP aimed to obtain the 
fractions previously defined for physical-chemical 
characterization and analysis of composition. 

The OLP was heated gradually to first distillation 
temperature range (90–160 °C). The distilled fraction was 
collected in a 250-mL separation funnel and stored in amber 
glass bottles. After obtaining the first distilled fraction, the 
temperature controller of the heating mantle was adjusted to 
reach the second distillation range (160–245 °C). The same 
procedure was followed to obtain the remaining fraction 
(245–340 °C). At the end of the experimental procedure, 
there were three distilled fractions and a bottoms product. 

Eq. (1) was applied to determine the yield of the distilled 
fractions (green gasoline, green aviation kerosene, and green 
diesel), as well as the bottoms product. 

 
Yield in distilled fractions (𝑤𝑤𝑤𝑤%)=

mDF

mOLP
×100 (1) 

 
where mDF is the mass of distilled fraction (g), and mOLP 

is the mass of OLP (g). 
 

2.3. Characterization of the distilled fractions 
 

2.3.1. Physical-chemical properties 
 
Distilled fractions were physically-chemically 

characterized according to the official AOCS and ASTM 
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methods for acid value (AOCS Cd 3d-63), saponification 
value (AOCS Cd 3–25), specific gravity at 20 °C (ASTM 
D854), refractive index (AOCS Cc 7–25), kinematic 
viscosity at 40 °C (ASTM 446 and ASTM D2515), flash 
point (ASTM D93), corrosiveness to copper (ASTM D130), 
FFA content (AOCS Ca 5a-40), carbon residue (ASTM 
D4530) and ester value, which is the difference between the 
saponification value and the acid value, as described by 
Paquot [45]. 

 
2.3.2. FTIR spectroscopy 

 
Distilled fractions were analyzed by FTIR spectroscopy 

(Shimadzu, model: Prestige 21). The absorbance spectra 
were obtained within the interval 4000–400 cm−1 at a 
resolution of 16 cm−1 using a KBr window. The samples were 
dropped onto the KBr surface by micropipette in order to 
spread the liquid and produce a uniform layer. 

 
2.3.3. Distillation curve 

 
The distillation curves of the distilled fractions were 

obtained according to the official method (ABNT/NBR 
9619) using an automatic distillation apparatus (Tanaka, 
model: AD6). 

 
2.3.4. GC-MS analysis 

 
The GC-MS analysis of the distilled fractions was 

performed using a gas chromatograph coupled to a mass 
spectrometer (Shimadzu, model: GCMS-QP2010 Plus), as 
described by Mota et al. [20]. The relative content of 
compounds in the distilled fractions was calculated by the 
ratio of their peak area to the total peak area of the GC-MS 
spectra. 

 
3. Results and discussion 

 
3.1. Influence of fractional distillation on the yield of 

biofuels 
 
According to Table 1, the OLP produced by thermal 

catalytic cracking of crude palm oil with 20 wt % of Na2CO3 
generated three fractions after being subjected to a fractional 
distillation process at the following distillation temperature (DT) 
ranges: 90 ≤ DT ≤ 160 °C (green gasoline), 160 ≤ DT ≤ 245 °C 
(green aviation kerosene), 245 ≤ DT ≤ 340 °C (green diesel). 
Table 1 also shows that as the DT range increased, the yield of 
the distilled fractions increased, indicating that cracking of crude 
palm oil with Na2CO3 favored the production of heavier 
fractions such as green aviation kerosene, green diesel, and 
bottoms product. Weber et al. [36] obtained similar results, 
performing the thermal degradation of animal fat in a pilot-scale 
plant at 410–450 °C using a moving bed of sodium carbonate as 
the catalyst and 5 wt % of water, obtaining OLP. The authors 
also conducted a fractional distillation of the OLP produced, 
yielding 66 wt % of diesel fraction and 21 wt % of gasoline 
fraction. 

The total yield from the sum of the three fractions (green 
gasoline, green aviation kerosene, and green diesel) was 

60.43 wt %, which is higher than those found in the literature. 
Chew & Bhatia [46], for example, investigated the effect of 
additives (HZSM-5 in different Si/Al ratios, beta zeolite, SBA-
15, and AlSBA-15) mixed physically with Rare Earth-Y (REY) 
as a catalyst in the catalytic cracking of crude and used palm oil 
to produce biofuels. The best results in terms of yield showed 
that OLP consisted of 59.3 wt % and 55.3 wt % of fractions in 
the boiling-point ranges of gasoline, kerosene, and diesel oil for 
crude and used palm oil, respectively, both using HZSM-5 
(Si/Al ratio = 40) with REY as catalyst. 

The bottom product was the product of the fractional 
distillation of OLP that showed the highest yield in the 
present study. The bottom product contains a wide variety of 
valuable chemicals, making its use possible in resins, 
agrochemicals, fertilizers, emission control agents [33], fuels 
[47], carbon anodes, steel carburization, and graphite 
synthesis [48]. 

Therefore, the results show that OLP from the thermal 
catalytic cracking of crude palm oil with 20 wt % Na2CO3 at 
450 °C and 1 atm and at pilot scale yielded a higher amount 
of distilled fraction when compared to cracking OLP using 
commercial catalysts such as zeolites, and the bottom product 
formed in the fractional distillation process of the former 
OLP can find several applications. 

 
3.2. Influence of fractional distillation on the quality of 

biofuels 
 

3.2.1. Physical-chemical properties 
 
As shown in Table 2, most of the values concerning the 

physical-chemical properties of the green gasoline fraction 
were considerably lower than those of the OLP. These values 
were also lower than those found by Xu et al. [35] and 
Wisniewski Jr. et al. [40] for gasoline fractions. 

Table 3 shows that most of the physical-chemical 
properties of the green aviation kerosene fraction had values 
equal to or lower than those relating to OLP. Although the 
acid value did not reach the limit established by the ANP 
Nº 37 [51] and ASTM D1655 [52], the value obtained for this 
property was 1.68 mg KOH/g. This value is relatively low 
and can be further reduced by applying separation processes 
such as liquid–liquid extraction and adsorption [43,55] or 
even fractional distillation [43] in order to achieve the values 
specified by ANP and ASTM. 

 
Table 1. 
Yield of distilled fractions. 

Process Parameters Unit Value 
Initial mass of OLP g 621.68 
Mass of non-condensable gases g 37.17 
Mass of green gasoline g 62.00 
Mass of green aviation kerosene g 157.85 
Mass of green diesel g 155.84 
Mass of bottoms product g 208.82 
Yield of non-condensable gases wt % 5.98 
Yield of green gasoline wt % 9.97 
Yield of green aviation kerosene wt % 25.39 
Yield of green diesel wt % 25.07 
Yield of bottoms product wt % 33.59 

Source: The authors. 
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Table 2. 
Physical-chemical properties of the green gasoline fraction. 

Physical-chemical properties Unit OLP 
[20] 

Green 
gasoline 

ANP Nº 40 
[49] 

ASTM D4814 
(Gasoline/type 

A) [50] 

Gasoline 
fraction 

[35] 

Gasoline 
fraction 

[40] 
Specific gravity at 20 °C kg/m³ 790.00 750.00 Annotate - 866.00 843.80 
Kinematic viscosity at 40 °C mm²/s 2.02 0.76 - - 2.34a - 
Flash point, min. ºC 85.10 3.00 - - 34.00 - 
Corrosiveness to copper, 3h, 50 °C max. - 1 1 1 1 - - 
Carbon residue, max. wt % 0.64 - - - - - 
Acid value mg KOH/g 1.02 1.43 - - 2.30 7.60 
Saponification value mg KOH/g 14.35 14.29 - - - - 
Refractive index - 1.44 1.42 - - - - 
Ester value mg KOH/g 13.33 12.86 - - - - 
Content of FFA wt % 0.51 0.72 - - - - 

FFA, free fatty acids; max, maximum; min, minimum; ANP: Agência Nacional do Petróleo, Gás Natural e Biocombustíveis, Resolution N° 40 (Specification 
of regular gasoline/Type A) 
aviscosity at 20 °C 
Source: The authors. 

 
 

Table 3.  
Physical-chemical properties of the green aviation kerosene fraction. 

Physical-chemical properties Unit OLP 
[20] 

Green aviation 
kerosene 

ANP Nº 37 
(Aviation 

kerosene) [51] 

ASTM D1655 
(Jet A-1) [52] 

Specific gravity at 20 °C kg/m3 790.00 790.00 771.30–836.60 775–840a 
Kinematic viscosity at 40 °C mm2/s 2.02 1.48 - 8.0b 
Flash point, min. ºC 85.10 10.00 38.00 38.00 
Corrosiveness to copper, 3h, 50 ºC max. - 1 1 - 1c 
Carbon residue, max. wt % 0.64 0.02 - - 
Acid value mg KOH/g 1.02 1.68 0.015d 0.10d 
Saponification value mg KOH/g 14.35 15.05 - - 
Refractive index - 1.44 1.44 - - 
Ester value mg KOH/g 13.33 13.37 - - 
Content of FFA wt % 0.51 0.84 - - 

FFA, free fatty acids; max, maximum; min, minimum; ANP: Agência Nacional do Petróleo, Gás Natural e Biocombustíveis, Resolution Nº37 (Specification 
of Aviation kerosene). 
aDensity at 15 °C, kg/m3. 
bViscosity at 20 °C, mm2/s (max.) 
cCopper strip, 2 h at 100 °C (max.) 
dASTM Test Method: ASTM D3242 
Source: The authors. 

 
 

Table 4.  
Physical-chemical properties of the green diesel fraction. 

Physical-chemical properties Unit OLP 
[20] 

Green 
diesel 

ANP Nº 65 
(Diesel)[53] 

ASTM D975 
(Diesel Nº 1-D S15) 

[54] 

Diesel 
fraction 

[35] 

Diesel 
fraction 

[40] 
Specific gravity at 20 °C kg/m3 790.00 820.00 820–850 - 898 881.90 
Kinematic viscosity at 40 °C mm2/s 2.02 3.51 2–4.50 1.3–2.4 6.27a - 
Flash point, min. ºC 85.10 24.00 38.00 38.00 115 - 
Corrosiveness to copper, 3h, 50 °C max. - 1 1 1 3 - - 
Carbon residue, max. wt % 0.64 - 0.25 0.15b  - 
Acid value mg KOH/g 1.02 5.70 0.50 - 2.50 86.90 
Saponification value mg KOH/g 14.35 15.80 - - - - 
Refractive index - 1.44 1.45 - - - - 
Ester value mg KOH/g 13.33 10.10 - - - - 
Content of FFA wt % 0.51 2.87 - - - - 

FFA, free fatty acids; max, maximum; min, minimum; ANP, Agência Nacional do Petróleo, Gás Natural e Biocombustíveis, Resolution Nº 65 (Specification 
of Diesel S10). 
aViscosity at 20 °C. 
bASTM Test Method: ASTM D524. 
Source: The authors. 

 
 
The flash point value was lower than that established by 

ANP Nº 37 [51] and ASTM D1655 [52], as shown in Table 
3. This fact is due to the presence of low-molecular-weight 

compounds and a lack of an adequate percentage of normal 
paraffinic and aromatic compounds, resulting in a lower flash 
point for the green aviation kerosene fraction. The flash point 
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indicates the presence of volatile components in the oil and 
is used to evaluate the overall flammability hazard of a 
material. The lower the flash point, the higher the 
concentration of light hydrocarbons in the material [95]. This 
fact is corroborated in Section 3.2.4, which quotes the results 
of chromatographic analysis of the distilled fractions. Also, 
the specific gravity of the green aviation kerosene was in 
agreement with the specifications established for aviation 
kerosene according to ANP Nº 37 (Specification of Aviation 
Kerosene) [51] and ASTM D1655 (Jet A-1) [52]. 

Concerning Table 4, most of the values of the physical-
chemical properties of the green diesel fraction are higher 
than those found for the OLP. However, the specific gravity 
and acid value of this fraction are lower than those found by 
Xu et al. [35] and Wisniewski Jr. et al. [40]. The values of 
properties such as specific gravity at 20 °C, kinematic 
viscosity at 40 °C and corrosiveness to copper of the green 
diesel fraction are within limits established for the Diesel S10 
specification of ANP Nº 65 [53]. Properties such as flash 
point and acid value were not within limits established by that 
regulatory agency; however, the flash point was lower than 
that established by ANP Nº 65 [53] and ASTM D975 [54], 
which is due to the presence of low-molecular-weight 
compounds, a lack of an adequate percentage of normal 
paraffinic and aromatic compounds, as corroborated in 
Section 3.2.4. 

The flash point of a fuel is important for safety, as its 
regulation is necessary for legal and safe handling and 
storage [56]. The removal of volatile components by 
upgrading can quickly improve the flash point [39,57,58], 
making it possible for distillate fractions, especially green 
aviation kerosene and green diesel, to reach the limits set by 
regulatory agencies. 

The acid value of the green diesel fraction does not reach 
the limit established by ANP Nº 65 [53], and the value, 
5.70 mg KOH/g, is higher than that of the other distilled 
fractions, a result of the higher concentration of carboxylic 
acids in the green diesel fraction compared to the other 
fractions, as indicated in Table 5. 

 
3.2.2. FTIR spectroscopy 

 
The FTIR spectra of the distilled fractions shown in Fig. 

1 indicates the presence of bands characteristic of saturated 
hydrocarbons, such as characteristic bands of the axial 
deformation of CH within the region 3000–2840 cm–1, 
corresponding to hydrocarbons from normal alkanes. 
Associated with these bands, we verified the presence of a 
band at 1375 cm–1 relating to angular deformation of methyl 
group C–H [59], confirming of the presence of aliphatic 
hydrocarbons. It is also important to note that the spectra also 
show broad bands in the range 3077–2750 cm–1, associated 
with the bands 1716 cm–1 and 1722 cm–1, which confirm the 
presence of carboxylic acids, aldehydes, and ketones. 

 
3.2.3. Distillation curve 

 
Figs. 2, 3, and 4 show the distillation curves of the 

fractions. In Fig. 2, the curve of the green gasoline fraction 
shows similarity to the standard distillation curve for regular 

gasoline (Type A) specification of ANP Nº 40 [49]. The 
curve shows that the DT exceeds the standard values for 
recovered volumes of 10% and 50%. However, the 
temperatures for other recovered volumes (90% and 100%) 
are consistent with the standard distillation curve for regular 
gasoline (Type A) from petroleum, according to the 
specification of ANP Nº 40 [49]. Wiggers et al. [31] obtained 
similar results to those of this study when fractionating 
soybean bio-oil into light distilled fractions, with similar 
distillation curves to those of gasoline A from petroleum. 

 

 
Figure 1. FTIR spectra of OLP and distilled fractions. 
Source: The authors. 

 
 

 
Figure 2. Distillation curves:  Green gasoline fraction;  Regular gasoline 
specification (ANP Nº 40). 
Source: The authors. 
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Figure 3. Distillation curves:  Green aviation kerosene fraction;  
Aviation kerosene specification (ANP Nº 37). 
Source: The authors. 

 
 

 
Figure 4. Distillation curves:  Green diesel fraction;  Diesel S10 
specification (ANP Nº 65). 
Source: The authors. 

 
 
Fig. 3 indicates that the green aviation kerosene fraction 

reached the limits for the distillation curve of aviation 
kerosene according to ANP Nº 37 [51]. Ertas and Alma [60] 
obtained simulated distillation curves for the kerosene 
fraction from the bio-oil of laurel (Laurus nobilis L.) and 
found that they could use it as fuel when blended with 
commercial petroleum products. 

Fig. 4 indicates that the experimental distillation curve of 
the green diesel fraction is different from the standard 
distillation curve in Diesel S10 specification (ANP Nº 65) 
[62] until a recovered volume of approximately 40%. In the 
range of 0–40% recovered volume, the DTs are above those 
established by ANP, indicating that there is an excessive 
concentration of heavy hydrocarbons in the green diesel 
fraction when compared to petroleum diesel. In contrast, the 
temperatures of 50% and 95% recovered volume are 
consistent with those established for the standard distillation 
curve. Ertas and Alma [69] obtained simulated distillation 
curves for the diesel fraction from the bio-oil of laurel (L. 
nobilis L.) and also concluded that it could be used as fuel 
when mixed with petroleum products. 

3.2.4. GC-MS analysis 
 
The results of GC-MS analysis are summarized in Fig. 5 

and Table 5. Fig. 5 shows the presence of C8–C20 
hydrocarbon chains in the three distilled fractions. However, 
each distilled fraction has a specific hydrocarbon range. The 
green gasoline fraction was composed of hydrocarbons with 
chains in the C8–C17 range, with higher concentrations of 
C10–C12 hydrocarbons. According to Farah [61] and 
Speight [62], gasoline consists of hydrocarbons ranging from 
C4 to C12. Therefore, the green gasoline fraction is 
consistent with the limits established in the literature of the 
number of carbons present in the hydrocarbon chains. 

The green aviation kerosene fraction consisted of C10–
C19 hydrocarbons, in which the predominant hydrocarbons 
were the C11–C16 range. These results are consistent with 
those described by Speight [62], who reported that kerosene-
type jet fuels (JP-4) are characterized by the hydrocarbons in 
the C4–C16 range. Finally, the green diesel fraction 
contained hydrocarbons chains in the range C13–C20, with 
the majority in the C15–C18 range. Speight [62] reports that 
the carbon number limit for diesel fuel is C8–C18. 

According to Table 5, the chemical distributions of the 
classes of hydrocarbons and oxygenated compounds of the 
three distilled fractions were very different from those of the 
OLP produced in a previous study by Mancio et al. [13]. In 
OLP, hydrocarbons were abundant relative to oxygenated 
compounds. Similarly, Table 5 also shows that all the 
biofuels produced in the present study in the form of distilled 
fractions contained more hydrocarbons than oxygenated  
 

 
Figure 5. Carbon number distribution of the distilled fractions. 
Source: The authors. 

0 30 60 90 120 150 180 210 240 270 300 330
0

10
20
30
40
50
60
70
80
90

100
Re

co
ve

re
d 

Vo
lu

m
e [

%
]

Temperature [°C]

 

 

0 40 80 120 160 200 240 280 320 360 400
0

10
20
30
40
50
60
70
80
90

100

R
ec

ov
er

ed
 V

ol
um

e [
%

]

Temperature [°C]

 

 

C8 C9 C1
0

C1
1

C1
2

C1
3

C1
4

C1
5

C1
6

C1
7

C1
8

C1
9

C2
0

0
5

10
15
20
25
30
35
40
45 0

5
10
15
20
25
30
35
40
450

5
10
15
20
25
30
35
40
45 C8 C9 C1

0
C1

1
C1

2
C1

3
C1

4
C1

5
C1

6
C1

7
C1

8
C1

9
C2

0
 

Carbon number

 Green Gasoline

 

 Green aviation kerosene

Ar
ea

 (%
)

 

 

 Green diesel



Mota et al / Revista DYNA, 88(218), pp. 62-71, July - September, 2021. 

68 

compounds. The fractions with the most significant 
hydrocarbon content were green gasoline and green aviation 
kerosene, with lower contents of oxygenated compounds in 
these fractions. Among the identified and quantified 
hydrocarbons were normal paraffinic, olefinic, naphthenic, 
and aromatic compounds, which according to Farah [61] and 
Szklo [56] are the main components present in the distilled 
fractions of crude oil. Regarding the content of aromatic 
compounds, the green gasoline fraction follows ANP Nº 40 
[49], which states that regular gasoline must not contain more 
than 25 wt % of aromatic compounds in its composition. 

The green diesel fraction contained the highest levels of 
oxygenated compounds of all three distilled fractions (See Table 
5). It is to be expected that some oxygenates are not completely 
converted into hydrocarbons, since during triglyceride cracking 
reactions one of the dominant steps is the elimination of heavy 
oxygenated hydrocarbons such as carboxylic acids, aldehyde, 
ketones, and esters [63]. Among the oxygenated compounds, 
alcohols and ketones represent the two largest chemical families 
in the green diesel fraction. According to Oasmaa [57], the 
acidity of bio-oils arises from their content of oxygenated 
compounds, carboxylic acids being the class that promotes 
higher acidity. For this reason, the green diesel fraction, with 
0.98 wt % of carboxylic acids, is the distilled fraction with the 
highest acid value, as shown in Table 4. 

Therefore, the results of the GC-MS analysis clearly show 
that most of the distilled fractions can be used as energy 
sources by their application as bio-additives to fuels, due to 
their high hydrocarbon content and low levels of oxygenates. 
Such use of distilled fractions as bio-additives may result in 
emulsification of the fraction with their respective oil 
derivatives. Besides, the distilled fractions can be used as 
feedstock for further upgrading process in a crude oil refinery 
by hydrotreating processes [33]. 

It is important to note that the green gasoline fraction 
shows characteristics that could be improved, as naphthenic 
and aromatic compounds are present in low concentrations. 
According to Farah [61], these compounds influence the 
resistance to detonation, since their presence is favorable for 
the antiknock characteristics of fuels, such as gasoline, used 
in spark-ignition engines. However, the presence of normal 
paraffins implies a greater stability or resistance to oxidation, 
and hence greater durability of the fuel. 

 
Table 5. 
Chemical composition of distilled fractions in terms of hydrocarbons and 
oxygenated compounds. 

Product Groups 

Area (wt %) 

OLP [14] 
20 wt % Na2CO3 

Green 
gasoline 

Green 
aviation 
kerosene 

Green 
diesel 

Hydrocarbons 88.10 93.64 93.97 81.25 
Normal paraffins 24.28 20.52 35.91 24.13 
Olefins 51.74 45.28 53.90 55.22 
Naphthenic 12.08 25.35 4.16 1.90 
Aromatics 0.00 2.49 0.00 0.00 
Oxygenates 11.90 6.36 6.03 18.75 
Carboxylic acids 3.10 0.00 0.00 0.98 
Alcohols 3.31 0.00 3.66 5.06 
Ketones 5.49 3.95 1.26 11.59 
Others 0.00 2.41 1.11 1.12 
Total 100.00 100.00 100.00 100.00 

Source: The authors. 

The presence of oxygenates in the green gasoline fraction 
can influence its volatility as well as its energy efficiency. 
According to Farah [61], oxygenates reduce the volatility of 
gasoline, improving the time of ignition or burning of fuel. 
According to Szklo [56], the presence of oxygenated 
compounds increases the latent heat of vaporization, i.e., the 
energy required to vaporize the liquid fuel. 

Unlike the results obtained for the green gasoline fraction, 
the presence of aromatic compounds was not identified in the 
green aviation kerosene or green diesel fractions, resulting in 
the higher levels of other constituents, as seen in Table 5. 
According to Farah [61], the presence of paraffinic and 
naphthenic compounds, as well as the absence of aromatic 
compounds, in diesel derived from petroleum contributes to 
a good quality fuel. These characteristics are favorable 
because the presence of aromatic compounds in fossil fuels 
promotes a higher resistance to detonation in diesel 
combustion engines, and the presence of normal (linear) 
paraffinic promotes greater stability, i.e., resistance to 
oxidation. On the other hand, the presence of olefins results 
in a low freezing point and a high cetane number. The high 
content of olefins can be reduced by hydrogenation: 
typically, simple hydrogenation or non-destructive 
hydrogenation, which are used to improve product quality 
without causing a significant change in boiling-point range 
[58]. 

According to Table 5, the results of this study are similar 
or superior to those reported in the literature. The 
hydrocarbon contents of the green gasoline and green 
aviation kerosene fractions, for example, are significantly 
higher than those present in the light, middle and heavy 
fractions obtained by fractional distillation in the temperature 
ranges of ≤100 °C, 100–180 °C, and 180–250 °C, 
respectively, as described by Capunitan and Capareda [33]. 
The green gasoline also showed a hydrocarbon content 
higher than that obtained by Wisniewski et al. [40], who 
despite a DT range of <200 °C obtained a light bio-oil 
fraction with only 60.06 wt % of hydrocarbons from the 
reactive distillation. On the other hand, the green gasoline 
showed a hydrocarbon content similar to that obtained by 
Zhao et al. [64], who obtained a distilled fraction with 
91.97% of hydrocarbons from the simple distillation at the 
similar temperature range of <200 °C. The green aviation 
kerosene and green diesel fractions obtained in the present 
study also showed very similar hydrocarbon contents to those 
described by da Silva Almeida et al. [41] and da Silva 
Almeida et al. [14] for kerosene and light diesel fractions 
obtained by fractional distillation at 175–235 °C and 235–
305 °C, respectively. 

 
4. Conclusions 

 
The fractional distillation of OLP provides biofuels with 

most physical-chemical values within limits established by 
national and international regulatory agencies and with 
experimental distillation curves similar to standard curves. 
Besides, a single fractionation of OLP generated biofuels 
(green gasoline, green aviation kerosene, and green diesel) 
with higher contents of hydrocarbons than oxygenated 
compounds and contained hydrocarbons characteristic of the 
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respective petroleum derivatives. Therefore, biofuels have a 
promising potential for use as novel products in the area of 
renewable energy, allowing the current consumer market to 
purchase products that can partially or entirely replace 
petroleum products, as do bioethanol and biodiesel. 
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