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Abstract 
According to physics textbooks, measurements show that the period of a simple gravity pendulum does not change 

significantly at small displacement angles (up to about 5°), but increases at larger displacements. For small swings, i.e. 

for angles less than 5°, the constant period is explained by the fact that in this case the curvature of the pendulum’s 

trajectory is negligible, the pendulum approximates a simple harmonic oscillator (where the oscillation time is 
independent of the amplitude). This 5° limit is not really based on the results obtained from measurements, but rather on 

a differential equation (which could be difficult to explain in primary and secondary school in the absence of 

mathematical background), where the small angle approximation sin α≈α can be applied below 5°, and so we get a much 

more simple equation. We wanted to check where this limit might be in the measurements and whether this amplitude 
dependence could actually be measured below this value. 

 
Keywords: Classical Mechanics teaching. 
 

Resumen 

Según los libros de texto de física, las mediciones muestran que el período de un péndulo de gravedad simple no cambia 

significativamente en ángulos de desplazamiento pequeños (hasta unos 5°), pero aumenta en desplazamientos más 
grandes. Para oscilaciones pequeñas, es decir, para ángulos inferiores a 5°, el período constante se explica por el hecho 

de que en este caso la curvatura de la trayectoria del péndulo es despreciable, el péndulo se aproxima a un oscilador 

armónico simple (donde el tiempo de oscilación es independiente de la amplitud ). Este límite de 5° no se basa realmente 

en los resultados obtenidos de las mediciones, sino más bien en una ecuación diferencial (que podría ser difícil de 
explicar en la escuela primaria y secundaria en ausencia de antecedentes matemáticos), donde la aproximación del 

ángulo pequeño sen α≈α se puede aplicar por debajo de 5°, y así obtenemos una ecuación mucho más simple. Queríamos 

verificar dónde podría estar este límite en las mediciones y si esta dependencia de amplitud realmente podría medirse 

por debajo de este valor. 
 

Palabras clave: Enseñanza de la Mecánica Clásica. 

 

 

 

I. PRELUDE 
 

According to physics textbooks, measurements show that the 

period of a simple gravity pendulum does not change 

significantly at small displacement angles (up to about 5°), 

but increases at larger displacements. For small swings, i.e. 

for angles less than 5°, the constant period is explained by the 

fact that in this case the curvature of the pendulum’s 

trajectory is negligible, the pendulum approximates a simple 

harmonic oscillator (where the oscillation time is 

independent of the amplitude). 

This 5° limit is not really based on the results obtained 

from measurements, but rather on a differential equation (3) 

(which could be difficult to explain in primary and secondary 

school in the absence of mathematical background), where 

the small angle approximation sin α≈α can be applied below 

5°, and so we get a much more simple equation. We wanted 

to check where this limit might be in the measurements and 

whether this amplitude dependence could actually be 

measured below this value. 

Our measurements were carried out with a 

microcontroller with a theoretical accuracy of 4 

microseconds (but in practice less accuracy, see the 

description of the measurements later). 

For technical reasons, with a pendulum of length about 1 

meter we could not measure at amplitudes less than 2° 

(Figure 1), but above this value the period was not constant. 

In order to be able to reduce the amlitude below 2°, we had 

to increase the length of the pendulum. We chose for this 

purpose a previously made 573cm long Foucault pendulum. 

Below the amplitude of 2°, a constant period could be 

observed (Fig. 2). In order to observe this phenomenon for 

even shorter pendulums (and not to have to work with such 

an uncomfortably long pendulum) it is worth first focusing 

on the mathematical description, without considering the 

above-mentioned approximation. 
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FIGURE 1. Variation of the oscillation time of a 98 cm 

mathematical pendulum as a function of time. 

 
 
FIGURE 2. Variation of the period of a 573 cm long pendulum as 

a function of time. 

 

 

II. AMPLITUDE DEPENDENCE OF THE 

SIMPLE GRAVITY PENDULUM 
 

In one of his main topics, Galileo Galilei wanted to find 

timekeeping devices with suitable accuracy to investigate the 

rules of freefall. In addition to his special water meter, he 

realized during studying the pendulum motion that the period 

of a simple gravity pendulum is independent of the bob’s 

weight and material, and for small amplitudes, of the 

amplitude as well. 

 

𝑇 = 2𝜋√
𝑙

𝑔
    (1) 

 

Limitation to small angles is the result of the small angle 

approximation sinα≈α in the equation of pendulum motion. 

This can be seen writing the tangential acceleration of the 

pendulum as: 

𝑚𝑎𝑡 = −𝑚𝑔 𝑠𝑖𝑛𝛼,  (2) 

 

𝑚𝑙
𝑑2𝛼

𝑑𝑡2 = −𝑚𝑔 𝑠𝑖𝑛𝛼.  (3) 

 

The solution of the differential equation (3) can be given muc 

ould like to find a general solution, with the solution of an 

elliptic integral we get the Wallis formula [1]: 
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Equation (4) shows the amplitude dependence of the period. 

The relative error is 0.05% at the initial amplitude α0 = 5°, 

1% at α0 = 22° and 18% at α0 = 90° (Fig. 3). Since the motion 

of a real pendulum is damping motion, the periode is 

decreasing. If we do not give the pendulum a certain external 

push at the right time, which would ensure a constant 

amplitude (this is not investigated here), the pendulum would 

have a decreasing amplitude (Fig. 3). Arriving at the ideal 

small amplitude, we could use it to measure only for short 

time intervals due to further attenuations. 

 

 

 
 

FIGURE 3. The amplitude dependence of the gravity pendulum 

according to Equation (4) by adding the terms (1, 2, 3 and 4) in 
parentheses (l = 1m, g = 9.81m/s2). Considering 6 terms at 50° 

approximates well the general expression (4). The graph shows 

clearly why the expression (1) can be used for amplitudes less than 

5°. The graph also shows how the pendulum length should change 

with time to have an amplitude-independent periode. 

 

 

Looking at the pendulum length graph in Fig. 3, we can 

conclude that if we could reduce somehow the pendulum 

length, according to the values of the graph (the higher 

amplitude the more intense decrease in the length), we could 

produce an amplitude-independent pendulum. A simple 

solution could be to use obstacles (needles or screws) at 

different swing angles, e.g. at every 10 degrees in the path of 

the cord: this would shorten its length. 
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FIGURE 4. Left: Coordinates of the obstacles, calculated according 

to the table above, from 0 to 50 degrees (up to 20 degrees is 
sufficient in practice). Right: A photo of the pivot and obstacles 

(needles) positioned according to the points on the graph. 

 

 

We prepared a 99 cm long pendulum with a pivot and needle-

obstacles as shown in Fig. 4. Its period vs. time plot is shown 

in Figure 5, which shows clearly that below 5° its period can 

be considered constant with a good approximation (decreased 

from 1.993s to 1.991s). 

 
 

FIGURE 5. Period vs. time plot of the pendulum (with needle-
obstacles) of 99 cm length. 

 
Thus, obstacles shorten the length of the pendulum. In 

practice, however, this implementation is not accurate 

enough, as the shortening is slightly different due to the 

roughness of the resulting broken line. (A more accurate 

solution could be to reduce the length of the broken lines / 

increase the number of needles). More accurate calculations 

(i.e., finding the equation of the ideal curve), however, 

partially or completely exceed the level of mathematical 

knowledge in high school. 

Below, however, we would like to find a curve on which 

the pendulum bob could move with an amplitude independent 

period, i.e., no matter what amplitude we started, the period 

would not change. This would mean that two pendulums 

started with different amplitudes, would reach the vertical 

position in the same time. This property is called 

tautochronous. (The tautochron property can also be found in 

solving the brachistochron problem.) Huygens proved in his 

theorem XXV in 1659 that such an tautochron trajectory is 

cyclois [2]. 

The parametric equation of the cyclois is: 

 

    𝑥 = 𝑟(𝑡 − sin(𝑡)), 

 

                                   𝑦 = 𝑟(1 + cos(𝑡)).                            (5) 

 

If, on the other hand, the pendulum moves on a cycloic (not 

circular) trajectory, then the constant relation l = r = is no 

longer valid (r = constant: the radius of the circle that 

generates the cycloist, l ≠ constant: the pendulum length, 

which is amplitude-dependent). The cyclois trajectory can be 

achieved by applying plates with certain curvature so that the 

shape of the cyclois will determine the trajectory of the 

pendulum, as well. Another merit of Huygens on this topic is 

that he was able to prove that, using a cyclois-shaped plate, 

the trajectory of the pendulum bob will also be cycloic (a 

curve that played an important role in the seventeenth-

century mathematics) [3]. This fact follows from the 

mathematical theorem that the evolution of a cyclois (the set 

of centers of its curvature) is itself cycloic. In this case, the 

first part of the pendulum cord lies on the plate and the rest is 

tensioned tangentially (Fig. 6). Since we can give different 

values of r based on (5), different cycloids with different 

curvatures can be obtained. The question arises, which 

cyclois will be good for our pendulum to be made? There is 

the following relationship between the period (or pendulum 

length) and the cyclois equation [4]: 

 

𝑟 =
𝑇2

𝜋2
𝑔.                                      (6) 

 

 
 

 

FIGURE 6. Left: Construction of the cyclois trajectory with its 
evolute. The editing also suggests the technical implementation: two 

cyclois plates can force the pendulum into this trajectory. Edited 

with Graph [5]. Right: 3D printed suspension [6], which is suitable 
for simultaneous examination of three bifilarly suspended 

pendulums (2 cycloidal and one circular). 

 

 

It can be seen from this that one cyclois can be edited for a 

pendulum (or we are looking for the appropriate pendulum 

length for a given cyclois). 
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Huygens’s initial motivation initiated from noticing that 

the period of pendulum motion was amplitude-dependent: the 

periods of the smallest and 90-degree amplitudes were 

proportional to each other as 29/34. Huygens tried to 

compensate the variable period first by reducing the length of 

the pendulum at large amplitudes by positioning certain 

obstacles (similarly as written above). Empirically 

determined barrier positions, on the other hand, did not 

provide much more accurate values. It was many years later 

he was able to theoretically determine the shape of this 

suspension. 

Huygens thus implemented the plan (from 1656 to 1693) 

that Galileo Galilei dealt with in the last years of his life: he 

built a pendulum clock that could even be used as a marine 

chronometer. Construction of an accurate clock meant the 

creation of a device by which longitude could be determined 

on the board of ships in the twentieth century (that can also 

be considered as an old-time GPS). In a letter dated January 

12, 1657, Huygens wrote, “these days I have found a new 

clock design that can measure the time so accurately that 

there is a great hope of determining longitude, even if the 

clock is shipped on the sea”. 

So if an accurate clock were taken on a ship, the longitude 

could be determined by comparing the local time of day and 

the time at home. 

It took of course a long time for the technical 

implementation of such a precise clock (not affected even by 

the swaying of the ship): in 1714, the tender announced by 

Queen Anna was won by John Harrison [7], who became a 

curiosity in the technical history by developing of four 

different clock constructions with the work of a life. 

 

 

III. CARRYING OUT THE MEASUREMENT 
 

The cycloidal-shaped suspension profile can also be plotted 

[8] and then cut out of wood, but can also be 3D-printed [6]. 

We chose the latter. 

To increase the accuracy, the period was measured using 

the micros() command of an Arduino Nano microcontroller, 

instead of the manual stopwatch, so we can measure time 

with a theoretical accuracy of up to 4 microseconds [9] but in 

practice this accuracy could not be achieved. This may be due 

to the inaccuracy of the sensor, as it is the cheapest IR sensor 

available, (but we think it has sufficient accuracy for such a 

school-measurement). Furthermore, the pendulum stand is 

not an infinitely rigid body, but moves a little for sure (can 

wobble, bend, etc.…), so the pendulum does not always enter 

the field of view of the sensor exactly in the same place and 

at the same time. Accuracy could have been further increased 

by reducing the reflective surface area, but the physical 

dimensions of the 100 gram balance weight were given. 

The main part of the measurement is a so-called IR 

obstacle avoidance sensor placed under the pendulum bob in 

the equilibrium position, 2cm below its bottom (Fig. 7). The 

sensor emits IR signals during operation. If there is an object 

within a few cm of the sensor, it detects the IR signals 

reflected from it; then the output pin of the sensor gives a zero 

signal, otherwise 1. This signal was the input at the digital pin 

D3 of an Arduino Nano microcontroller. (However, be 

careful with this sensor not to get a lot of sunlight or lamp 

light, as it may interfere with its operation.) 

Based on the above, the principle of our measurement is as 

follows: 

The obstacle (the pendulum) is in front of the sensor, in 

its detection range (the output signal is 0), and then it swings 

out of the range (eg to the right), then the output signal 

changes to 1. Coming back into the range, the output signal 

will turn to 0, then again going out to the left, the output 

signal will be 1 again. So we have to read the time every 

second case when the sensor gives a zero signal. 

Instead of the period T we measured 10T to reduce the 

standard deviation and then T was plotted as a function of 

time (thus T was obtained theoretically in microseconds). 

(With a manual stopwatch an accuracy of 0,01 second can be 

achieved, but this accuracy is greatly decreased by the 

uncertainty of manual starting and stopping.) 

 

 
FIGURE 7. Technical diagram of the measurement with the IR 

obstacle avoidance sensor. 

 

 

The advantage of our measurement is the much higher 

accuracy compared to manual measurements (in principle 

microseconds, but differences in the order of magnitud of 

0,0001s only appear as standard deviation), but the 
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disadvantage is that we could not measure amplitudes smaller 

than 2 cm: this IR sensor has a relatively wide viewing angle, 

the bob at the end of the pendulum is also quite wide (2.5cm 

in diameter); these circumstances indicate that the amplitude 

must be greater than 2 cm in order the pendulums”s bob 

certainly exit the field of view of the sensor in both directions 

(Fig. 7). 

Thus e.g. in case of a 1 m long pendulum, the 3 cm 

amplitude means a deviation of 1.72⁰, so we cannot measure 

with a smaller amplitude. In the case of the Foucault 

pendulum (573 cm), on the other hand, a 7 kg iron ball is the 

weight, at the bottom of which a disk of 4 cm diameter was 

attached for the measurement, which could be detected by the 

IR sensor. In this case, the 10 cm amplitude corresponds to a 

deviation angle of 1⁰ only, i.e. measuring periods of deviation 

angles much smaller than that of a 1-meter pendulum did not 

cause a problem either. 

 

A. The code used in the measurements 

 

int pin = 3;  // the sensor signal goes to digital input D3 

unsigned long elozo_ido;  // the function micros() returns 

the number of microseconds since the Arduino board began 

running the program 

unsigned long ido; // ido will be the last time read, while the 

elozo_ido will be the time value read previously 

unsigned long delta_t;    // this is the period, which can be 

get as the difference of ido and elozo_ido 

boolean most_kell_merni = true;   // the value of 

most_kell_merni (= the sensor’s signal has to be read) is 

initially set to true  

long i = 0;   // this is a counter that is used to read the time 

value at every second pass of the pendulum 

void setup() 

{ 

  Serial.begin(9600);   // time values will be written to the 

serial monitor (in 10T steps) 

  pinMode(pin, INPUT);  // pin D3 is set as input 

  elozo_ido = micros(); // at startup, use micros() to read the 

current value of time into the variable elozo_ido 

} void loop() 

{ 

    if (digitalRead(pin) == 0)  // if the sensor’s signal is zero, 

i.e. the pendulum is in front of the sensor (in equilibrium 

position) 

    { 

      if (most_kell_merni)      // the sensor’s signal has to be 

read (read the time) now, then 

        {  

          ido = micros();   // read the current value of time and 

put it into the variable ido 

          most_kell_merni = false;  delay(1);    // the value of 

most_kell_merni is set to false, so that not to measure the 

pendulum backwards 

          if (i%20 == 0)  // measurement of 10T! 

// the period T should be calculated in 

every second pass of the pendulum, but in the case 

of 10T this means every twentieth 

            { 

              delta_t = ido - elozo_ido;  // calculate the elapsed 

time since the previous read, delta_t denotes here 10T 

              elozo_ido = ido;            // let the value of the 

elozo_ido be the time value just read – a new measurement 

starts here 

              Serial.println(delta_t);  // the time is written in 

microseconds to the serial monitor  --> later convert to 

seconds in a spreadsheet 

            } 

          i+=1;   // increment the counter 

        } 

    } 

  else 

    { 

      most_kell_merni = true; delay(1);    // the value of 

most_kell_merni is reset to true 

    } 

} 

 

Fig. 8. shows an example of the results of our measurements 

to compare the motion of simple- and cycloidal pendulums, 

started with the same initial amplitudes. 

 

 

 
 

FIGURE 1. Period as a function of time for 98 cm long simple 
gravity pendulum and a cycloidal pendulum, started with the same 

initial amplitudes of 15 cm (α≈9⁰). A statistical standard deviation 

of 0.5 ms can be read from the figure. 

 

 

It can be seen that while the period of the simple gavity 

pendulum decreases continuously, the period of the cycloidal 

pendulum of the same length is constant for approx. 830 

seconds (13-14 minutes) and decreases by only 0,001 second 

in the following 8 minutes. Hence, we can state that if a 

cycloidal suspension of appropriate shape is obtained for a 

given pendulum length (or a suitable pendulum length can be 

found found for a given cycloid), we actually obtain a 

pendulum with a constant, amplitude- independent periode T. 

It is worth comparing the values of g obtained from the 

steady-state sections of the above (non-manual) 

measurements for mathematical pendulums, taking into 

account the first 7 terms of (4), which are given in the table 

below (the estimated error of pendulum length measurement 

is ±1 mm): 
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  g (m/s2) 

simple grav. pendulum, l=98±0,1 cm, α=2⁰ (Fig. 1) 9,750±0,001 

simple grav. pendulum, l=573±0,1 cm, α=1⁰ (Fig. 2) 9,788±0,001 

cycloidal pendulum on the „needle-suspension” of 

Fig.4, l=99±0,1 cm, α=2⁰ (Fig. 5) 9,849±0,001 

cycloidal pendulum, l=98±0,1 cm, α=2⁰ (Fig. 7) 9,789±0,001 

 
These g values approximate well the “Budapest g” in Hungary 
(which is presumably close to g at Nyíregyháza). The development 

of the pendulum (from the simple gravity pendulum to the cycloidal 

one) gives g values permanently approaching to 9.81m/s2. The value 

of g obtained with the cycloidal pendulum on the „needle-
suspension” shows a slightly different value: it can be assumed that 

the needles could have affected the movement of the pendulum, as 

the pendulum often deviated from its plane of oscillation, while this 

was not the case using a 3D-printed cycloidal suspension. We can 
also declare that not only was the amplitude independence extended 

to larger amplitudes with the above improvements, but we also 

achieved that more accurate g values could be obtained with an even 

shorter pendulum using the cycloidal shaped suspension. 
 

 

IV. THE CYCLOIDAL PENDULUM IN SCHOOL 

PHYSICS 

 

Study of the topic can be a project work of talented high school 

students who are interested in specialization, but it is also worth 

sharing the conclusions for larger classes within normal physics 
classes. The difficulties in mathematics mentioned above can easily 

be overcome with a short roaming in the history of science and 

learning about the properties of the cyclois. Drawings and programs 

needed to make the suspension can be found in the References 
below. Students can realize the curiosity of this topic as we plot time 

as a function of time in these measurements. Newertheless, analysis 

of these plots is definitely useful in developing their abstract 

thinking. 
Discussion of the topic is obviously important because students 

have already studied about pendulum motion more times in school 

(in class 7 and class 10) and it is also a task in the intermediate level 

school leaving exam: the gravitational acceleration has to be 
deetrmined using a simple gravity pendulum. It is a relatively easy 

to carry out measurement, that provides a kind of connection 

between knowledges learned at different times: the free fall and 

periodic movements (7). Historical aspects can also be mentioned 
when performing the measurement: the error of the fall time in free 

fall measurements can be very large, since the human reaction time 

is comparable to the fall time at low heights. Pendulum 

measurements (measuring the time of 10 periods), however, have 
already much smaller errors. During the oral exam, students have to 

emphasize that only in case of small amplitudes – less than approx. 

5⁰ – could be got a more accurate value, in case of larger amplitudes 

the period varies, and must explain the possible reasons of the 
difference between the expected value and the measured values, as 

well. 

 

𝑔 = 4𝜋2 ∙
𝑙

𝑇2 .                                         (7) 

 
Before carrying out the IR-sensor measurements, it is worth starting 

with some more simple measurements: to measure the period of a 

longer pendulum at different amplitudes (at least three 

measurements for each amplitude). The analysis of the measurement 
data will reveal the amplitude dependence of the simple gravity 

pendulum. Although not specifically related to the topic, it is worth 

to solve the following task [10] so that to go on, and see the video 

[11] for solution: 

An ideal gravity pendulum is deflected 90 degrees from its 
equilibrium position and then released. As the pendulum passes 

through the vertical position, the cord collides with a needle. The 

question is, where the needle should be placed so that the trajectory 

of the pendulum’s bob is a circle? 
This example highlights the role of obstacles to solve the 

original problem. Let students measure the period again (eg. at an 

amplitude of 30 degrees) with well-positioned needles. Experiments 

will show a decreasing period. Be the next task to find the 
description of the general pendulum motion and then analyze and 

plot it! Based on the graph, the shortening of the cord and the 

posititions of the needles are determined step by step! Perform 

period measurements again at different amplitudes. Having 
analyzed the errors, students get acquainted with the curve of the 

general solution: the cycloid and its scientific background. Plot the 

students the cycloid in different ways: drawing on a board, drawing 

in a booklet, and using a computer, too! If possible, print it using a 
3D printer or use a template to position the obstacles (needles). 

Measure again and compare the results obtained with and without 

the obstacles, then conclude! If possible, perform the IR-sensor 

measurements with teacher’s control. Compare with stopwatch 
measurements! 

Students make presentations on the topic and present it first to 

each other and then to classmates. It should be presented as 

speciality, but it should be emphasized that this pendulum indeed 
has a period that can be calculated from (1) even at larger 

amplitudes, and this is not true for the pendulum bob moving on 

circular trajectory, only at small amplitudes. 

A spectacular effect can be obtained by starting two pendulums 
opposite each other from the same suspension (so that they do not 

collide, see Fig. 6), with different initial amplitudes. They then reach 

their vertical position at the same time in each periode due to their 

tautochron properties. 
A pretty interesting “physics game” can be made based on the 

cycloidal pendulum. If we draw the trajectory of the moving 

pendulum bob, we can make a brachistochron slope of a cycloydal 

arc. If the slope is suitably designed, let a ball move on it at the same 
time by starting the pendulum body! We would find that the ball and 

the pendulum bob move with the same period. The movement of the 

ball will obviously dampen much quicker due to the greater damping 

rate of the friction, but the continuously decreasing displacements 
of the ball will be in sync with the pendulum due to the tautochron 

property of the slope. 
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