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54 H. G. DÍAZ-MARÍN — O. OSUNA

Abstract

We prove existence of periodic orbits for non-autonomous two di-
mensional competitive dynamical systems with periodic time dependence.
The proof is an adaptation of a similar assertion stated for cooperative sys-
tems in [6]. We also give two main applications: one model for cancer
cell populations under periodic chemotherapy as treated in [4] and [3] for
the cooperative case, and another model for mosquito population replace-
ment dynamics interacting with control sterile mosquitoes with periodic
release [1], for the competitive case.

Keywords: competitive systems; periodic orbit; angiogenesis; cancer treatment
modeling; population replacement modeling; Aedes aegypti; Wolbachia.

Resumen

Probamos la existencia de órbitas periódicas para sistemas dinámicos
competitivos en dos dimensiones no autónomos con dependencia perió-
dica respecto al tiempo. La prueba es una adaptación de un resultado si-
milar para sistemas cooperativos en [6]. También damos dos aplicaciones:
un modelo de población de celulas cancerosas sometidas a un tratamiento
periódico de quimioterapia como se describe en [4] y [3] para el caso co-
operativo, y otro modelo de poblaciones de mosquitos interactuando con
mosquitos de control estériles liberados periódicamente [1], para el caso
competitivo.

Palabras clave: sistemas competitivos; órbita periódica; angiogénesis; mode-
lado de tratamientos de cáncer; modelo de reemplazo de población; Aedes ae-
gypti; Wolbachia.

Mathematics Subject Classification: 34C25, 37C60, 37C10, 92D25, 92C50.

1 Introduction

Cooperative systems and competitive systems arise in the study of the interaction
of two or more species. They share many qualitative properties such as the fact
that the dynamics on limit sets can be reduced to (n − 1)−dimensional cells,
this was observed by Smale, see [5]. They have important differences as well.
On one hand cooperative systems preserve the ordering of the initial conditions
induced by the first quadrant cone, its flow also preserves this cone, see [5].
On the other hand, for competitive systems in three-dimensions, the flow does
not preserve the ordering of initial conditions. This flow rather preserves the
union of three different partial orderings, see [7].
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SOME APPLICATIONS OF PERIODIC ORBITS FOR COMPETITIVE SYSTEMS 55

Fortunately, for two-dimensional competitive systems there exists a suitable
partial ordering preserved by the flow. We exploit this fact and adapt results
due to Korman on the existence of periodic orbits arising between super- and
sub-solutions, see [6].

One of the applications is a model, obtained by standard pharmacological
kinematics arguments, that describes the dynamics of periodic doses in chemother-
apy for cancer cell populations. In principle the two dimensional system (13) is
neither competitive nor cooperative. Nevertheless, by a suitable change of va-
riables, it becomes cooperative, see (14) below. In a previous work, see [2],
we have described dynamics of cancer therapies such as radiotherapy, by using
cooperative systems.

Another important application that illustrates our results is related to pre-
vention models for the control Aedes aegypti mosquitoes, which are important
vectors for several periodic diseases spread worldwide. Here we can describe
the dynamics of mosquito populations competing with sterile mosquito popula-
tions released periodically. These control population is previously infected with
Wolbachia bacteria. The competitive system with some conditions on the pa-
rameters yields a periodic orbit. We also describe some conditions for an orbit
to converge to a periodic orbit.

2 2D competitive systems

Along this section we present the suitable adaptations of the results developed
in [6] for the case of competitive systems.

Define the sud-est or (IV)-partial order as follows: For every u = (u1, u2),
v = (v1, v2) ∈ R2, we say that u ≤IV v, if u1 ≤ v1 and u2 ≥ v2. If u 6= v we
write u <IV v. If u1 < v1 and u2 > v2, then we write u �IV v. This partial
order is explicitly defined in [7].

Consider a system

ẋ = f(t, x(t), y(t)),

ẏ = g(t, x(t), y(t)),
(1)

where f, g are C1 in an open D ⊂ R2 and continuous T -periodic functions on t.
Recall that (1) is said a competitive system in R×D if

fy(t, x, y) ≤ 0, and gx(t, x, y) ≤ 0, ∀ t ∈ R, (x, y) ∈ D. (2)

for a brief introduction to competitive systems see [7, 5].
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We say that a pair of T -periodic differentiable functions (a(t), b(t)) is a
(IV )-sub-solution pair of (1) if

ȧ ≤ f(t, a(t), b(t)),

ḃ ≥ g(t, a(t), b(t)), for all t.
(3)

Analogously a pair of T -periodic differentiable functions (A(t), B(t)) is a (IV )-
super-solution pair if

Ȧ ≥ f(t, A(t), B(t)),

Ḃ ≤ g(t, A(t), B(t)), for all t.
(4)

We say that sub- and super-solution pairs are ordered if for all t we have a(t) <
A(t) and b(t) > B(t), i.e. if (a(t), b(t))�IV (A(t), B(t)).

Lemma 2.1 Suppose that (a(t), b(t)) �IV (A(t), B(t)) are a sub- and super-
solution pairs. Then the flow of competitive system (1) preserves the order�IV.
That is, if a solution (x(t), y(t)) has initial condition such that

a(0) < x(0) or y(0) < b(0), and

x(0) < A(0), or B(0) < y(0),
(5)

i.e. if (a(0), b(0))�IV (x(0), y(0))�IV (A(0), B(0)). Then

(a(t), b(t))�IV (x(t), y(t))�IV (A(t), B(t)), ∀t ≥ 0, (6)

in other words,

a(t) < x(t) < A(t),

B(t) < y(t) < b(t).

This claim appears for instance in [5], although it only mentions that compet-
itive systems for unrelated initial conditions solutions remain unrelated in time.
Here unrelated refers to the partial order of cooperative systems. We adapt the
proof of [6].

Proof of Lemma 2.1. To see this define w(t) := x(t)− a(t), so that

ẇ = f(t, x, y)− ȧ

= f(t, a, b)− ȧ+ ∂xf
(
t, xθ0 , yθ0

)
(x− a) + ∂yf

(
t, xθ0 , yθ0

)
(y − b)

≥ ∂xf
(
t, xθ0 , yθ0

)
(x− a) + ∂yf

(
t, xθ0 , yθ0

)
(y − b) = pw + qz
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SOME APPLICATIONS OF PERIODIC ORBITS FOR COMPETITIVE SYSTEMS 57

with xθ(t) = θx(t) + (1− θ)a(t), yθ(t) = θy(t) + (1− θ)b(t), ∀θ ∈ [0, 1], and
where z(t) := y(t)− b(t) and q(t) ≤ 0. Analogously,

ẇ ≥ pw + qz, w(0) > 0,

ż ≤ rw + sz, z(0) < 0,
(7)

where r(t) ≤ 0. Hence, for µ(t) = e−
∫ t p > 0, ν(t) = e−

∫ t s > 0, we have

d

dt
(µw) ≥ µqz, d

dt
(νz) ≤ νrw.

We claim that w is monotone increasing with w(0) > 0 and that z is monotone
decreasing with z(0) < 0. We proceed by contradiction.

Suppose that t0 := inf{t > 0 : w(t) < 0} ≥ 0. Then there exists an
interval (t0, t0 + ε), where w(t), ẇ(t) < 0. Hence

µ̇w > µẇ + µ̇w ≥ µqz, ∀t0 < t < t0 + ε.

Therefore 0 > qz + pw. Suppose that z(t) ≤ 0. Since q ≤ 0, then 0 > pw.
Hence p > 0. Thus 0 > qz. This yields a contradiction z(t) > 0.

On the other hand, suppose that z(t) > 0 for every t ∈ (t0, t0 + ε).
Then, for t1 := inf{t > 0 : z(t) > 0} ≥ 0, we would have t1 ≤ t0. Simi-
larly we can prove that t1 ≥ t0, hence t0 = t1.

Notice that by continuity w(t0) = z(t0) = 0. By (7) we also have ẇ(t0) =
ż(t0) = 0. This would yield

ẋ(t0) = ȧ(t0), ẏ(t0) = ḃ(t0), x(t0) = a(t0), y(t0) = b(t0).

Nevertheless, for 0 ≤ t ≤ t0 we have w(t) ≥ 0 and z(t) ≤ 0. Thus, by
(7) ẇ(t) ≥ 0, and ż(t0) ≥ 0. By monotonicity, and the initial conditions,
w(0) > 0 and z(0) < 0, we reach a contradiction, namely that x(t0) > a(t0)
and y(t0) < b(t0).

We have proved that w, z are monotone increasing and decreasing respec-
tively with w(0) > 0, z(0) < 0. Therefore w(t) > 0 and z(t) < 0, for all t ≥ 0.
This proves a couple of inequalities in (6). The other couple can be proved anal-
ogously. �

The following Theorem is a direct extension of the result for cooperative
systems proved in [6] for the case of competitive systems.
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58 H. G. DÍAZ-MARÍN — O. OSUNA

Theorem 2.2 Assume that the system (1) is competitive and has (IV)-ordered
sub- and super-solution pairs (a(t), b(t)) �IV (A(t), B(t)). Then the system
has a T -periodic solution (x(t), y(t)), satisfying

a(t) ≤ x(t) ≤ A(t), b(t) ≥ y(t) ≥ B(t), ∀t ≥ 0, (8)

whenever there is no fixed point (x0, y0),

(a(0), b(0)) ≤IV (x0, y0) ≡ (x(t), y(t)) ≤IV (A(0), B(0)) (9)

such that for every sub- super-solution pair we have

a(t) ≤ x0 ≤ A(t), B(t) ≤ y0 ≤ b(t).

Furthermore, any solution of (1), with initial condition (x(0), y(0)) satisfying
a(0) < x(0) < A(0) and b(0) > y(0) > B(0), converges to the product of the
strips

(x̌(t), x̂(t))× (ŷ(t), y̌(t)) ,

where (x̌(t), y̌(t)) �IV (x̂(t), ŷ(t)) are (IV)-minimal, maximal T -periodic so-
lution, respectively.

Notice that we have added an implicit condition that does not appear explic-
itly in [6] about non-existence of certain points, in which case we could have an
attracting fixed point for every initial condition, a(0) < x(0) < A(0), B(0) <
y(0) < b(0). See an example of this phenomenon in [2].

Furthermore, another imprecise statement in [6] is that there are strict in-
equalities in the corresponding inequalities for the cooperative case as in (8).
Nevertheless, there can be some equalities as it actually happens in Theorem 4.2
and in the examples of Section 4 below.

As conclusion for the previous critics and discussion, we suggest that the
original statement in [6], should incorporate explicitly an additional hypothe-
sis, namely that there are no (x0, y0) such that one or two of inequalities in (9)
adapted for the cooperative case, for every super-solution sub-solution pair.

Our result stated in Theorem 2.2 generalizes the result given in [6] for com-
petitive systems instead of cooperative systems, that is we use the partial order-
ing, ≤IV, instead of the usual partial ordering of cooperative systems described
therein.

Proof of Theorem 2.2. We first prove the existence of periodic solutions.
Take x0 = a, y0 = b. Let x1(t), y1(t) be the T -periodic solutions of

ẋ1 +Mx1 = f1(t, x0, y0) = Mx0 + f(t, x0, y0),

ẏ1 +My1 = g1(t, x0, y0) = My0 + g(t, x0, y0),
(10)
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where M > 0 will be chosen later. On one hand we have that M(x1 − a) =
f(t, a, b) − ẋ1 ≥ ȧ − ẋ1 or d

dt(x1 − a) + M(x1 − a) =: α1(t) ≥ 0. Hence,
x1 − a ≥ 0, more explicitly,

x1(0)− a(0) =
1

eMT − 1

∫ T

0
eMsα1(s) ds ≥ 0.

On the other hand for y1 we have M(y1 − b) = g(t, x0, y0, z0) − ẏ1 ≤ ḃ − ẏ1
or d

dt(y1 − b) + M(y1 − b) =: β1(t) ≤ 0. Hence y1 ≤ b. By induction we can
consider the T−periodic solutions for n ≥ 1:

ẋn+1 +Mxn+1 = fn+1(t, xn, yn, zn) = Mxn + f(t, xn, yn),

ẏn+1 +Myn+1 = gn+1(t, xn, yn, zn) = Myn + g(t, xn, yn),

where

d

dt
(xn+1 − xn) +M(xn+1 − xn) = αn

αn = M(xn − xn−1) + f(t, xn, yn)− f(t, xn−1, yn−1),

d

dt
(yn+1 − yn) +M(yn+1 − yn) = βn

βn = M(yn − yn−1) + g(t, xn, yn)− g(t, xn−1, yn−1).

Take M + infC{∂xf(t, x, y)} > 0 and M + infC{∂yg(t, x, y)} > 0 for

C = {(t, x, y) : x ∈ [a(t), A(t)], y ∈ [B(t), b(t)], t ∈ [0, T ]}.

With this choice and because of (1) we have that fn(t, x, y) is strictly increasing
in x and monotone decreasing on y; meanwhile gn(t, x, y) is strictly increasing
in y and monotone decreasing on x. Thus

d

dt
(xn+1 − xn) +M(xn+1 − xn) ≥ 0

and
d

dt
(yn+1 − yn) +M(yn+1 − yn) ≤ 0.

Therefore xn+1 ≥ xn, and yn+1 ≤ yn. In a similar way we obtain a sequence,

(a, b) ≤IV (x1, y1) ≤IV . . . (xn, yn) ≤IV (Xn, Yn) ≤IV . . . (X1, Y1) ≤IV (A,B)
(11)

If we take the sequence of T - periodic functions

x(t) = lim
n→∞

xn(t), y(t) = lim
n→∞

yn(t), x(t) = lim
n→∞

Xn(t), y(t) = lim
n→∞

Yn(t).
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60 H. G. DÍAZ-MARÍN — O. OSUNA

Then (x(t), y(t)), (x(t), y(t)) are T -periodic. Moreover,

(a(t), b(t)) ≤IV (x(t), y(t)) ≤IV (x(t), y(t)) ≤IV (A(t), B(t))

By Cauchy convergence they are solutions of (1). This proves the existence of
periodic solutions, whenever they do not correspond to fixed points.

The non-empty set of T -periodic orbits such that

(a(0), b(0))�IV (x(0), y(0))�IV (A(0), B(0))

is totally ordered by ≤IV. Therefore we can consider, (x̌(t), y̌(t)), (x̂(t), ŷ(t)),
as the minimal and maximal T -periodic solutions respectively.

We now prove that all solutions (x(t), y(t)), such that (5) holds, are attracted
to a periodic solution. In fact we first prove that for every n ∈ N there exists
tn > 0 such that

(xn(t), yn(t))�IV (x(t), y(t))�IV (Xn(t), Yn(t)), ∀t ≥ tn. (12)

We prove for instance that (xn(t), yn(t)) �IV (x(t), y(t)) for certain t ≥ tn.
Take a non-periodic solution (x, y) of (1) and a non-periodic solution (ξ, η) of
(10) with initial conditions (a(0), b(0)). That is

ξ̇ +Mξ = Ma+ f(t, a, b), ξ(0) = a(0),

η̇ +Mξ = Ma+ g(t, a, b), η(0) = b(0),

Then by Lemma 2.1, d
dt (x− ξ) + M(x − ξ) = α1(t) > 0, while d

dt (y − η) +
M(y − η) = β1(t) < 0. Moreover, x(t) − ξ(t) > x(0) − ξ(0) > 0 and
y(t) − η(t) < y(0) − η(0) < 0. In addition d

dt(x1 − ξ) + M(x1 − ξ) = 0
therefore ξ(t) ↗ x1(t) as t → ∞. Similarly η(t) ↘ y1(t). Hence there exists
t1 > 0 such that ∀t ≥ t1,

x(t)− x1(t) = x(t)− ξ(t) + ξ(t)− x1(t) > 0,

y(t)− y1(t) = y(t)− η(t) + η(t)− y1(t) < 0.

By induction we can consider tn > tn−1 > · · · > t1 > 0, such that x(t) > xn(t)
and y(t) < yn(t) for t ≥ tn. �

3 Antiangiogenic periodic cancer therapy

As an application of the results we have till now exposed we consider the devel-
opment of tumor tissue under the hypothesis of growing vascular network inside
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SOME APPLICATIONS OF PERIODIC ORBITS FOR COMPETITIVE SYSTEMS 61

the tumor mass. Under this consideration, the maximal capacity of the cell popu-
lation K becomes a dynamical variable. This process is called angiogenesis and
has been modeled by Hahnfeldt et.al. in [4], see also references therein.

A modification of the original model appears in [3].

V̇ =− αV ln

(
V

K

)
, V > 0, K ≥ 0,

K̇ =bK − λK − dKV 2/3 − eKg(t)

(13)

This modified system happens to be cooperative under a suitable change of vari-
able. More precisely, with the change of variable V = −W it becomes cooper-
ative in the region of the quadrant II,

D = {(W,K) : W ≤ 0, K ≥ 0}

we get

Ẇ =αW ln

(
−W
K

)
, W ≤ 0, K ≥ 0,

K̇ =bK − λK − dKW 2/3 − eKg(t).

(14)

Theorem 3.1 (Existence) Assume α, λ, b, d, e > 0 and g(t) is a non negative,
non constant continuous T -periodic function. If

b > λ+ eg∗. (15)

Then there exists at least one T -periodic solution (V (t),K(t)) of (13) whose
components are positive.

Proof. For a positively invariant region where the system is cooperative we
consider

R = {(W,K) ∈ D : M ≤ K,−m ≤W ≤ 0)}

for constants 0 < m < µ :=
(
b−λ−eg∗

d

)3/2
and m < M . For a super-solution

take the fixed point solution,

Ȧ =0, A(0) = 0, (16a)

Ḃ =0, B(0) = M, (16b)

with M > 0 to be chosen; replacing in (4) we can see that the first equation in
(4) is clearly satisfied. For the second relation we need

Ḃ(t) = 0 ≥M(−λ+ b− dM2/3 − eg(t)), (17)
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62 H. G. DÍAZ-MARÍN — O. OSUNA

we choose
(
b−λ−eg∗

d

)3/2
< M , then inequality (17) is satisfied. We immedi-

ately have that these functions satisfy inequalities (4). Therefore they constitute
a super-solution in R.

For constructing a sub-solution (a(t), b(t)) in D, we take

ȧ =0, a(0) = −m, (18a)

ḃ =0, b(0) = m. (18b)

In order to satisfy both inequalities in (3), we choose 0 < m < M . Conse-
quently, (a(t), b(t)) form a sub-solution.

Therefore the main result for cooperative systems in [6] can be applied. So
there exists at least one T -periodic solution for system (13), which proves the
result. �

Till now we have proven the existence of a periodic orbit for (14) inside

R = [−m, 0]× [m,M ], 0 < m < µ.

It is possible to prove the uniqueness of the periodic orbit inside it and extend
this region for M →∞ and m→ 0.

Thus we recover the result related to for the original model [4], see also the
numerical simulations therein.

4 Mosquito population periodic replacement

A bacterium Wolbachia living only in insects has been studied as an agent for
control population of mosquito, such as Aedes aegypti, see [1]. Descendants
of an infected male mosquito Aedes and a non-infected female die early in de-
velopment. Thus infected males can be released in the environment as a tool
against mosquitoes expansion, having less negative environmental affectations
than insecticides.

We adapt the model [1] for a periodic liberation of infected males into the
environment. Thus for a time dependent Wolbachia-free mosquito population
n1(t) and an infected population n2(t) introduced in the environment, we have
a dynamical system:

ṅ1 = b1n1

(
1− sh

n2
n1 + n2

)(
1− n1 + n2

K

)
− d1n1,

ṅ2 = b2n2

(
1− n1 + n2

K

)
− d2n2 + g2,

(19)
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where g2(t) is a bacteria T -periodic periodic release rate. The other constant
parameters (bi, di), i = 1, 2, are the birth and death rate of each subpopulation,
while sh ∈ [0, 1], encodes the cytoplasmatic incompatibility rate and K > 0 is
the maximal mosquito population capacity.

Lemma 4.1 If 0 ≤ sh ≤ 1, then the system (19) is competitive in the first quad-
rant, n1 ≥ 0, n2 ≥ 0.Moreover, the subregionD with n1 ≤ (1−d1/b1)K, n2 ≤
K in the first quadrant is positively invariant and every initial condition in the
first quadrant eventually reaches D.

As an application of our result for competitive systems we prove the ex-
istence of periodic evolution of two populations for certain conditions on the
parameters. This is contained in the following assertion.

Theorem 4.2 Assume b1, b2, d1, d2,K > 0, 0 ≤ sh ≤ 1, are constants and
g2(t) is a non-negative continuous T -periodic function. If b1 ≥ d1 and g∗2 =
max[0,T ] g2(t) ≤ d2K, then there exists at least one T -periodic solution in D of
(19) with vanishing Wolbachia-free population n1 ≡ 0. Moreover, if

g2∗ ≥ (d2 − b2/4)K (20)

with g2∗ = min[0,T ] g2(t), then every initial condition in the first quadrant con-
verges towards this periodic orbit which is a global attractor.

Proof. For a super-solution pair take the fixed point solution,

Ȧ = 0, A(0) = M, (21a)

Ḃ = 0, B(0) = 0, (21b)

for some sufficiently small 0 ≤ M ≤
(

1− d1
b1

)
K. For constructing a sub-

solution (a(t), b(t)), we take

ȧ = 0, a(0) = 0, (22a)

ḃ = −d2b+ (b2K/4 + g2), b(0) = b0. (22b)

where

b0 =
1

ed2T − 1

∫ T

0
ed2s(b2K/4 + g2(s)) ds,

b = b0e
−d2t + e−d2t

∫ t

0
ed2s(b2K/4 + g2(s)) ds.
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64 H. G. DÍAZ-MARÍN — O. OSUNA

Therefore Theorem 2.2 applies, so there exists at least one T -periodic solu-
tion for system (19). Moreover, since M → 0 yields a super-solution then in the
limit, there exists a unique periodic orbit of the form

(0, n2(t)), t ∈ [0, T ].

To prove stability, notice that any initial condition

0 < n1(0) < K, 0 < n2(0) < b0

converges towards the periodic orbit. Thus if condition (20) holds, then b0 ≥ K
and every orbit in D and outside D converges towards the a unique periodic
orbit. �

Condition (20) may be refined to the condition

b0 ≥ K (23)

and by the same arguments we can prove global stability. Notice that (20) yields
a useful bound for the minimal resources employed in the replacement, which
warranties elimination of Wolbachia-free mosquito population.

For instance we may give other useful criteria if we consider the mean amount
of liberated infected population per period, g2 =

∫ T
0 g2(s) ds/T . In this case,

b0 ≥ K is implied by the following condition

g2
ed2T − 1

+
TKb2

4
≥ d2K

On the other hand, if condition (20) is not true, then maybe b0 < K. Thus, for
n2(0) < b0 the initial amount of Wolbachia-infected mosquitoes yield vanishing
Wolbachia-free population, n1 → 0. While for n2(0) > b0, there is no warranty
that Wolbachia-free mosquitos will die. This counterintuitive behaviour may
be explained by the relatively big size of n2 with respecto to n1 which makes
population n2 to have weak effect on the logistic grow of n1.

Example 1. Take for instance b1 = 0.8, b2 = 0.6, d1 = 0.27, d2 = 0.3, sh =
0.8, and K = 1 as in [1]. Take g2 = 0.09(2 + sin(2πt)). Here g2∗ = 0.09. Con-
dition (20) does hold. The conclusion of Theorem 4.2 can be adopted. In Figure
1 we show numerical evidence with Mathematica supporting the existence of
a stable limit cycle. We also have, n1 → 0 for every initial condition.
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Figure 1: Plot of the solutions in phase space (n1, n2) for several initial conditions
(n1(0), n2(0)) ∈ {(0.5, 0.2), (10, 1), (1, 10)}.

Example 2. Modify example 1 by d2 = 30 and g2 = 0.9(2 + sin(2πt)).
Here condition (20) does not hold. Numerical evidence suggest that a there may
exist several distinct limit cycles, see Figure 2. In particular there may exist
initial conditions for which Wolbachia-free population does not vanish. Here
b0 ≈ 0.05898 < K and condition (23) is not true.
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Figure 2: Plot of the solutions in phase space (n1, n2) for several initial conditions
(n1(0), n2(0)) ∈ {(0.01, 0.01), (1, 1), (0.1, 1)}. There seems to be at least
two limit cycles (there is a scale factor 10−1 in n2).

Example 3. Modify example 1 by d2 = 0.03. In this case (20) does hold,
but Theorem 4.2 can not be applied. Nevertheless, numerical evidence suggest
that there exists a global attractor which is limit cycle for which n1 → 0, see
Figure 3. Here b0 ≈ 64.9 > K.

5 Outlook

Along this work we have extended the results of [6] from cooperative to compet-
itive systems. Some existence results may be obtained in the case of competitive
systems. There remains the question of estimating the number of periodic cycles
existing when there is no unicity. Implications of different limit cycles for non
vanishing Wolbachia-free n1 population can also be of biological interest.
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Figure 3: Plot of the solutions in phase space (n1, n2) for several initial conditions
(n1(0), n2(0)) ∈ {(0.8, 0.1), (0.25, 2.5), (1, 0.1)}. There seems to be a
global attracting limit cycle.
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