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Abstract

We discuss stability and growth of the solutions of an autonomous scalar difference
equations. We determine the exact rates of decay and growth of the solutions when
autonomous difference equation has a polynomial nonlinearity.
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Resumen

Se discute sobre la estabilidad y crecimiento de las soluciones de ecuaciones au-
tónomas escalares en diferencias. Determinamos las tasas exactas de decaimiento y
crecimiento de las soluciones cuando un ecuación autónoma en diferencias tiene una
no linealidad polinomial
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1 Introduction

Due to the numerous applications the problems of stability for difference equations have
been extensively studied in recent years. Appropriate references can be found e.g. in
[1, 2, 3, 4] .

In this paper we study convergence to the equilibrium or to infinity for non-linear
difference equations. This equilibrium can be taken to be zero, without loss of generality.
In this difference equation, linearization of the equation close to the equilibrium does not
determine the asymptotic behavior, because the terms which depend on the state of the
system are o(x) as x → 0. As a consequence of the fact that the equation admits a trivial
linearization at the equilibrium, which can yield only a weak restoring force towards the
equilibrium, it must be suspected that the convergence of the difference equation to its
equilibrium cannot take place at an exponentially fast rate. For autonomous difference
equation with polynomial nonlinearity at the origin we obtain exact decay rate.

We also study convergence of solutions of non-linear difference equations to infinity.
When the terms which depend on the state is o(x) as x → ∞ and decreases polynomially,
we obtain exact rate of growth of the solution.

The paper is organized as follows: in Section 2 we discuss stability and infinite growth
of the solution of nonlinear difference equation. Section 3, which is subdivided into two
subsections, is devoted to the exact polynomial rates of decay and growth of the solution.
In Section 4 we present examples and show some numerical simulations which illustrate
our results.

2 Stability and infinite growth

We consider equation

xn+1 = xn(1 − f(xn)), n = 0, 1, . . . , (1)

with arbitrary initial condition x0 ∈ R and continuous function f : R → R.

Theorem 1. Let xn be a solution to equation (1).

• (a) If there is any u∗ ∈ R such that 0 ≤ f(u) < 2 when |u| < |u∗|, and f(u) =
0 ⇒ u = 0, then limn→∞ xn = 0 for any initial condition x0 such that |x0| < |u∗|.
Furthermore, if 0 ≤ f(u) ≤ 1 ∀u ∈ (−u∗, u∗), then the solution does not change
sign, while if 1 < f(u) < 2 ∀u ∈ (−|u∗|, |u∗|), then the solution oscillates.

• (b) If there is any u∗ ∈ R such that i) f(u) > 2 ∀u ∈ (−|u∗|,∞) ∩ (|u∗|,∞),
or ii) f(u) < 0 ∀u ∈ (−|u∗|,∞) ∩ (|u∗|,∞), then limn→∞ x2

n = ∞ for any initial
condition x0, |x0| ≥ |u∗| and the solution oscillates in case i) and does not oscillate
in case ii).

Proof. We are going to prove just part of item (a), namely that limn→∞ xn = 0. The rest
of the proof is quite straightforward, and can be obtained by applying Theorems 1.12 (see
[1], page 22) and Theorem 7.9 (see [1], page 302, or [3]).
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We square both parts of equation (1) and get

x2
n+1 = x2

n(1 − 2f(xn) + f2(xn)). (2)

We set
F (v) = 2f(v) − f2(v), v ∈ R, (3)

and write equation (2) as

x2
n+1 = x2

n(1 − F (xn)), n = 0, 1, . . . . (4)

For every n ∈ N we have

x2
n+1 = x2

0 −
n∑

i=0

x2
i F (xi) ≤ x2

0. (5)

Suppose that there is a number c0 > 0 and a sequence {nk} such that x2
nk

> c0. We define

K(n) = number of members of sequence {nk} ≤ n,

and note that K(n) → ∞ when n → ∞. Since by (5) x2
nk

≤ x2
0, the hypotheses of part (a)

imply that there are numbers b0 > 0 and e0 > 0 such that f(xnk
) ≥ b0 and 2−f(xnk

) ≥ e0.
Therefore

n∑

i=0

x2
i F (xi) ≥

∑

i:ni≤n

x2
ni

F (xni) ≥ e0b0c0

∑

i:ni≤n

1,

which implies that x2
n+1 ≤ x2

0 − e0c0b0K(n) → −∞, when n → ∞. The contradiction
obtained proves that limn→∞ xn = 0.

3 Rates of decay and growth

To prove results on exact rates of decay and growth of the solutions we make use of the
following lemma (see e.g. [5], page 390).

Lemma 1 (Toeplitz Lemma). Let (an)n∈N be a sequence of nonnegative real numbers
and bn be a sequence of partial sums of an: bn =

∑n
i=1 ai. Let (κn)n∈N be a sequence

convergent to κ∞ as n → +∞. If bn → ∞, then

lim
n→∞

1
bn

n∑

i=0

aiκi = κ∞.

In the following subsections we take the convergence of xn → 0 (or xn → ∞) as n → ∞
as a hypothesis. We do this so that we may concentrate on the rate of decay or growth of
solutions to zero (or to infinity) when convergence takes place, and to separate hypotheses
which simply ensure convergence, from those which determine the convergence.
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3.1 Polynomial rate of decay

In this subsection we suppose that f has polynomial behavior in an open neighborhood of
zero, in the sense that there is some µ > 1 and c > 0 such that

lim
u→0

f(u)
|u|µ−1

= c. (6)

Theorem 2. Let condition (6) hold. Let x be a solution to equation (1) such that
limn→∞ xn = 0. Then, there either exists an n̄ ∈ N such that xn = 0 for all n ≥ n̄,
or

lim
n→∞

n
1

µ−1 |xn| = [c(µ − 1)]−
1

µ−1 . (7)

Proof. If xn̄ = 0 for some n̄ ∈ N, then xn = 0 for all n ≥ n̄. Suppose on the other hand
that xn 6= 0 for all n ∈ N. We define

G(u) = u
1−µ

2 , u > 0,

so that

G′(u) =
1 − µ

2
u− 1+µ

2 , G′′(u) =
µ2 − 1

4
u− 3+µ

2 , u > 0.

Let yn = G(xn): then, by taking a second–order Taylor expansion, we obtain

yn+1 = G(x2
n+1) = G(x2

n − x2
nF (xn))

= G(x2
n) + G′(x2

n)(−x2
nF (xn)) +

1
2
G′′(ηn)x4

nF 2(xn),
(8)

where F is defined by (3) and there is an ηn such that

|ηn − x2
n| ≤ x2

n|F (xn)|.

Substituting values for derivatives G′ and G′′ in (8) we arrive at

yn+1 = yn +
µ − 1

2
[
x2

n

]− 1+µ
2

+1
F (xn) +

µ2 − 1
8

η
− 3+µ

2
n x4

nF 2(xn). (9)

Since, as n → ∞,

F (xn)
|xn|µ−1

=
2f(xn) − f2(xn)

|xn|µ−1
→ 2c, and |xn|µ−1 → 0,

we obtain

lim
n→∞

[
x2

n

]− 1+µ
2

+1
F (xn) = lim

n→∞

F (xn)
|xn|µ−1

= 2c,

lim sup
n→∞

∣∣∣∣
ηn

x2
n

− 1
∣∣∣∣ ≤ lim sup

n→∞

|F (xn)|
|xn|µ−1

× |xn|µ−1 = 0,

lim
n→∞

η
− 3+µ

2
n x4

nF 2(xn) = lim
n→∞

(
F (xn)
|xn|µ−1

)2 (
xn

ηn

) 3+µ
2

x
3µ+1

2
n = 0.
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Therefore (9) implies that

yn+1 − yn → (µ − 1)c, as n → ∞. (10)

By summation and dividing by n, we get

yn

n
=

y0

n
+

1
n

n−1∑

i=0

[yi+1 − yi]

and so by using (10), and applying Lemma 1, we conclude that

yn/n → (µ − 1)c, as n → ∞.

Substituting G(x2
n) = yn, we obtain |xn|1−µ/n → (µ− 1)c as n → ∞, which rearranges to

give (7).

3.2 Polynomial rate of growth

In this section we suppose that f has a polynomial behavior at infinity: there is some
β > −1 and b > 0 such that

lim
|u|→∞

f(u)|u|β+1 = −b. (11)

Theorem 3. Let condition (11) hold. Let x be a solution to equation (1) and
limn→∞ |xn| = ∞. Then

lim
n→∞

n− 1
β+1 |xn| = (b(β + 1))

1
β+1 .

Proof. Since |xn| → ∞ as n → ∞, there exists n∗ ∈ N such that |xn| > 1 for all n ≥ n∗,
and therefore xn 6= 0 for all n ≥ n∗. Now, square both parts of equation (1) and define
F by (3). We let G(u) = u

β+1
2 , u > 0. For yn = G(x2

n) = |xn|β+1, n ≥ n∗, we obtain
recursion (8), which takes the form:

yn+1 = yn − β + 1
2

|xn|β+1F (xn) +
(β2 − 1)

8
η

β−3
2

n x4
nF 2(xn), |ηn − x2

n| ≤ x2
n|F (xn)|. (12)

From (11) we conclude that lim|u|→∞ f(u) = 0. Therefore, as n → ∞,

lim
n→∞

F (xn)|xn|β+1 = lim
n→∞

(
2f(xn) − f2(xn)

)
|xn|β+1 = −2b,

lim sup
n→∞

∣∣∣∣
ηn

x2
n

− 1
∣∣∣∣ ≤ lim sup

n→∞
|F (xn)| = 0,

lim
n→∞

η
β−3

2
n x4

nF 2(xn) = lim
n→∞

(
ηn

x2
n

)β−3
2

×
(
|xn|β+1F (xn)

)2
× |xn|−(β+1) = 0,

which together with (12) implies that yn+1 − yn → (β + 1)b, as n → ∞. Now we complete
the proof in the same way as in Theorem 2.
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4 Examples and simulation

In this section we present some simple examples which illustrate Theorems 1-3. In each
of Figures 1(a)-5(a), 5(b) below, we plot xn versus n. In each of Figures 1(b), 3(b), we
try to determine whether the theoretical asymptotic rate of decay given by Theorem 2 is
exhibited by simulations. Similarly, in Figures 2(b), 4(b), we try to determine whether the
theoretical asymptotic rate of growth given by Theorem 3 is exhibited by simulations. In
Figures 5(a)-5(b) we present the simulations of solutions, when the equation is perturbed
by random noise.

Example 1. For the equation

xn+1 = xn(1 − x2
n), n = 1, 2, . . . ,

we apply Theorem 1,(a). We simulate the solution with the initial value x0 = 1.41 (see
Figure 1(a)). Figure 1(b) suggests that

√
nxn → − 1√

2
, when n → ∞, which is consistent

with Theorem 2. The dashed horizontal line is 1√
2
≈ 0.707 units below the horizontal axis.
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Figure 1: Example 1.

Example 2. For the equation

xn+1 = xn + x−1/2
n , n = 1, 2, . . . ,

we apply Theorem 1,(b). We simulate solution with the initial value x0 = 1 (see Fig-

ure 2(a)). Figure 2(b) suggests that n−2/3xn →
(

3
2

) 2
3 ≈ 1.31, when n → ∞ as predicted

by Theorem 2. The dashed horizontal line is
(

3
2

) 2
3 ≈ 1.31 units above the horizontal axis.

Example 3. For the equation

xn+1 = xn(1 − f(xn)), (13)
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Figure 2: Example 2.

with

f(u) =

{
u4 − u12, u ∈ (0, 2

1
8 ),

− 2
u4 , 2

1
8 ≤ u,

(14)

f(−u) = f(u), we apply Theorems 1-3. When x0 = 0.9 the solution tends to zero and
n

1
4 xn → 4−1/4 ≈ 0.71 (see Figures 3(a)-3(b)), while when x0 = 1.1 the solution grows to

infinity and n− 1
4 xn → 81/4 ≈ 1.68 (see Figures 4(a)-4(b)). The dashed horizontal lines

on Figures 3(b) and 4(b) are respectively 4−1/4 ≈ 0.71 units and 81/4 ≈ 1.68 above the
horizontal axis.
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Figure 3: Example 3, x0 = 0.9.

Example 4. Consider the equation

xn+1 = xn(1 − f(xn) + hξn+1), n = 1, 2, . . . , (15)

where f is defined by (14), h = 0.6 and (ξn) are independent and identically distributed
random variables with zero mean and unit variance. We simulate solutions with x0 = 0.9
and x0 = 0.9999. Despite the fact that the noise intensity h is the same, the behavior of
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Figure 4: Example 3, x0 = 1.1.

solutions is different: xn tends to 0 in the first case and xn has tendency to grow in the
second case (see Figures 5(a)-(b)). We note that the original deterministic equation (13)
(with f defined by (14)) possesses only a local stability property: by Theorem 1, solution
xn of (13) tends to zero if |x0| < 1 and |xn| tends to infinity if |x0| > 1. Figures 5(a)-5(b)
demonstrate that when stochastic disturbances are present the situation is different: the
solution of (15) changes its behavior when the initial value is too close to unity. To the best
of our knowledge this type of result for local stability of stochastic difference equation is
not yet known. Based upon the consistency exhibited between theoretical predictions and
simulations presented here, we anticipate that for this open question, such simulations not
only help to determine the admissible level of noise, but also will provide useful guidance
in forming conjectures concerning the asymptotic behavior.
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Figure 5: Example 4; (a) x0 = 0.9, h = 0.6; (b) x0 = 0.9999, h = 0.6.

All simulations above were done with programs Mathcad and Matlab. The code was
implemented in C programming language. To generate random noise we used “rnorm”
generator of pseudorandom numbers from Matcad, which generated numbers with zero
mean and unit variance.
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