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Abstract
Aim of study: To construct biomass weight equations for rockrose (Cistus laurifolius L.) shrublands in North-central Spain comparing 

different methodologies and evaluating the applicability of the current Spanish open PNOA-LiDAR data.
Area of study: The growing extension of Mediterranean shrublands associated with a high wildfire risk in a climate change scenario is 

considered a relevant source of biomass for energy use and bioproducts. Quantifying the biomass load of the shrublands provides essential 
information for adequate management, calling for the development of equations to estimate said biomass loads in the most extensive mo-
nospecific shrublands.

Materials and methods: Biomass dry weight from 290 destructive sampling plots (ø4m) and 426 individual plants along with LiDAR 
data from PNOA were related to dasometric parameters to fit weight per surface and weight per plant equations.

Main results: Three new equations improve rockrose biomass estimations in North-central Spain: a) Weight per unit area (tDM.ha-1) 
equation (Eq. 1) based on apparent biovolume (product of crown cover in percentage by average height in meters) (Radj

2 0.69, MAE 26.1%, 
RMSE 38.4%); b) Weight per plant (kgDM.plant-1) equation (Eq. 2) from height and crown diameter (Radj

2 0.87, MAE 26.5%, RMSE 45.2%) 
and c) Weight per unit area equation (tDM.ha-1) (Eq. 3) based on LiDAR data contrasted with field data (Radj

2 0.89, MAE 15.1%, RMSE 
22.9%).

Research highlights: Eq. 1 and Eq. 3 combined with high resolution LiDAR information offer rockrose (Cistus laurifolius L.) biomass 
estimations without added field work costs that are an improvement on certain more general studies carried out in other areas of Spain.
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Introduction
Wildfires are a major hazard throughout Europe, pro-

ducing large environmental and economic losses and 
having an impact on human lives. Over 40,000 fires per 
year were reported between 2010 and 2016 in Greece, 
Spain, France, Italy and Portugal, where around 85% of 
the total burned area in Europe was located (EC, 2018). 

According to the EU´s official soil database (LUCAS, 
2018), five Mediterranean countries have over 50% of 
the EU28 shrublands (16 Mha), of which 8.4 Mha are lo-
cated in Spain.  In this country, currently ranked second 
in fire incidence after only Portugal (San-Miguel-Ayanz 
et al., 2017), between 54% and 83% of the total forest 
area burned from 2005 to 2015 was covered by shru-
blands (MAPA, 2019).
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Shrub formations play an important ecological role in 
ecosystem restoration (Gómez-Aparicio et al., 2004; Cas-
tro et al., 2004; San Miguel et al., 2004; Maestre et al., 
2009; Rey et al., 2009), in soil protection (Bochet et al., 
2006; Pueyo et al., 2013), in the nutrient and carbon cy-
cle (Yarie, 1980; Van Cleve & Alexander, 1981; Chapin, 
1983), in biodiversity (Noss, 1990); Mangas et al., 2008), 
in carbon fixation capacity (Navarro & Blanco, 2006; 
Fonseca et al., 2012; Gratani et al., 2013; Pasalodos et 
al., 2015), in obtaining essential oils (Küpeli Akkol et al., 
2012; Orhan et al., 2013; Karim et al., 2017; Mediavilla 
et al., 2021) and in bioenergy (Viana et al., 2012; Media-
villa et al., 2017; Esteban et al., 2019; Bados et al., 2020). 
However, shrublands - currently considered a resource of 
low economic value - usually suffer from lack of mana-
gement which, together with the abandonment of tradi-
tional forestry uses, leads to a forest structure more prone 
to wildfires (Wessel et al., 2004, Rigueiro-Rodríguez et 
al., 2008). In most cases, the uncontrolled concentration 
of shrubs is frequently the cause of the start and spread 
of new forest fires in European Mediterranean countries 
(Baeza et al., 2002, Núñez-Regueira et al., 2004, Gar-
cía-Hurtado et al., 2013, Mediavilla et al., 2017).

On the other hand, the EU Renewable Energy Directi-
ve 2018/2001/EC stipulates that 32% of total energy con-
sumption by the member states should come from renewa-
ble sources by 2030. In this context, Spain has recently 
approved the Spanish Circular Economy Strategy (MITE-
CO, 2020) to achieve a sustainable, decarbonised, efficient 
(when using natural resources) and competitive economy. 
New biomass resources are required to face the increasing 
demand of bioenergy in a future bioeconomy (EC, 2012; 
Scarlat et al., 2015; Lainez et al., 2018), especially those 
that do not compete with other uses of biomass, such as 
food, feed or products for the wood and fiber industry. Bio-
mass derived from shrub formations is gaining importan-
ce, as a complement of the biomass derived from clearing, 
thinning, pruning and that obtained from plantations of fast 
growing species. In this context, the ENERBIOSCRUB 
LIFE+ project stressed the need for sustainable mobilisa-
tion of new biomass resources through the production of 
sustainable solid biofuels from the mechanised cleaning of 
shrublands to mitigate wildfire risk. 

According to the Spanish Strategy for the Develop-
ment of Forest Biomass (MARM, 2010), the potential of 
forest biomass in Spain is close to 6.6 million tDM.year-1 

(tons of dry matter per year), of which 4.5 million tDM.
year-1 correspond to tree-covered forest, and 2.1 million 
tDM.year-1 to shrublands.  

In Spain, there are studies that estimate the biomass in 
shrublands through allometric equations based on field in-
ventories (Patón et al., 1999; Navarro & Blanco, 2006; 
Ruiz-Peinado et al., 2013) and also general methods to quan-
tify Cistaceae bushes and its annual growth through equa-
tions based on field measurements or on parameters obtai-

ned from the National Forest Map of Spain (Montero et al., 
2013; Pasalodos et al., 2015; Montero et al., 2020), but they 
have been built with data outside the region of Castile and 
León, a North-central Spain region that represents 18.6% of 
the country’s surface area, where Cistus sp. occupies more 
than 326,000 ha (MFE, 2020). Besides, there are no specific 
biomass estimation models for rockrose (Cistus laurifolius 
L.) shrublands, except some estimations of shrub biomass 
availability along two geographical transects in the Iberian 
Peninsula (González-González et al., 2017a) and some equa-
tions to estimate rockrose weight per plant based on small 
samples from specific places (Pérez & Esteban, 2008).

These facts highlight the need to develop new equa-
tions that can improve biomass predictions in North-cen-
tral Spain, where rockrose (Cistus laurifolius L.) is wi-
dely spread and forms monospecific systems of extensive 
coverage, occupying former pastures and marginal lands 
over more than 175,000 ha (MFE, 2020).

Additionally, recent studies call for deepening and broade-
ning into forest applications from LIDAR (Light Detection 
and Ranging) data available for the whole Spanish territory 
within the framework of the National Plan for Aerial Ortho-
graphy (PNOA, 2010), to generate shrubland models, as it is 
a scantly explored work area (Montealegre, 2017). LiDAR is 
an active remote sensing system based on a laser scanner that 
allows a better description than any other known system of 
soil and vegetation structures in areas with dense vegetation. 
LiDAR sensors can penetrate the vegetation cover and cap-
ture information from different height layers (trees, shrubs 
and soil), which enables this technology to characterize ve-
getation structures and to quantify biomass stocks (Bernal 
et al., 2017). LiDAR data acquisition over large areas is be-
coming a widespread practice in many countries thanks to 
the multitude of regional and national programs (countries 
such as Denmark, Finland, Poland, Switzerland, England, 
Sweden and USA acquire LiDAR data throughout their te-
rritory). In Spain, the first LiDAR coverage was completed 
in 2015 and the second is expected to be completed in 2021 
(Fragoso-Campón et al., 2020).

The high availability of data is increasing the use of 
LiDAR data for forest management inventory (Domingo 
et al., 2018; Fernández-Landa et al., 2018). Although, 
the main applications of LiDAR in forest inventory have 
focused on forest stands (Gómez et al., 2019), its appli-
cation for biomass estimation in shrublands is extremely 
interesting. In addition, new available LiDAR data have 
an increasingly higher point density, which could impro-
ve the vegetation structure estimation for low, woody 
vegetation (Estornell et al., 2011; Greaves et al., 2016). 
The development of models to predict aboveground bio-
mass in shrublands from LiDAR data is an opportunity to 
quantify and understand the distribution of this important  
resource over large areas at a very low cost. Many stu-
dies have demonstrated the advantages of using LiDAR 
data for mapping surface fuel models over large areas  
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(González-Olabarria et al., 2012, Marino et al., 2016). 
This also indicates the ability of this information to quan-
tify biomass density in shrubland. However, it should be 
noted that the potential of LiDAR to describe shrubland 
structure may be seen as reduced due to poor classifica-
tion of the point cloud in cases with high scrub cover and 
low LiDAR point density (Montealegre, 2017).

The aim of this paper is to develop new equations to 
predict the biomass of rockrose (Cistus laurifolius L.) shru-
blands in North-central Spain, based on field measurements 
and LiDAR data, in order to test the following hypothesis: 
a) New equations based on field measurements can impro-
ve rockrose biomass estimations quantified with more ge-
neral methods for Cistaceae bushes. b) LiDAR information 
can contribute to estimate rockrose biomass stocks.

Materials and methods
Study area

This study was carried out in three rockrose shrublands 
in North-central Spain, corresponding to former pasture-

lands with no livestock, over an area of 110 ha in the pro-
vince of Soria. The area is classified as a Mediterranean 
temperate climate, with milder and wetter summers than 
in Southern Spain, with a less extended dry season and a 
longer interval of cold or winter frost (Peel et al., 2007; 
AEMET, 2011). Fig. S1 [suppl.] shows the atmospheric 
characterization during 2016 in one of the study areas 
(Lubia), which is representative of the four locations.

The central point UTM coordinates (ETRS 89) of the 
study areas are: Lubia (30 N 542000 4606500); Acrijos (30 
N 567482 4654497), Navalcaballo (30 N 539250 4613250) 
and Centenera (30 N 525792 4596024). Fig. 1 shows the 
municipalities where the study areas are located.

The shrublands had in common: a) the presence of al-
most pure stands of rockrose (Cistus laurifolius L.), with 
an abundance of over 80% of this species; b) shrub ave-
rage age between 11 and 29 years, according to a dendro-
chronological analysis carried out by INIA (The National 
Institute of Agricultural and Food Research and Techno-
logy) in 2016 (González-González et al., 2017b); c) ave-
rage height between 1.1 and 1.5 m; d) low slope terrain 
with no stones or rocky outcrops; e) shrublands adjoining 
pine forests; f) no recent wildfire events.

 3°0´0´´N 2°0´0´´N 

3°0´0´´N 2°0´0´´N 

42°0´0´´N 

41°0´0´´N 

42°0´0´´N 

41°0´0´´N 
SPAIN 
1:100,000,000 

Province of Soria 
1:4,500,000 

Figure 1. Location of the municipalities where the study areas are lo-
cated.
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Data sources

Field measurements and PNOA-LiDAR data were 
used to develop biomass estimation models. Field data 
collection was performed in 2016 on 3644 m2 (290 ø4m-
plots) of destructive sampling in the four mentioned shru-
blands (Table S1 [suppl.]) and biometric data from plant 
community (both shrub mass and individual plants) were 
recorded. Airborne LiDAR information was provided by 
PNOA-LiDAR collected in 2010, the nearest data to the 
sampling date, during leaf-on conditions, at a density of 
0.5 points per m2 and a vertical accuracy of less than 0.20 
m.  When the study began, the only LiDAR data available 
was from 2010, and when data from 2017 was published, 
all the data processing was done. On the other hand, they 
were only available for the South of the province of Soria, 
and one of the study areas (study area 1- Torretartajo) did 
not have updated LiDAR data from 2017. The temporal 
difference between the LiDAR flight and the field data 
can reduce predictive capacity of LiDAR information in 
young scrub areas with a higher growth capacity, what 
causes this LiDAR to work better in mature shrublands 
with slower growth.
This information was provided in 2 km resolution tiles 
covering the studied areas. It should be noted that more 
recent LiDAR images of all the sampled shrublands do 
not exist nowadays; that there were no perturbances in the 
scrub vegetation between the two dates (only growth) and 
that the average age of the vegetation is 21 years, an age 
from which growth slows down, so those LiDAR images 
are considered valid for the present study.

Sampling methods

Weight per unit area (W, tDM.ha-1) equation based on field 
measurements

Systematic sampling was carried out to fit a Weight per 
unit area (tDM.ha-1) equation based on field measurements. 
The areas covered by rockrose vegetation were delimited 
and measured on aerial photographs (PNOA, 2010) and 
verified with field measurements. Sample size was based 
on a previous random pilot sampling carried out on 30 
plots of 4 m in diameter in the same shrublands, in which 
a biomass average value of 15.4 tDM.ha-1 with a standard 
deviation of 8 tDM.ha-1 was obtained. The number of syste-
matic sampling plots, setting a maximum error of 6%, was 
288. The sampling plot centers were located at the nodes 
of a 55 m side square net. The corresponding UTM coor-
dinates (Datum WGS84) were identified and located in 
the field with a sub-metric precision GPS. Circular plots 
of 4 m in diameter were marked on the terrain and the 
measurements of the following data were concentrated 
on them: shrub crown cover (CC, %), species composi-

tion, number of plants per hectare (N), and average shrub  
height (H, m) obtained by calculating the average height 
of the 12 plants closest to the plot center. Subsequently, all 
the plants were cut at ground level, without differentiation 
of species composition, and were weighed with a 30 kg 
± 5 g digital dynamometer. Four samples per shrubland 
(2.5 kg per sample), including rockrose trunk, branches 
and leaves, were collected and sent to the Laboratory of 
Biomass Characterization (LCB) at CEDER-CIEMAT in 
Soria (Center for the Development of Renewable Energy 
Sources) to determine moisture content in order to esti-
mate dry biomass weight per plot. To analyze the shrub 
moisture content, the analytical sample was prepared 
according to the UNE 14780:2011 standard, by means 
of homogenization, division and drying. The analyti-
cal method, drying at 105±2 ºC, was performed in LCB  
following the ISO 18134-1:2015 standard.

Weight per plant (w, kgDM∙plant-1) equation based on field 
measurements

Transect sampling of rockrose plants was carried out in 
the three study areas to fit a Weight per plant (kg.plant-1) 
equation. A total of 426 individual rockrose plants with 
heights between 0.2 and 2.4 meters were sampled. In this 
region rockrose plants rarely exceed 2 m in height, and on 
the other hand, small plants below 20 cm in height can-
not be collected for biomass with commercial mechani-
zation systems. To have representative plants of all sizes, 
at least 30 plants per 20 cm height interval were measu-
red and evenly distributed among the three locations. The 
measured biometric parameters were: plant green weight 
(w, kg), plant height (h, m) and the average of two plant 
crown perpendicular diameters (d, m). Afterwards, three 
plants per shrubland were taken to analyze moisture con-
tent and estimate plant dry weight.

Weight per unit area (W, tDM.ha-1) equation based on Li-
DAR data and field measurements

Airborne LiDAR point clouds were automatically 
classified by PNOA distinguishing ground from vege-
tation points. Since the study was aimed at studying 
shrublands, this classification was verified before data 
processing. Locations with shrubs of 0.4-1.0 meters high 
were misclassified as ground, and in order to improve the 
results focused on this specific forest structure type, a re-
classification procedure was considered using the LAS-
ground classification method implemented in LAStools 
software. The point cloud classification of PNOA-Li-
DAR information is automatically carried out for large 
wooded and treeless forest areas with very diverse struc-
ture and composition. In spite of PNOA classification 
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works generally well, it can always be improved when 
it is focused on a specific forest structure type. For this 
reason, the LiDAR point cloud was reclassified in the 
formations under study. Afterwards, LiDAR tiles were 
processed with Fusion Software (McGaughey & Car-
son, 2003). A 2-meter resolution Digital Elevation Mo-
del (DEM) was generated from the reclassified ground 
points. This DEM was used to subtract the ellipsoidal 
elevation of the DEM from the Z coordinate of each Li-
DAR return and normalize the LiDAR point cloud. The 
study area was tessellated into 20-meter pixels, com-
puting a total of 26 LiDAR metrics for each of them. 
These metrics were computed using a predefined thres-
hold height of 0.4 m, and they corresponded to a mean  
height (LHmean), maximum height (LHmaximum) and mini-
mum height (LHminimum), mode, standard deviation, varia-
tion coefficient, variance, interquartile range, kurtosis, 
skewness, shrub crown cover (LCC, %) (percentage of 
first returns over 0.4 m), and several percentiles (ranging 
from the 1st to 99th percentile: P1, P5, P10, P20, P25, 
P30, P40, P50, P60, P70, P75, P80, P90, P95 and P99). 
Derived variables were constructed from metrics and 
percentiles of LiDAR heights that allowed describing 
the vertical distribution of biomass in shrublands. Sam-
pling plots from the study areas were used to elaborate 
a Shrub weight per unit area (tDM.ha-1) equation based 
on LiDAR data and field measurements.  In each plot, 
LiDAR mean shrub height (LHmean, m), LiDAR shrub 
crown cover (LCC, %) and biomass dry weight (W, tDM.
ha-1) were considered to fit this model. Finally, the same 
LiDAR metrics were calculated for each field plot and 
used as predictive variables to estimate dry biomass.

Data analysis

Weight per unit area (W, tDM.ha-1) equation based on field 
measurements 

Linear and non-linear (power and exponential) mo-
dels based on sampling plot information were generated 
to fit dry biomass weight per unit area. H, CC and appa-
rent biovolume (ABV), which is the product of H and CC 
(Cook, 1960), were considered as independent variables. 
Data analysis, statistical fits and cross-validation were 
implemented in R (R Development Core Team, 2008). 
The model was obtained with a level of significance of 
0.05 for all the parameters. A cross-validation technique 
of 50 iterations was applied to validate the model that 
provided the best results in the diagnostic phase, split-
ting the original data into a training set of 70% of the 
cases and a test set of 30%. The result of the cross vali-
dation was the average of the 50 iterations. The selection 
of this high number of validation sets was considered 
highly representative for the validation process.

The following statistical metrics were used to eva-
luate and validate the precision and accuracy of the 
equations: Radj

2, mean absolute error (MAE), root mean 
squared error (RMSE) and bias estimate (b).

Weight per plant (w, kgDM∙plant-1) equation based on 
field measurements

Regression models were fitted to estimate dry bio-
mass weight per plant. Data analysis, statistical adjust-
ments and model cross-validations were implemented in 
R (R Development Core Team, 2008). Linear and non-li-
near models (power and exponential) were generated se-
lecting the ones which provided the best results in the 
fitting and validation phases. The model was obtained 
with a level of significance of 0.05 for all the parame-
ters. The same cross-validation procedure described in 
the previous section was used to evaluate and validate 
the biomass weight equation.

Weight per unit area (W, tDM.ha-1) equation based on Li-
DAR data and field measurements

Linear and non-linear (power and exponential) mo-
dels were generated selecting the one which provided 
the best results in the fitting and validation phases. A 
cross-validation technique was applied to evaluate the 
accuracy of each model comparing Radj

2 and RMSE. 
Data analysis, statistical adjustments and model cross-va-
lidations were implemented in R (R Development Core 
Team, 2008). A stepwise approach was followed to per-
form the variable selection through an R MASS package 
(Ripley et al., 2015). The model was obtained with a level 
of significance of 0.05 for all the parameters. The most 
accurate model developed, with the lowest RMSE, was 
used to predict the dry biomass in three of the study areas 
in a spatially continuous way.

In all the model fitting processes the Shapiro-Wilk test 
was used to verify the residual normality, the Breusch-Pa-
gan test was used to verify homocedasticity and Vif test 
was used to verify collinearity.

Comparison of biomass weight equations 

The developed weight per unit area equations were 
used to predict the dry biomass weight in study areas 1, 
2 and 3.  Technical problems related to the storage capa-
city and data processing of the computer, prevented the 
estimation of biomass in study area 4 with the equation 
based on LiDAR data, so this area was not considered 
in the comparison. The predicted values were compared 
with the field biomass sampling results as another way 
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of validation. The predicted results were also compared 
with two biomass equations for rockrose shrubs and Cis-
taceae bushes: Montero et al. (2020) and Pasalodos-Ta-
to et al. (2015). The comparison of estimations from the  
different models was carried out considering accuracy sta-
tistics (mean shrub weight (W), standard deviation (SD), 
confidence interval (CI)) and precision statistics (MAE, 
bias and RMSE). Weight per unit area (tDM.ha-1) equation 
based on LiDAR data and field measurements offered a 
single estimation per study area, not per sampling plot, 
so standard deviation values when applying this model in 
the different sampling plots were null. Finally, as another 
source of comparison, the biomass values estimated with 
the three weight equations were compared with the field 
biomass estimations carried out by TRAGSA S.A., a com-
pany responsible for shrub harvesting trials in study areas 
1 and 3 using a harvester-baler Biobaler WB55 (Bados 
et al., 2020). The procedure followed by this company 
was based on the sum of harvested biomass and biomass 
left on the terrain after mechanized harvesting. The lat-
ter included inadequate shrub clearing and losses of fine 
material which, after being cleared, did not enter into the 
baling unit and fell to the ground, or went into and out of 
the baling unit without being part of a bale and fell to the 
ground. It was estimated by a systematic sampling of ran-
dom approach transects establishing square plots of 0.5 x 
0.5 meters (Blasco et al., 2017).

Results 
Based on field measurements and LiDAR data, three 

biomass equations (Eq. 1, Eq. 2 and Eq. 3) were developed 
to predict aboveground biomass of rockrose shrublands in 
North-central Spain (two equations estimating tonnes of 
dry matter per hectare  (Eq. 1 and 3) and one equation esti-
mating kilograms of dry matter per plant (Eq. 2) . 

Weight per unit area (W, tDM.ha-1) equation based 
on field measurements 

The best equation based on field measurements to 
predict dry biomass weight per unit area was obtained 
through an allometric model in which the independent se-
lected variable was ABV (Apparent biovolume) adjusted 
by non-linear regression. ABV is the product of the mean 
shrub crown cover (CC, %) and the mean shrub height 
(h, m).  It yielded an appropriate level of precision and 
accuracy explaining 69% of the variance of the estimated 
variable, with a MAE of 4.12 tDM.ha-1 (26.1%), bias esti-
mate of -1.01 tDM.ha-1 (6.4%) and RMSE of 6.08 tDM.ha-1 
(38.4%) (Table 1): 

W =  0.577 ∙ 𝐴𝐴𝐴𝐴𝐴𝐴0.730               (Eq. 1)

where W is the dry biomass weight per hectare (tDM.ha-1), 
ABV is the apparent biovolume.

The cross-validation procedure produced the following 
statistics: Radj

2 0.69, MAE 4.44 tDM.ha-1 (28.8%), bias -1.07 
tDM.ha-1 (-7.0%) and RMSE 1.44 tDM.ha-1 (9.4%).

Regarding multicollinearity and heteroscedasticity of 
this model, although residuals from the regression line 
of Eq. 1 corresponded to a normal distribution without 
autocorrelation, they showed some heteroscedasticity 
(studentized residual grew with the independent varia-
ble values), so a Box-cox transformation was tried. The 
results showed a softer growing trend of the residuals, 
but its behavior was worse for the lower values of the 
independent value (overestimating the weight). Its mean 
absolute error was greater than that of the original Eq. 1 
and it had a 95% significant lack-of-fit statistic, so it was 
finally discarded.

Weight per plant (w, kgDM∙plant-1) equation  
based on field measurements

The best statistical fit for dry weight per plant was 
obtained through an allometric model in which the inde-
pendent variables were h and d fitted by non-linear re-
gression. It yielded an appropriate level of precision and 
accuracy explaining 87% of the variance of the estimated 
variable, with a MAE of 0.46 kgDM∙plant-1 (26.5%), bias 
estimate of -0.26 kgDM.plant-1 (-17.1%) and RMSE of 0.82 
kgDM.plant-1 (45.2%) (Table 1): 

w = 1.140 ∙ ℎ0.979 ∙ 𝑑𝑑 1.535          (Eq. 2)

where w is the dry weight of the plant (kgDM∙plant-1), h 
is the plant height (m) and d is the average value of the 
plants crown perpendicular diameters (m).

The cross-validation procedure gave the following 
statistics: Radj

2 0.78, MAE 0.56 kgDM∙plant-1 (32.4%), bias 
-0.30 kgDM∙plant-1 (-17.2%) and RMSE 0.32 kgDM∙plant-1 
(18.3%).

Although residuals from the regression line of Eq. 2 
corresponded to a normal distribution and did not show 
autocorrelation, they showed a certain degree of heteros-
cedasticity (studentized residual grew with the estimated 
value or w), but as most of the w-values were low (only 
12 out of the 412 values were greater than 6 kgDM∙plant-1), 
the effect of such heteroscedasticity was considered irre-
levant. With regard to the multicollinearity between the 
two explaining variables, their correlation coefficient was 
0.70, what could lead to eliminating one of them. No-
netheless, the analysis of the significance of the coeffi-
cients of both variables made keeping them in the model 
advisable, as the removal of any of them worsened the  
fitting quality.
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Weight per unit area (W, tDM.ha-1) equation based 
on LiDAR data and field measurements

The best equation to predict dry biomass weight per 
unit area based on LiDAR data and field measurements 
included percentiles P05, P40, P60, P90, P95, LHmean and 
LCC. Overall, it yielded an appropriate level of precision 
and accuracy explaining 89% of the variance of the esti-
mated variable, with a MAE of 2.41 tDM.ha-1 (15.1%), bias 
estimate of -0.27 tDM.ha-1 (-1.7%) and RMSE of 3.64 tDM.
ha-1 (22.9%) (Table 1):

𝑊𝑊 =  0.0077 · 𝐿𝐿𝐿𝐿𝐿𝐿 [
(𝑃𝑃90 − 𝑃𝑃40) 

(𝑃𝑃90 − 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)]1.8727  

· 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿.𝐿2𝐿7𝐿·𝐿𝐿𝐿𝐿𝐿𝐿2.2𝐿82
  (Eq. 3)

where W is the biomass dry weight (tDM∙ ha-1); P05, P40, 
P60, P90, P95 are the height values (m) such that 5%, 
40%, 60%, 90% and 95% of returns are, respectively, be-
low them; LCC is the LiDAR shrub crown cover (%) and 
LHmean is the LiDAR mean height (m).

The cross-validation procedure produced the following 
statistics: Radj

2 0.60, MAE 2.88 tDM.ha-1 (18.1%), bias 
-0.03 tDM.ha-1 (-0.2%) and RMSE 4.25 tDM.ha-1 (26.7%).

Comparison of biomass estimations with the de-
veloped equations

Eq. 1 and Eq. 3 were used to predict dry biomass  
weight in study areas 1, 2 and 3. These estimations, toge-
ther with the field biomass sampling results and the pre-
dicted values obtained with Montero et al. (2020) model 
(Eq. 4) and Pasalodos-Tato et al. (2015) model (Eq. 5) are 
shown for comparison purposes in Table 2. Equations 1, 
2, 3, 4 and 5 are described in Appendix A1 [suppl.]. The 
weight per plant equation (Eq. 2), in spite of its good fit, 
was not used to predict tonnes per hectare since it requires 
additional sampling of the number of plants per hectare, 
which increases the data collection effort and can be an 
additional source of error. Finally, the biomass values es-
timated in study areas 1 and 3 using Eq. 1, 3, 4 and 5 are 
shown, for comparison in Table 3. This table also includes 
the field biomass estimations carried out by TRAGSA af-
ter the shrub harvesting trials of both study areas.

Eq. 1, based on ABV as an explanatory variable, offers 
the most accurate and precise estimations in study areas 
2 and 3, with a bias between -0.2% and 0.2%, MAE  
between 27.0% and 17.2% (4.0 and 2.0 tDM·ha-1) and 
RMSE between 35.4% and 23.7%, respectively. The most 

Eq. 1:    W= a∙ABVb

Variable Param Coef. SD P t st MAE, (%) Radj2 b, (%) RMSE, (%)
Intercept a 0.577 0.102  0.0000 -5.402 4.12 0.69 -1.02 6.08

(26.09) (-6.43) (38.44)

ABV b 0.730 0.024 0.0000 30.723
Eq. 2:    w = A ∙ hB ∙ dC

Variable Param. Coef. SD P t st MAE, (%) Radj
2 b, (%) RMSE, (%)

- A 1.140 0.045 0.0000 6.103 0.46 0.87 -0.26 0.82
(26.54) (-17.11) (45.21)

h B 0.979 0.103 0.0000 5.918
d C 1.535 0.063 0.0000 19.327

Eq. 3:  W 𝐖𝐖 =  𝐚𝐚 · 𝐋𝐋𝐋𝐋𝐋𝐋 [
(𝐏𝐏𝐏𝐏𝐏𝐏 − 𝐏𝐏𝐏𝐏𝐏𝐏) 

(𝐏𝐏𝐏𝐏𝐏𝐏 − 𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐚𝐚𝐋𝐋)]𝐛𝐛 · 𝐋𝐋𝐋𝐋𝐋𝐋(𝐏𝐏𝐏𝐏𝐏𝐏 − 𝐏𝐏𝐏𝐏𝐏𝐏)𝐜𝐜 · 𝐏𝐏𝐏𝐏𝐏𝐏𝐝𝐝 

Variable  Param. Coef. SD P t st MAE, (%) Radj
2 b, (%) RMSE, (%)

Intercept a 0.0077 0.6897 <0.05 -7.087 2.41 0.89 -0.27 3.64
(15.15) (-1.68) (22.89)

LCC [ (P90−P40) 
(P90−LHmean)];      b 1.8727 0.2117 <0.05 8.847

LCC (P95-P60);             c -0.5267 0.1258 <0.05 -4.187

P05 d -2.2668 0.4725 <0.05 -4.798 

Table 1. Regression parameters and goodness-of-fit statistics of Eq. 1, Eq. 2 and Eq. 3

Param.: parameter; Coef.: coefficient; SD: standard deviation; P: P-value; tst: tstatistic; MAE;%: mean absolute error, relative MAE; b: bias, 
relative bias; RMSE: root mean square error, relative RMSE; ABV: apparent biovolume; h: plant height (m); d: average value of plant crown 
perpendicular diameters (m); P05, P40, P60, P90, P95: height (m) such that 5%, 40%, 60%, 90% and 95% of returns are, respectively, below 
them; LCC: LiDAR shrub crown cover (%); LHmean: LiDAR mean height (m).



8 Raquel Bados, Luis Saúl Esteban, Jessica Esteban et al.

Forest Systems December 2021 • Volume 30 • Issue 3 • e015

accurate and precise results are also obtained when all 
study areas are considered (bias -9.7%, MAE 30.9% and 
RMSE 46.7%). However, Eq. 4 and 5 show more precise 
estimations in study area 1, although biomass dry weight 
values are not within the systematic sampling confidence 
interval at 95% confidence. This could be related to the 
average age of vegetation. Eq. 1 provides better results for 
younger and less lignified shrublands (study areas 2 and 3 

with an average age between 11 and 16 years) than for ol-
der ones (study area 1 with average age of 29 years) (Ta-
ble S1 [suppl.]). Nevertheless, Eq.1 estimations in study 
areas 1 and 3 are in accordance with the biomass values 
estimated by TRAGSA after harvesting both shrublands 
(Table 3). 

Eq. 3 provides biomass dry weight values within the 
systematic sampling confidence interval in study areas 1 

Study Field Biomass estimations
area sampling  Eq. 1 Eq. 3 Eq. 4  Eq. 5

1: Lubia

W 17.4 14.3 15.5 21.5 19.6

SD 11.76 6.4 n.a. 10.1 11.9

CI 15.2-19.7 13.1-15.6 n.a. 19.6-23.5 17.3-21.8

b, b (%) - -3.1, (-21.8) -1.9, (-12.4) 4.1, (18.9) 2.1, (10.8)

MAE, MAE (%) - 5.6, (39.3) 9.1, (58.5) 6.7, (31.3) 6.0, (30.6)

RMSE, RMSE (%) - 8.5, (59.5) 11.9, (76.4) 8.4, (39.2) 8.1, (41.5)

2: Acrijos

W 14.9 14.7 15.9 23.3 21.6

SD 7.7 7.1 n.a. 10.8 13.0

CI 13.4-16.4 13.3-16.1 n.a. 21.2-25.5 19.1-24.2

b, b (%) - -0.2, (-1.3) 1.0, (6.1) 8.4, (36.1) 6.7, (31.0)

MAE, MAE (%) - 4.0, (26.0) 6.1, (38.5) 9.0, (38.7) 8.4, (39.1)

RMSE, RMSE (%) - 5.2, (35.4) 7.3, (48.6) 10.9, (46.6) 10.9, (50.5)

3: Navalcaballo

W 11.6 11.8 7.0 16.9 13.6

SD 4.7 4.6 n.a. 6.6 7.4

CI 10.2-13.0 10.4-13.1 n.a. 15.0-18.9 11.4-15.8

b, b (%) - 0.2, (1.65) -4.6, (-65.3) 5.3, (31.6) 2.1, (15.1)

MAE, MAE (%) - 2.0, (17.2) 5.4, (77.3) 5.5, (32.6) 3.7, (26.8)

RMSE, RMSE (%) - 2.8, (23.7) 6.5, (93.5) 6.6, (39.3) 5.2, (37.8)

All study areas (1, 2 and 3) 

W 15.4 14.0 14.2 21.5 19.3

SD 9.5 6.5 3.3 10.1 12.0

CI 14.2-16.6 13.2-14.8 n.a. 20.2-22.7 17.8-20.8

b, b (%) - -1.4, (-9.7) -1.2, (-8.8) 6.0, (28.1) 3.9, (20.4))

MAE, MAE (%) - 4.3, (30.9) 7.2, (51.2) 7.4, (34.7) 6.6, (33.9)

RMSE, RMSE (%) - 6.6, (46.7) 9.5, (67.4) 9.2, (43.1) 5.3, (27.4)

Table 2. Mean values and statistical estimators of dry biomass estimations (tDM.ha-1) obtained with Eq. 1, Eq. 3, Montero et al., 2020 
model (Eq. 4) and Pasalodos-Tato et al., 2015 model (Eq. 5) in study areas 1, 2 and 3.

W: biomass dry weight (tDM.ha-1); w:dry weight per plant (kgDM·plant-1);  SD: standard deviation (tDM.ha-1); n: number of sampling plots; CI: 
confidence interval (tDM.ha-1); b: bias; b%: relative bias ; MAE: mean absolute error (tDM.ha-1); MAE %: relative MAE; RMSE: root mean squa-
re error (tDM.ha-1); RMSE %: relative RMSE; Eq. 1: W= 0.577∙ABV0.730 where ABV is the apparent biovolume; Eq. 2: w=1.14∙h0.98∙d1.54 where 
h is the average plant height (m) and d is the average crown diameter (m); Eq. 3: W= 𝑊𝑊 =  0.0077 · 𝐿𝐿𝐿𝐿𝐿𝐿 [

(𝑃𝑃90 − 𝑃𝑃40) 
(𝑃𝑃90 − 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)]1.8727  

· 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿.𝐿2𝐿7𝐿·𝐿𝐿𝐿𝐿𝐿𝐿2.2𝐿82

𝑊𝑊 =  0.0077 · 𝐿𝐿𝐿𝐿𝐿𝐿 [
(𝑃𝑃90 − 𝑃𝑃40) 

(𝑃𝑃90 − 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)]1.8727  

· 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿.𝐿2𝐿7𝐿·𝐿𝐿𝐿𝐿𝐿𝐿2.2𝐿82  where 
LCC is the LiDAR shrub crown cover (%), LHmean is the LiDAR mean height (m) and P95, P90, P60, P40, P05 are the height values (m) such 
that 95%, 90%, 60%, 40% and 5% of returns are, respectively, below them; n.a.: not available.
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and 2 at 95% confidence. This model offers biomass fi-
gures closer to TRAGSA data and field sampling data in 
study area 1 than in study area 3.

Discussion
The developed weight per hectare equations (Eq. 1 and 

Eq. 3), generated through two different methodologies, 
allowed appropriate precision and accuracy levels, with 
Radj

2 values of 0.69 and 0.89 respectively, which are of 
the same order or better than other more general previous 
studies to estimate Cistaceae shrubs (Radj

2 0.76 in Pasa-
lodos-Tato et al. (2015) and Radj

2 0.64 in Montero et al., 
(2013), and RMSE values below 39%). 

Navarro & Blanco (2006) estimated Cistus ladanifer 
L. biomass as a function of shrub age ranging between 1 
and 12 years, with a greater R2 (0.97) and Cistus ladanifer 
L. and Erica sp. with values of the same order or lower 
(R2 of 0.71). Yao et al. (2021) defined allometric models 
to estimate shrub biomass, including crown-related volu-
mes as predictors, with similar R2 (0.63-0.86). 

The weight per plant equation (Eq. 2) also provided 
acceptable levels of precision and accuracy (Radj

2 0.87 and 
MAE 2.4 kgDMˑplant-1), but less favorable than those pu-
blished by Pérez & Esteban (2008) (Radj

2 0.96 and MAE 
0.062 kgDMˑplant-1), although it should be noted that the 
cited study was based on a sample of 30 plants located at 
Lubia (Soria) versus the sample of 426 plants located in 
study areas 1, 2 and 3. 

Shrub biomass estimations provided by Eq. 1 and Eq. 
3 are within the average biomass accumulation confiden-
ce interval estimated by González-González et al. (2017a) 
for a shrub formation composed of rockrose shrubs and 

Cistaceae bushes in Central Spain (11.93±5.8 tDM·ha-1), 
considering an average height of 98.2±3 cm and an avera-
ge crown cover of 59.9±2 %.

Montero et al. (2020) and Pasalodos-Tato et al. (2015) 
models overestimate shrub biomass weight between 25 
and 40% with respect to the field sampling results in the 
three study areas, with weight per hectare values being 
above the systematic sampling confidence intervals. This 
is reasonable taking into account that Eq. 1 and 3 were fit-
ted from plants and mass values sampled in North-central 
Spain, while Eq. 4 and 5 were not developed from sam-
pling plots located in the region of Andalusia (Southern 
Spain). Eq. 1 and 3 estimations offer biomass values clo-
ser to TRAGSA estimations after harvesting study areas 1 
and 3, being underestimated in this case between 25-43% 
with respect to field sampling results.

LiDAR technology provides an outstanding infor-
mation source for characterizing the forest structure 
(Næsset, 2002) and, therefore, for predicting forest 
variables in a spatially continuous manner (Domin-
go et al., 2017; Montealegre et al., 2016). However, 
the great majority of the studies using PNOA-LiDAR 
data have focused on the quantification of the forest 
resources without considering the shrubs ecosystems 
(Fernández-Landa et al., 2018; Gómez et al., 2019). As 
far as the authors are concerned, this study along with 
the works of Estornell et al. (2011, 2012) are unique in 
the employment of LiDAR data for shrubland biomass 
estimation in Spain. The results show that low density 
PNOA-LiDAR can be used as an auxiliary information 
to obtain biomass estimates spatially continuous. The 
cross-validation results, in terms of relative RMSE and 
R2, are consistent with other studies. The dry biomass 
models based on LiDAR data yielded a relative RMSE 
of 26.70% and R2 of 0.60. Estornell et al. (2012) em-
ployed high density LiDAR data to assess the biomass 
of a Mediterranean forest in Valencia (Spain) achieving 
an R2 of 0.67 and a relative RMSE of 28%. Greaves 
et al. (2016) estimated shrub biomass in Arctic Tun-
dra using also LiDAR data and reported an R2 of 0.61. 
Glenn et al. (2016) modeled the biomass of semi-arid 
vegetation sites in the western U.S. with LiDAR data 
and found a R2 of 0.56. Zhao et al. (2021) estimated 
shrub aboveground biomass as a function of high-den-
sity LiDAR point cloud data acquired from an unman-
ned aerial vehicle with a greater R2 (0.77).

The methodology developed in this study leveraging 
LiDAR could be replicated at a national scale or over 
other territories with well-established LiDAR programs. 
Further research should focus on studying how LiDAR 
data and other sources of information (optical or SAR 
satellite imagery) could be integrated to estimate bio-
mass more accurately. It was found that the calibration 
of regression models using optical and LiDAR metrics 
improved shrub biomass estimates (Glenn et al., 2016; 

Clearing trial results Study area
1 3

Harvested area (ha) 37.3 19.3

Harvested biomass (tDM∙ha-1) 2.8 2.7

Not harvested biomass (tDM∙ha-1) 10.9 8.2

TRAGSA biomass estimation (tDM∙ha-1) 13.7 10.9

Field sampling results (tDM∙ha-1) 18.3 15.3

Biomass estimations (tDM∙ha-1):

   Equation 1 14.3 11.8

   Equation 3 15.5 7.0

   Equation 4 21.5 16.9

   Equation 5 19.6 13.6

Table 3. Harvesting trial results with a harvester-baler (Biobaler 
WB55) in two rockrose (Cistus laurifolius L.) shrublands in So-
ria (Spain) [TRAGSA, S.A. (2017)] compared to biomass sam-
pling results and estimations using Eq. 1, 3, 4 and 5
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Greaves et al., 2016; Zhao et al., 2021). Optical data 
could also be considered as an alternative to develop a 
more cost-effective biomass-inventory solution when 
LiDAR data is unavailable free of charge. Chen et al. 
(2018) evaluated the capacity of Landsat data to predict 
shrub biomass in a semi-arid ecosystem of China with 
successful results (R2= 0.88), although a shrub mask was 
initially created to limit the application of the model. In 
this sense, the generation of shrub cartography products 
along with fuel variables of the canopy, derived from Li-
DAR data, could also be of great importance for the ge-
neration of fuel-model maps (Marino et al., 2016). The 
accurate filtering of the LiDAR points cloud into ground 
and shrub points hinder the use of LiDAR data for shrub 
biomass estimation (Montealegre, 2017). This could ex-
plain the poorest performance of Eq. 3 in the study area 
3 (Table 2), as suggested by a dry biomass mean va-
lue below the confidence interval of the field sampling  
estimation. Study area 3 is characterized by smaller shru-
blands with lower mean height values which could lead 
to a greater confusion between ground and shrub points, 
and thereby, producing a lower quality DEM. In this sen-
se, higher LiDAR data density could overcome this pro-
blem resulting in more accurate predictions (Estornell et 
al., 2012). The PNOA-LIDAR program is on the verge 
of finalizing the acquisition of the second coverage with 
a higher point density which could be convenient for fur-
ther research to assess whether more accurate estimates 
are obtained. Besides point density, additional factors 
related to temporal differences between LiDAR data and 
ground data could affect the biomass estimation (McRo-
berts et al., 2016).

Regression models calibrated with LiDAR data could 
be applied to obtain wall-to-wall estimates without the 
need for field plots. In addition, the PNOA-LiDAR pro-
gram has started to develop the second coverage cam-
paign with a higher density of points, which could be 
convenient to verify whether more robust biomass values 
could be estimated. It would be advisable to carry out 
new research to analyze the combination of LiDAR with 
other sources of information, such as optical or SAR sa-
tellite imagery, that would allow better predictions. It was 
found that the addition of spectral information improved 
shrub biomass estimations (Riaño et al., 2007; Greaves  
et al., 2016).

Conclusions
The study contributes to improving aboveground roc-

krose (Cistus laurifolius L.) shrub biomass estimations 
in North-central Spain. The Weight per unit area (W,  
tDM∙ha-1) equation (Eq. 1) is based on general data that can 
be obtained from the National Forest Map of Spain, and 
offers more accurate and precise estimations than earlier 

more general studies carried out in other regions of Spain, 
especially in young and not highly lignified shrublands.

The Weight per unit area equation (Eq. 3) based on 
LiDAR and field data was developed using a methodolo-
gy capable of obtaining acceptable biomass estimations 
at a very low cost. Based on the PNOA-LiDAR second 
coverage campaign, currently under development, new 
research is needed to analyze whether other combinations 
of predictive variables could improve biomass estima-
tions.

Eq. 1 and Eq. 3, combined with high resolution Li-
DAR information, could allow estimating rockrose bio-
mass stocks in a continuous way and without additional 
field work costs over more than 175,000 ha of rockrose 
(Cistus laurifolius L.) shrublands in different regions of 
North-central Spain, in order to contribute to a sustai-
nable management of shrub formations for energy use, 
bio-based industries, and fuel modeling for assessing 
fire hazard.

.
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