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Empirical Models to Predict Compaction Parameters for
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Modelos empíricos para predecir parámetros de compactación para
suelos en el Estado de Ceará, Noreste de Brasil

Amanda V. Hohn 1, Rosiel F. Leme 2, Francisco C. da Silva Filho 3, Thales E. Moura 4, and Grover R.
Llanque A. 5

ABSTRACT
This work developed prediction models for maximum dry unit weight (γd,max) and optimum moisture content (OMC) for compacted
soils in Ceará, Brazil, based on index and physical properties and physical properties. The methodology included data from soils used
in the construction of 15 dams in Ceará, with available information regarding laboratory tests of interest. Correlations were developed
using non-linear regression, from 169 laboratory results (83 for training and 86 for validating the models), which presented a R2 of
0,763 for MoPesm (prediction model for γd,max) and 0,761 for MoTuo (model for OMC). A posteriori, the same physical indexes
used to train and validate MoPesm and MoTuo were used as inputs of other prediction models available in the literature, whose
outputs differed considerably from laboratory results for the evaluated soils. MoPesm and MoTuo were able to satisfactorily predict
compaction parameters, with outputs close to those obtained in laboratory for tested soil samples. Their performance justifies their
use for predicting compaction parameters in geotechnical structures that use employ soils when there are financial restraints, short
timeframes, or unavailability of test equipment, particularly in early design stages and preliminary studies, before appropriate soil
sampling and field investigation can be conducted, thus saving substantial time and financial resources.
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RESUMEN
Este trabajo desarrolló modelos predictivos para el peso específico seco máximo (γd,máx) y el contenido de humedad óptima (CHO)
para suelos compactados en Ceará, Brasil, basados en índices y propiedades físicas. La metodología incluyó datos de suelos utilizados
en la construcción de 15 presas en Ceará, con información disponible sobre las pruebas de laboratorio de interés. Las correlaciones
fueron desarrolladas mediante regresión no lineal, a partir de 169 resultados de laboratorio (83 para entrenamiento y 86 para
validación de ambos modelos), que presentaron un R2 de 0,763 para MoPesm (modelo de predicción para γd,máx) y 0,761 para
MoTuo (modelo para CHO). A posteriori, los mismos índices físicos utilizados para entrenar y validar MoPesm y MoTuo fueron
utilizados como entradas para otros modelos de predicción disponibles en la literatura, cuyos resultados difirieron considerablemente
de los resultados de laboratorio para los suelos evaluados. MoPesm y MoTuo predijeron satisfactoriamente los parámetros de
compactación, con resultados cercanos a los obtenidos en laboratorio para las muestras de suelo ensayadas. Su desempeño justifica
su uso para predecir parámetros de compactación en estructuras geotécnicas que utilizan suelos compactados cuando existen
restricciones financieras, plazos cortos o indisponibilidad de equipos de prueba, particularmente en las primeras etapas de diseño y
estudios preliminares, antes de que se pueda realizar muestreos apropiados de los suelos e investigación de campo, ahorrando así
tiempo y recursos financieros sustanciales.
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Introduction
Every engineering work has its inherent risks, as countless
uncertainties are embedded in all phases of its development
and execution. For earthworks, the prediction of soil behavior
involves several aspects; it is practically impossible to state
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with absolute certainty if it will perform as expected (Vieira,
2005). As for the estimation of parameters, incorrect choices
may ultimately result in localized failures or even general
collapse of the structure.

In order to make good decisions in the face of so many
unavoidable uncertainties, Silva (2015) says it is essential
to understand the variables that influence soil behavior in
the best possible way, as well as to conceive mathematical
models capable of accurately representing and predicting the
field performance of geotechnical structures.

When experimental data is limited, the use of simpler, yet
responsive methodologies to assess engineering problems
and predict soil behavior should be encouraged, especially if
they can be performed in shorter computational times (Silva
et al., 2016).

Determining soil compaction parameters in a laboratory is a
crucial step in controlling the field compaction of earthworks
such as dams and embankments (Farooq et al., 2016).
However, during the early stages of a project (e.g., in the
preliminary assessment of the suitability of borrow materials),
considerable time and effort can be saved through the use
of empirical correlations (Günaydin, 2009; Di Matteo et al.,
2009; Tizpa et al., 2015; Gurtug and Siridharan, 2004), which
can be extremely helpful, provided that the engineer knows
the index properties of the soil. Index properties are those
upon which the identification and classification steps of a
soil are based; this includes grain-size distribution, Atterberg
limits (liquid limit, plastic limit, shrinkage limit, and plasticity
index), density, and specific gravity.

The compaction parameters – optimum moisture content
(OMC) and maximum dry unit weight (γd,max) – are
determined through very time-consuming laboratory tests.
This makes prediction models that are based on easily
measurable soil properties (such as those described above)
highly desirable and remarkably useful (Karimpour-Fard et
al., 2019).

Early studies proposing empirical models for estimating
compaction parameters based on soil index properties were
cited by Wang and Huang (1984), who manually mixed
gravel, sand, limestone powder, and bentonite in different
proportions, creating 57 samples, compacted with standard
Proctor energy. The goal was to develop equations for
predicting permeability and compaction parameters based
on Atterberg limits and the grain-size distribution curve.
The results of the compaction and permeability tests were
analyzed along with the classification properties of the
samples, which indicated a good response (R2>0,8) in
predicting compaction and permeability parameters for the
mixtures in the analyzed proportions.

Omar et al. (2003) collected 311 samples of sandy and
sandy-silty soils from the United Arab Emirates and performed
laboratory tests. They developed a linear regression model to
predict soil compaction parameters for modified Proctor
energy using fines percentage, liquid limit (LL), plastic
limit (PL), and compaction energy. Their model resulted
in nomograms capable of predicting γd,max and OMC for

granular soils within a 95% confidence interval for the
analyzed samples.

Gurtug and Sridharan (2002, as cited in Farooq et al., 2016)
presented a correlation for clayey soils, where γd,max was
0,98 times the dry unit weight at plastic limit water content,
and OMC was 0,92 times PL. In another study (Gurtug and
Sridharan, 2004), the same authors evaluated the effect of
different compaction energies on fine-grained compacted
soils collected in Turkey and Cyprus, as well as data available
in the literature. They found a good correlation between
PL and OMC, which showed the best results for standard
Proctor energy.

Sridharan and Nagaraj (2005) stated that the relationships
available at the time between index properties and
compaction parameters were unsatisfactory. They analyzed
10 soil samples (natural and commercial kaolinites) plus
data available in the literature, finding that PL had a better
correlation with compaction parameters than LL and the
plasticity index (PI) for standard Proctor compactive effort.

Sivrikaya (2008) presented multiple correlation equations for
fine-grained soils at standard Proctor energy by performing
multilinear regression (MLR) analyses and using artificial
neural networks (ANNs), assessing 113 samples obtained
from the literature and collected in different sites in Turkey.
His equations had R2 > 0,75 for γd,max and R2 > 0,74 for
OMC, respectively. He concluded that γd,max and OMC had
a considerably good correlation with PL, better than with LL
and PI.

Saikia et al. (2017) came to similar conclusions; they analyzed
40 samples of natural fine-grained soils collected in Assam,
India. Their results showed that LL had higher correlation rates
than PL with γd,max and OMC. The root mean square error
(RMSE) for the predicted γd,max was 2,1% when compared
to laboratory results, and 7,5% when compared to literature
values. For the predicted OMC, RMSE was 7,0% in relation
to laboratory results, and 17,5-28,2% to literature values.

Thirty samples of clayey soils (18 ≤ LL ≤ 82%; 1 ≤ IP ≤
51%; and 2,47 ≤ Gs ≤ 3,09)* were collected in various
parts of central Italy by Di Matteo et al. (2009) for laboratory
determination of index properties and compaction parameters
with modified Proctor energy. Considering these results and
other 41 reported in the literature, the authors developed
multiple regression models that correlated γd,max and OMC
with index properties, and they noticed that the most
important variable was specific unit weight, followed by
LL and PL.

Toms and Philip (2016) performed regression analysis with
multiple variables to predict compaction parameters from
Atterberg limits and specific unit weight for 30 soil samples
from Kuttanad, India, with LL ranging between 70 and 190%,
PI between 26 and 127%, and specific unit weight between 2,3
and 2,5 kN/m3. They concluded that there is indeed a direct
linear relationship between index properties and compaction

∗Gs is the specific gravity, the ratio of the unit weight of the solid particles
of a soil to the unit weight of water. Gs is a dimensionless parameter
and can be determined according to standard ASTM D854-14.
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parameters, and that the most important variables were
specific gravity and the index properties.

Farooq et al. (2016) analyzed 105 samples of fine soils from
Pakistan with various USCS classifications (CH, CL, CL-ML,
ML), and, using multiple regression analyses, they proposed
prediction curves to estimate compaction parameters from
LL and PI for standard and modified Proctor energies, thus
eliminating the need for compaction tests in preliminary
design stages. The results showed that the variation between
experimental and predicted data was within a confidence
interval of ± 2,5% for γd,max and ± 9,5% for OMC.

Wang and Yin (2020) developed a model using multi
expression programming (MEP), a method of genetic
programming, and data comprising a wide range of soil
types from previously published studies. Their model was
considered reliable (R2>0,85), even for high-plasticity and
coarse-grained soils, which did not figure among the soil types
analyzed in previous studies; and, although their results were
extremely favorable, the required high-end computational
tools somewhat lost track of the simplicity present in other
models, which yielded as fair predictions and could make a
difference in the face of time constraints and the unavailability
of a more complex software apparatus.

Regarding soils from Brazil, a study by Karimpour-Fard et
al. (2019) analyzed data from 728 sets of granular and fine-
grained soils, most from 20 literature sources, and 227 of
their own, collected in Salvador metropolitan region (State of
Bahia, northeastern Brazil). Their approach involved analyses
using MLR and ANNs, and the results demonstrated that the
ANN model could predict compaction parameters with a zero
average error, but it required a lot more of processing time,
thus being unsuitable for situations where prompt decision
making is mandatory. On the other hand, MLR also yielded
fairly precise results at reduced computational and time costs.
They noted that the compactive effort level had a low effect
on prediction accuracy when compared to other analyzed
parameters (LL, PL, fine, sand, gravel content, and specific
gravity).

Moura (2019) also analyzed Brazilian soils but from the State
of Ceará, which shares the same sedimentary formations
present in Bahia, like the Barreiras Formation. Using
non-linear regression, he developed models for predicting
compaction parameters from index properties, such as
Atterberg limits, fines percentage, and void ratio, and finding
mean error of 2,3% and R2 of 0,618 for γd,max, and 8,5% and
0,541 for OMC. By comparing laboratory results for γd,max
and OMC with outputs of models proposed by Omar et
al. (2003) and Gurtug and Sridharan (2004), Moura (2019)
noticed that their predicted values differed considerably from
laboratory results. This divergence was attributed to the
singular mineralogical constitution and genesis context of
northeastern Brazilian soils, mostly in the semi-arid domain.

Considering this gap, a simplified empirical model to predict
compaction parameters (γd,max and OMC) for standard

†USCS is the Unified Soil Classification System, a standard to classify
soils for engineering purposes (ASTM D2487-17e1).

Proctor energy was developed using results of index tests as its
inputs. The goal was to attain a better statistical performance
than that of the model proposed by Moura (2019), using a
different initial dataset that comprised laboratory results of
characterization and compaction tests of soils classified as
CL, SC, SM, and SM-SC (USCS), all from the State of Ceará,
located in the semi-arid domain of northeastern Brazil.

This simplified model is intended to be used in the preliminary
design stages of earth structures (e.g., initial assessment of
borrow materials), when more accurate field investigation
and laboratory testing may not be available yet. This
can save valuable resources when estimating parameters,
especially when there are financial constraints, limited time,
or unavailability of test equipment. Also, its use will drastically
reduce the computational cost of extensive software modeling,
which is mandatory for detailed design.

Materials and Methods
Dataset definition
In this research, 169 results of laboratory tests performed on
soil samples collected during the construction of 15 dams
located in different municipalities in the State of Ceará were
used (Figure 1). Out of these samples, 83 were randomly
selected to train the empirical models (development dataset),
and 86 were used in the validation step.

The analyzed laboratory data comprised compaction
parameters (γd,max and OMC) and the results of soil
characterization tests (particle size curve, Atterberg limits, and
unit weight), all provided by the Laboratory of Soil Mechanics
and Paving (LMP) of the Federal University of Ceará.

Table 1 shows information about the earth dams where
the soil samples used in this study were collected. Table
2 presents the descriptive statistics for the soil properties
used as input variables in the proposed models, including
mean, standard deviation, variance, minimum, maximum,
and interval.

Table 1. Information about soil samples used in development and
validation datasets

Dam Location No. Samples USCS
Classification

D
ev

el
op

m
en

t Angicos Coreaú 14 CL, CG
Catú Aquiraz 11 SC, CL

Cauípe Caucaia 4 SC, SM-SC
Faé Quixelô 7 SC, SM-SC

Farias Brito Farias Brito 3 CL, SM
Flor do Campo Novo Oriente 1 CL

Va
lid

at
io

n

Itaúna Granja 15 CL, SC, SM
Marco Marco 14 SC, SM
Missí Miraíma 10 CL

Paulo Sarasate Varjota 4 CL, SC
Rosário Lavras da Mangabeira 10 CL, SC

Sítios Novos Caucaia 28 CL, SC, SM, SM-SC
Trussu Iguatu 5 SC

Ubaldinho Cedro 29 CL, SC, SM, SM-SC
Umari Madalena 14 SC

Source: Authors
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Figure 1. Municipalities in Ceará where analyzed soil samples were
collected.
Source: Adapted from IPECE (2018).

Table 2. Descriptive statistics of variables used in development (Dev.)
and validation (Val.) datasets

Index
Yd,max OMC LL PL Fine % Ys

Dev. Val. Dev. Val. Dev. Val. Dev. Val. Dev. Val. Dev. Val.

Mean 17,94 18,2 14,9 12,73 33,3 30,14 20,4 19,5 47,88 43,98 26,05 26,09
Std dev. 1,00 1,07 2,90 2,99 5,83 7,21 3,32 3,16 17,09 13,1 0,68 0,54
Variance 1,00 1,15 8,4 8,95 33,93 52,05 11,0 10,0 292,1 171,6 0,46 0,29
Minimum 15,1 15,5 9,8 7,0 23,0 16,0 13,0 12,0 5,0 13,0 23,3 24,4
Maximum 20,2 21,0 22,3 23,2 47,0 45,0 25,0 25,0 75,0 79,0 27,4 27,4
Interval 5,1 5,5 12,5 16,2 24,0 29,0 12,0 13,0 70,0 66,0 4,14 3,0

Source: Authors

Among the analyzed samples, there was a casual
predominance of clayey soils in the development dataset
(52,5%), and of sandy soils in the validation dataset (62,0%).
According to Vieira et al. (1996), these soil types are
widely used in the Brazilian semi-arid region due to their
high occurrence and the characteristics they grant to earth
structures, such as: high shear strength, low permeability,
and low deformability.

In this study, the initial choice of geotechnical properties
employed in the development of empirical models was made
based on the works of Omar et al. (2003), Gurtug and
Sridharan (2004), Di Matteo et al. (2009), and Farooq et
al. (2016). Using nonlinear regression, different expressions
involving assorted index properties were investigated and
subjected to quick statistical analyses. If the results were
not satisfactory, new expressions were tested until the final
equations were defined.

The laboratory tests used to classify the soil samples and
determine their fit as inputs for the proposed equations
included the determination of particle-size distribution,
specific gravity, and Atterberg limits (LL and PL). Additionally,
laboratory results from standard Proctor compaction tests
were used to assess the model predictions for γd,max and

OMC. Table 3 shows the technical standards concerning
these tests that are valid in Brazil, as well as their equivalent
ASTM standards and the befitting soil grain size for each of
them.

Table 3. Laboratory tests performed according to ABNT technical
standards and their ASTM equivalents

Laboratory Test Brazilian Technical
Standard

ASTM
Equivalent

Soil grain
size

Particle-Size Distribution of
Fine-Grained Soils Using
Sedimentation (Hydrometer)
Analysis

NBR 7181:2016 (Soil-Grain
size analysis)

D7928-17 < 2,0mm

Specific Gravity of Soil Solids
(Water Pycnometer)

DNER-ME 093/94
(Determination of specific
gravity)

D854-14 < 2,0mm

Determination of Plastic
Limit of Soils

NBR 7180:2016 (Soils-
Determination of plastic
limit)

D4318-17e1 < 0,42mm

Determination of Liquid
Limit of Soils

NBR 6459:2016 (Soils-
Determination of liquid
limit)

D4318-17e1 < 0,42mm

Laboratory Compaction of
Soils Using Standard Effort
(Proctor)

NBR 7182:2016 (Soils-
Compaction test)

D698-12e2 Any

Source: Authors

Predictive model for maximum dry unit weight
(MoPesm)
The empirical model to predict the maximum dry unit
weight (MoPesm) considered properties that could potentially
influence this parameter: liquid limit (LL), plastic limit
(PL), percentage of material passing through a No.10 sieve
(%P#10), percentage passing through a No. 40 sieve
(%P#40), percentage passing through a No. 200 sieve
(%P#200), and specific unit weight (γs).

Equation (1) displays the original expression used to develop
MoPesm. In the nonlinear regression, the value of 1,0 was
initially assigned to coefficients a0, a1, a2, a3, a4, a5, and a6,
as well as to power coefficients α, β, δ, ε, θ, µ, and ω. They
were then defined as variables and subjected to an iterative
process, aiming to reach the smallest mean error.

γd,max = a0

[
a1.(LL)α + a2(PL)β + a3(%P#10)δ

+ a4(%P#40)ε + a5(%P#200)θ + a6(γs)µ
]ω (1)

where:

γd,max: maximum dry unit weight [kN/m3];

LL: liquid limit [%];

PL: plastic limit [%];

%P#10: percentage of material passing through a No. 10
sieve [%];

%P#40: percentage of material passing through a No. 40
sieve [%];

%P#200: percentage of material passing through a No. 200
sieve [%]; and

γs: specific unit weight [kN/m3].
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Predictive model for OMC (MoTuo)
The parameters selected a priori to appear in the empirical
model for optimum moisture content (OMC) were LL and
PL (due to their close relationship with moisture content),
those related to particle-size distribution (%P#10, %P#40,
and %P#200), and void ratio (e).

Atterberg limits and particle-size distribution variables were
chosen because a little over half of the soils analyzed in this
study were clays and silts, and, according to Pinto (2006), the
fine fraction has a strong influence on moisture content. Void
ratio (e) was also assumed to have a potential influence on
moisture content, since fine soils have a large specific surface
and really small voids, which increase the effect of capillarity
and water retention, and, ultimately, moisture content (Leme,
2015; Fredlund et al., 1994).

Equation (2) was the original expression proposed for MoTuo:

OMC = a0

[
a1(LL)α + a2(PL)β + a3(%P#10)δ

+ a4(%P#40)ε + a5(%P#200)θ + a6(e)µ
]ω (2)

where:

OMC: optimum moisture content [%]; and

e: void ratio [dimensionless].

As described for MoPesm, after carrying out the iterative
process, model MoTuo was optimized by means of defining
the maximum and minimum acceptable values for the chosen
parameters, aiming to eliminate values that were not aligned
with field reality.

Results and discussion
Predictive model for maximum dry unit weight
(MoPesm)
Some of the coefficients in Equation (1) were nullified at
the end of the iterative process, which indicates that the
corresponding variables had very little to no influence in
determining the maximum dry unit weight and could therefore
be excluded.

Equation (3) presents the final expression for MoPesm, whose
prerequisite is that the soil has 10% < PL < 25%.

γd,max[kN/m3] = 4,1
[
2,31(γs)0,5 + 0,27(PL)0,73

+ 0,025 (%P#200)
]0,71 (3)

As for compacted soils, Pinto (2006) states that γd,max tends
to be higher for sandy and gravelly soils, given that these
have a small fine content (pictured in the presented models
as variable %P#200) and low PL. The opposite is also true:
γd,max in clayey soils, due to a greater presence of fines
(which provides these soils with a higher plasticity), tends to
decrease.

Figure 2 shows two curves: MoPesm predictions and
laboratory results (regarding the soils in the validation dataset

only). It can be easily seen that MoPesm tends to follow the
curve of the laboratory results.

Figure 2. Comparison between results obtained with MoPesm and
laboratory tests for γd,max (validation set).
Source: Authors

Table 4 shows the statistical indexes for laboratory results
and MoPesm predictions, considering only the samples in
the validation dataset, namely mean, standard deviation,
mean absolute percentage error (MAPE), root mean square
error (RMSE), and the coefficients of correlation (R) and
determination (R2).

Table 4. Statistics for laboratory results and MoPesm predictions,
considering validation dataset only

Index Laboratory MoPesm (validation)
Mean 18,227 kN/m3 18,478 kN/m3

Standard deviation 1,072 kN/m3 0,835 kN/m3

MAPE – 2,57%
RMSE – 0,585
R 1,00 0,873
R2 – 0,763

Source: Authors

Mean and standard deviation for MoPesm and laboratory
tests were similar. MoPesm predictions had a MAPE of 2,57%,
a RMSE of 0,585, a R of 0,873, and a R2 of 0,763, a very
acceptable performance according to Wang and Yin (2020),
to whom a high R2 and low MAPE and RMSE indicate that
a model has a higher precision, and to Karimpour-Fard et
al. (2019), who considered a R2 above 0,70 as acceptable,
labeling such model as “strong”.

Predictive model for optimum moisture content
(MoTuo)
For MoTuo, at the end of the iterative process, some of
the coefficients in Equation (2) were nullified and removed
from the final expression, shown in Equation (4), also
recommended for soils with PL between 10% and 25%.

MC (%) = 0,1 (LL) + 0,07(PL)1,44 + 0,09 (%P#200)

+ 2(e)0,27 (4)

Equation (4) shows that OMC is directly proportional to
consistency parameters (LL and PL), fine content, and void

‡RMSE, R, and R2 are dimensionless statistical indexes.
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ratio (e). This is in line with the typical behavior of clayey
soils described by Pinto (2006), which was mentioned in the
previous section.

Figure 3 shows MoTuo results in comparison with the results
of laboratory tests for OMC, considering only the samples
in the validation dataset. Similar to MoPesm, the curve
here also tends to follow laboratory results, although its
performance was not as satisfactory, since it yielded some
outliers. Table 5 shows the parametric analysis for MoTuo
predictions, comprising the validation dataset only.

Figure 3. Comparison between results obtained with MoTuo and
laboratory tests for OMC (validation set).
Source: Authors

Table 5. Statistics for laboratory results and MoTuo predictions,
considering validation dataset only

Index Laboratory MoTuo (validation)
Mean 12,733% 13,644%
Standard deviation 2,991% 2,563%
MAPE – 10,94%
RMSE – 1,717
R 1,00 0,872
R2 – 0,761

Source: Authors

MoTuo had a mean of 13,644%, a little above the laboratory
dataset, which indicates a slight overprediction. Its standard
deviation (2,563%) was smaller than that of the laboratory
(2,991%), pointing out that the values were closer to the
dataset mean.

MoTuo had a MAPE of almost 11%, a performance that was
not as good as MoPesm. However, a R of 0,872 and a R2 of
0,761 denoted a reasonable behavior in predicting OMC.

Comparison with other empirical prediction models
Since there are quite a few empirical models to predict
compaction parameters based on index properties available
in the literature, the initial dataset used to train and validate
the proposed empirical models (MoPesm and MoTuo) was
used as the input for the prediction models proposed by
Sridharan and Nagaraj (2005), Nagaraj et al. (2015), Noor et
al. (2011, as cited in Farooq et al., 2016), Günaydı́n (2009),
and Sivrikaya (2008).

All of these literature models were developed for Standard
Proctor compactive effort, and, in Table 6, Equations (5) to

(14) display the expressions proposed by these authors, as
well as the prerequisites regarding the inputs.

Table 6. Prediction models for compaction parameters proposed by
other authors

Authors Proposed equations Preconditions
Sridharan
and Nagaraj
(2005)

γd,max = 0,23(93,3 − PL) (5) Clays, with: LL: 37-73%;
PL: 18-51%; PI: 9-37%; Gs:
2,58-2,7OMC = 0,92 (PL) (6)

Nagaraj et al.
(2015)

γd,max = 20,82 − 0,17(PL) (7) SC, SM, CL, MH, CH, with:
LL: 24-115%; PL: 17-45%;
PI: 3,7-75,6; Gs: 2,6-2,8OMC = 0,76 (PL) (8)

Noor et al.
(2011)

γd,max = 27 − (PL)0,60
− (PI)0,33

−

(Gs) /27
(9) Fine-grained soils.

OMC = 0,55 (PL)+0,36(PI)−(Gs) /2,7 (10)

Günaydı́n
(2009)

γd,max = −0,1008 (LL) + 21,16 (11) CH, CL. SC, GC, with: LL:
25-56; PL: 13-29; PI: 7-33%;
Gs: 2,61-2,85OMC = 0,3802 (LL) + 2,4513 (12)

Sivrikaya
(2008)

γd,max = 0,22(96,32 − PL) (13) CL, CH, MH, with: LL:
31-74; PL: 12-39; PI:
12-43%; Gs: N/AOMC = 0,94 (PL) (14)

Legend: Gs: specific gravity [dimensionless]; PL: plastic limit [%]; LL:
liquid limit [%]; PI: plasticity index [%].
Note: Gs was not measured in Sivrikaya (2008).
Source: Authors

Considering the preconditions to apply the five chosen
literature models, the data in the development and validation
sets were ‘filtered’ to select only the entries which suited the
restraints of each model.

The results obtained with MoPesm/MoTuo and the literature
models were then compared with laboratory results for these
samples. This comparison aimed to evaluate the performance
and accuracy of these models when applied to soils from
Ceará, since they were developed for soils from other regions
of the world, with quite different genesis and lithology.

The statistical analysis carried out when assessing the
prediction models proposed by other authors was similar to
that described for MoPesm and MoTuo. Table 7 displays
the statistical indexes for compaction parameters obtained
from laboratory results, literature models, and the proposed
model, MoPesm.

It is important to mention that, regarding the parametrical
analysis, the number of assessed samples of MoPesm and
Motuo corresponded to the validation dataset only (N = 86),
and, as for the literature models, the number of soil samples
used as inputs actually comprised only the ‘filtered’ entries
selected from the initial datasets (N = 169), that is, those that
fell within the range of variability stated in their prerequisites.

As seen in Table 7, MoPesm had a particularly good
performance when compared to laboratory results and
literature models, with a mean of 18,478 kN/m3, very close
to that of the laboratory dataset (18,227 kN/m3), a standard
deviation (0,835 kN/m3) a little lower than the laboratory
dataset (1,072 kN/m3), and, among the analyzed models, one
of the smallest MAPE (2,57%) and highest R2 (0,763).

As for the other models, the one proposed by Noor et
al.(2011) had an excellent performance, and the difference
in the performances of all six models might be explained by
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the fact that the literature models were developed for soils
from different regions of the planet (United Arab Emirates,
India, Cyprus, etc.), with quite different characteristics when
compared to Brazilian northeastern semi-arid soils.

Table 7. Statistical analysis for evaluated literature models, prediction
model MoPesm (γd,max), and laboratory results

Statistics Laboratory Sridharan
and

Nagaraj
(2005)

Nagaraj
et al.

(2015)

Noor
et al.
(2011)

Günaydin
(2009)

Sivrikaya
(2008)

MoPesm
(valid.)

N 169 41 139 169 127 107 86
Mean [kN/m3] 18,227 16,309 17,254 17,755 16,678 16,560 18,478
Std Dev. [kN/m3] 1,072 0,572 0,275 0,464 0,497 0,479 0,835
MAPE – 6,47% 3,77% 2,20% 6,81% 7,12% 2,57%
RMSE – 1,394 0,432 0,238 0,776 0,886 0,585
R 1,00 0,230 0,570 0,783 0,600 0,603 0,873
R2 – 0,053 0,325 0,613 0,360 0,364 0,763

Source: Authors

Table 8 displays the statistical indexes for compaction
parameters obtained from laboratory results, literature
models, and the proposed model, MoTuo.

Table 8. Statistical analysis for evaluated literature models, prediction
model MoTuo (OMC), and laboratory results

Statistics Laboratory Sridharan
and

Nagaraj
(2005)

Nagaraj
et al

(2015)

Noor
et al.

(2011)

Günaydın
(2009)

Sivrikaya
(2008)

MoTuo
(valid.)

N 169 41 139 169 127 107 86

Mean [%] 12,733 20,599 15,941 14,043 19,281 19,786 13,644

Std Dev. [%] 2,991 2,290 1,231 1,877 2,124 2,048 2,563

MAPE – 26,48% 24,34% 13,44% 44,46% 48,37% 10,94%

RMSE – 4,772 1,906 1,114 3,509 4,171 1,717

R 1,00 0,301 0,593 0,795 0,613 0,544 0,872

R2 – 0,091 0,352 0,633 0,376 0,296 0,761

Source: Authors

Table 8 shows that MoTuo also had a reasonable performance,
with a mean (13,644%) close to that of the laboratory result
dataset (12,733%), and the smallest MAPE (10,94%) and the
highest coefficient R2 (0,761) among the analyzed models.
Once again, the model proposed by Noor et al. (2011) had
a great performance among the evaluated literature models,
with indexes quite close to those of MoTuo.

Figure 4 shows a visual comparison between scatter plots for
all evaluated literature models for γd,max, and Figure 5, for
OMC. In these scatter plots, the offset lines above and below
the fitted line represent the 95% confidence interval, and the
dashed lines correspond to y = x.

Based on Figures 4 and 5, it is possible to verify that models
MoPesm and MoTuo presented a low data dispersion when
compared to the other literature models, and, consequently,
a better fit to the regression line. It is worth mentioning also
that only the model by Noor et al. (2011) presented a similar
statistical performance.

Conclusions
Discerning the properties of a soil is indispensable to
anticipate its mechanical peculiarities and field performance
(Ortigão, 2007). In this sense, models for predicting soil
behavior are essential tools for engineers, as they help
rationalize time and costs in preliminary field investigations,
which are commonly used to bolster basic design studies
(Gurtug and Sridharan, 2004).

This study aimed to evaluate the empirical correlations
for different USCS types of soils, correlating basic
characterization parameters and index properties with
compaction parameters, in order to obtain mathematical
models capable of predicting γd,max and OMC for soils
compacted with standard Proctor energy.

As seen above, although universal models are highly desirable,
empirical correlations developed for a region of the planet
do not always correctly portray the attributes of soils from
elsewhere. Thus, studies that consider index/physical
properties and peculiarities of specific regions are still quite
necessary.

About 92% of Ceará’s total area is located within the semi-arid
domain in northeastern Brazil (BNB, 2005; IPECE, 2018). As
shown in Figure 1, most municipalities in Ceará are in this
domain, where soil genesis and behavior are very peculiar.
This also reinforces the need to develop models which are
appropriate for these soils and region.

The modeling process showed that the compaction
parameters for the studied soils are mostly influenced by
Atterberg limits, fine content (material passing through a No.
200 sieve), and void ratio. The presented results pointed out
the advantages of developing specific prediction models for
semi-arid soils, like those in the State of Ceará.

Although the performance of empirical models MoPesm and
MoTuo was slightly better than that of other literature models,
that does not imply that they are the most accurate or reliable.
One should always keep in mind that soils are extremely
complex materials, and that their physical properties are
primarily dictated by the minerals in the constitution of their
particles (Das, 2010). Therefore, it is not fully guaranteed
that an empirical model trained with soils from one region
will have good results for soils from elsewhere, even if they
fit the model’s prerequisites. Additionally, the outputs of any
engineering prediction model – even the most sophisticated
and most appropriate for the modeled scenario – should be
seen only as good estimates, and not as indisputable ones
(Velloso and Lopes, 2011).

Nevertheless, simplified models such as MoPesm and
MoTuo are a highly valuable aid for predicting compaction
parameters (γd,max and OMC) in situations where there
are financial restraints, limited or short timeframes, and/or
unavailability of test equipment, especially in early design
stages, before appropriate, extensive geotechnical sampling
and field investigation can be conducted.
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Figure 4. Scatter plots for γd,max obtained with MoPesm and evaluated literature empirical models.
Source: Authors
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Figure 5. Scatter plots for OMC, obtained with MoTuo and evaluated literature empirical models.
Source: Authors
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