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Abstract 

Context: Approaches to logistics solutions through mathematical optimization are widely studied in the 
literature given their importance for business operations and their computational complexity. In this way, 
studying the uncertainty associated to operations is a key factor in modeling and decision-making. 

Method: A stochastic mathematical model is proposed for the Inventory Routing Problem (IRP), considering 
scenarios with variation in the demands. To obtain a suitable approach, a p-robustness approach and the 
reformulation of the classical IRP are presented.  

Results: The performed experiments show the benefits of including uncertainty through a p-robust approach 
when they are analyzed within an instance of the IRP. Moreover, given the selected modeling, the benefits of 
combining the approaches can be analyzed. 

Conclusions: The development of stochastic approaches for decision-making applied to the IRP allow analysts 
to handle uncertainty and also reduce the complexity of decision when combining different types of problems 
(Routing + Inventory) in the same model. 

Keywords: inventory routing problem, p-robustness, uncertainty 

Language: (English). 

 

 

 

Resumen 

Contexto: Las aproximaciones de soluciones logísticas a través de la optimización matemática son altamente 
estudiadas en la literatura debido a su importancia en las operaciones de las compañías y su complejidad 
computacional. En este sentido, el estudio de la incertidumbre asociada a la operación es un factor fundamental 
del modelamiento y la toma de decisiones. 

Método: Un modelo matemático estocástico es propuesto para el problema combinado de ruteo e inventario 
(IRP), considerando escenarios de variaciones en la demanda. Para obtener un enfoque adecuado, se presenta 
una aproximación de p-robusto y la reformulación del problema clásico de aplicación.  

Resultados: Los experimentos realizados muestran los beneficios de incluir la incertidumbre a través de la 
aproximación de p-robusto cuando se analizan en el marco de una instancia del IRP. También, dado el tipo de 
modelado seleccionado, se pueden analizar los beneficios de combinar las aproximaciones. 

Conclusiones: El desarrollo de aproximaciones estocásticas de toma de decisiones aplicadas al problema IRP 
permite a los analistas gestionar la incertidumbre y reducir la complejidad de las decisiones cuando se combinan 
diferentes tipos de problemas (Ruteo + Inventario) en un mismo modelo. 

Palabras clave: problema de ruteo e inventarios, p-robusto, incertidumbre 
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1. Introduction 

 

   Setting up all supply chain elements is a key factor that companies face in the short and long term (it is 
seen as a planning task). Most manufacturing and logistics companies aim to produce and/or distribute 
goods to final customers, so the role of an efficient supply chain and its distribution network is essential 
in order to guarantee profits, sustainability, and operability. In this way, the integration of decision-making 
at different levels becomes a key factor for any supply chain, and the integration of inventory routing 
decisions integrates tactical problems (inventory management) and operative problems (routing) [1]. The 
integration of both levels into decision-making is known as the Inventory Routing Problem (IRP), inspired 
by the Vendor Managed Inventory (VMI) strategy, which consists of centralizing inventory-related 
decision-making.  

   Thereupon, the IRP implies coordinating two logistic decisions (inventory + routing), whose goal is to 
minimize the overall costs generated by inventory holding costs plus routing costs over a given planning 
horizon [2]. The decisions to be taken are summarized as follows: when to deliver goods required by each 
customer, their quantities, and how to ship them all while considering several constraints such as 
allowable inventory levels and vehicle capacity [3], [4]. This model has been widely studied in the literature 
because of its importance in terms of applicability, where most of its variants deal with different practical 
issues that require designing appropriate solution methods. Most of the literature deals with deterministic 
parameters; it considers decision-makers to have complete information beforehand, but several factors 
have no deterministic behavior, which creates the need to include uncertainty in the analysis (seen as a 
degree-of-freedom factor). Now, one of the main issues that affects logistic operations over the planning 
horizon are customer demands, which induce variability/uncertainty since they are hard to estimate in 
many cases [5]. 

   This paper is organized as follows: Section 2 presents a literature review; in Section 3, the mathematical 
model of our proposal is presented; Section 4 presents the results in a practical scenario; and Section 5 
shows the conclusions of the study. 

  

2. Literature review 

 

    Several approaches deal with the classic inventory routing problem, and their main efforts are steered 
towards finding optimal solutions within reasonable computing times. One of the main approaches for 
optimally solving this deterministic problem was presented in [6], while its stochastic version is still a 
challenge. Some authors have approached solving the stochastic IRP; for instance [7] presents an approach 
for the stochastic IRP considering two uncertainty sources, demands and travel times, which were also 
considered to be stationary, where the main approach is to solve a robust version of the IRP based on a 
robust optimal distribution plan solved by a combination of optimization and Monte Carlo simulation 
methods. 

   Similarly, [8] developed two approaches for solving two IRP instances: dynamic and stochastic. In the 
dynamic version, the information is revealed for each time period (i.e., demands which are considered as 
a source of uncertainty), so decision making happens at the beginning of each period. The stochastic 
version assumes the involvement of stochastic uncertainty, which affects predictions that are used for 
decision-making before demands occur. The authors then proposed the use of several heuristics to 
analyze how a moving horizon period increases computing efforts but does not improve the optimal 
solution of the problem. 

   A multi-objective approach is developed in [9], which is based on economic performance, 
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shortage/delivery delays, and environmental footprint as three goals to be evaluated. The authors also 
considered different uncertainty sources such as the demands and transportation costs. The approach to 
modeling uncertainty is fuzzy sets and systems, which is divided into two parts: the first is the 
transformation of the proposed fuzzy mathematical model into an equivalent deterministic/crisp via a 
fuzzy possibilistic approach, while the second one corresponds to the NSGA-II (Non-Sorting Genetic 
Algorithm II). 

   In [10], the authors propose the use of Markov chains along with simulated annealing, pattern 
search/ranking, and selection procedures to evaluate near-optimal solutions. Authors also solve a 
periodical stochastic inventory model with auto correlated demands using empirical probability 
distributions. The proposed method is a simulation-based optimization approach whose results show that 
inventory performance significantly declines as autocorrelation increases and it is then disregarded. 

   An interesting IRP application of industrial gases is shown in [11], where the authors propose a 
Lagrangian relaxation method that obtains an approximate of 8% in savings.  Similarly, [12] presents an 
inventory control system with periodic review to analyze replenishment decisions by choosing an 
appropriate replenishment size with different service levels. 

   Another stochastic IRP is analyzed in [13]. The authors propose the use of the order-up-to-level policy, 
which consists of replenishing when necessary up to the top level of inventory capacity. The main 
approach here is to penalize stockouts and model the problem as a dynamic programming problem using 
a hybrid rollout algorithm, which can reduce computing time of large instances to reasonable times, thus 
constituting an improvement of the benchmark algorithms existing in the literature.    

3. Mathematical approach 

 

   The main formulation considers the same basic ideas presented by [1]-[3] handling stochastic 
uncertainty through the adaptation of the p-robustness criteria presented in [4] and [5], generating 
scenarios for modeling uncertainty such as those presented in [6]. Therefore, the mathematical model 
contemplates a set of nodes Vp={2,… , n} as the set of customers, where node “1” corresponds to the 
central depot that distributes products to the network, where, at each time period t ∈ T, there is an 
amount rtt of product available at the depot.  

   For each time period, each customer has a demand 𝑑𝑡𝑖
𝑠𝑡 that is uncertain and is modeled with the 

scenario s ∈ S. The variable 𝐼𝑖
𝑠𝑡  represents the inventory levels at the depot and the customers, where 

each has a lower (𝐿𝑖) and upper (𝐶𝑖) bound to be kept in inventory. Moreover, the depot must decide if 

there will be a delivery made by a vehicle represented by the set K, which has a specific capacity 𝑄𝑘, and 

each delivery is modeled with the variable 𝑞𝑖
𝑘𝑡. Finally, there are the binary variables 𝑋𝑖𝑗

𝑘𝑡  and 𝑌𝑖
𝑘𝑡, which 

determine if a customer is visited or not.  This model considers uncertainty mainly with a two-stochastic 
optimization approach [19], where first-stage decisions are related to selecting visiting customers, second-
stage decisions are related to inventory levels (customers/depot), and the decisions related to the amount 
of goods to be delivered to each customer per scenario. The mathematical model used is as follows: 

       

      

𝑀𝐼𝑁 𝑍 =  ∑𝑞𝑠
𝑠∈𝑆

[∑∑ℎ𝑖𝐼𝑖
𝑠𝑡

𝑡 ∈𝑇𝑖 ∈ 𝑉

+ ∑ ∑ ∑ ∑𝐶𝑖𝑗𝑋𝑖𝑗
𝑘𝑡

𝑡 ∈ 𝑇𝑘 ∈ 𝐾𝑗 ∈ 𝑉𝑖 ∈ 𝑉

] (1) 

∑∑ℎ𝑖𝐼𝑖
𝑠𝑡

𝑡 ∈𝑇𝑖 ∈ 𝑉

+ ∑ ∑ ∑ ∑𝐶𝑖𝑗𝑋𝑖𝑗
𝑘𝑡

𝑡 ∈ 𝑇

≤ (1 + 𝜌)𝑧𝑠
∗    Ɐ   𝑠 ∈ 𝑆

𝑘 ∈ 𝐾𝑗 ∈ 𝑉𝑖 ∈ 𝑉

 (2) 
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The objective function aims to minimize the expected costs made up by the inventory/holding 
and transportation costs. Said function is presented in Eq. (1) which represents the overall 
scenario. Constraint (2) enforces the p-robustness condition, which considers the optimal 
function for each scenario and a predefined p-robustness. Constraints (3) and (4) determine 
inventory levels in the depot. Eqs. (5), (6), (7), and (8) determine the upper/lower bounds of 
inventory levels for every customer. Eq. (9) represents quantities to be delivered to each 
customer given the maximum capacity allowed by Eq. (10), which also establishes a relationship 
between integer and binary variables. 

   Eq. (11) represents the fixed vehicle capacity, while (12) sets the relationship between the 

𝐼1
𝑠𝑡 = 𝐼1

𝑠𝑡−1 +  𝑟𝑡 − ∑ ∑ 𝑞𝑖
𝑘𝑡

𝑘 ∈𝐾𝑖 ∈𝑉𝑝

       Ɐ  𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (3) 

𝐼0𝑠𝑡 ≥ 0 Ɐ 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (4) 

𝐼𝑖
𝑠𝑡 =  𝐼𝑖

𝑠𝑡−1 + ∑ 𝑞𝑖
𝑠𝑘𝑡

𝑘 ∈𝐾

− 𝑑𝑡𝑖
𝑠𝑡             Ɐ  𝑖 ∈ 𝑉𝑝, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (5) 

𝐼𝑖
𝑠𝑡 ≥ 0       Ɐ  𝑖 ∈ 𝑉𝑝, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (6) 

𝐼𝑖
𝑠𝑡  ≥   𝐿𝑖          Ɐ 𝑖 ∈ 𝑉𝑝, 𝑡 ∈   𝑇, 𝑠 ∈ 𝑆 (7) 

𝐼𝑖
𝑠𝑡 ≤ 𝐶𝑖          Ɐ 𝑖 ∈ 𝑉𝑝, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (8) 

∑𝑞𝑖
𝑠𝑘𝑡

𝑘 ∈𝐾

≤ 𝐶𝑖 − 𝐼𝑖
𝑠𝑡−1          Ɐ 𝑖 ∈ 𝑉𝑝, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (9) 

∑ 𝑞𝑖
𝑠𝑘𝑡

𝑘 ∈𝐾

 ≤  𝐶𝑖∑∑𝑋𝑖𝑗
𝑘𝑡

𝑘 ∈𝐾𝑗 ∈𝑉

        Ɐ  𝑖 ∈ 𝑉𝑝, 𝑡 ∈ 𝑇 (10) 

∑𝑞𝑖
𝑠𝑘𝑡

𝑘∈𝐾

≤ 𝑄𝑘            Ɐ 𝑡 ∈ 𝑇, 𝑘 ∈ 𝐾  (11) 

𝑞𝑖
𝑠𝑘𝑡 ≤ 𝑌𝑖

𝑘𝑡𝐶𝑖          Ɐ 𝑖 ∈ 𝑉𝑝, 𝑡 ∈ 𝑇, 𝑘 ∈ 𝐾, 𝑠 ∈ 𝑆 (12) 

∑𝑋𝑖𝑗
𝑘𝑡

𝑗∈𝑉

= ∑𝑋𝑗𝑖
𝑘𝑡

𝑗∈𝑉

          Ɐ 𝑖 ∈ 𝑉𝑝, 𝑡 ∈ 𝑇, 𝑘 ∈ 𝐾 (13) 

∑𝑋𝑖𝑗
𝑘𝑡

𝑗∈𝑉

= 𝑌𝑖
𝑘𝑡         Ɐ 𝑖 ∈ 𝑉𝑝, 𝑡 ∈ 𝑇, 𝑘 ∈ 𝐾 (14) 

∑ 𝑋1𝑗
𝑘𝑡

𝑗 ∈𝑉𝑝

≤ 1       Ɐ  𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 (15) 

∑𝑌𝑖
𝑘𝑡

𝑘∈𝐾

≤ 1      Ɐ  𝑖 ∈ 𝑉𝑝, 𝑡 ∈ 𝑇 (16) 

𝑋𝑖𝑗
𝑘𝑡 ,   𝑌𝑖

𝑘𝑡   ∈   {0,1}         Ɐ 𝑖, 𝑗 ∈ 𝑉𝑝, 𝑖 ≠ 𝑗, 𝑡 ∈ 𝑇, 𝑘 ∈ 𝐾 

𝑞𝑖
𝑠𝑘𝑡 ≥ 0    Ɐ 𝑖 ∈ 𝑉𝑝, 𝑡 ∈ 𝑇, 𝑘 ∈ 𝐾, 𝑠 ∈ 𝑆 

 

(17) 
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amount of products delivered, the capacity, and a binary variable that activates if a customer is 
visited. Flow constraints are shown in (13), and the relationship between the two binary 
variables is presented in (14). Finally, routing constraints are presented in (15) and (16), and 
(17) sets up the nature of delivering quantities. To get a better understanding of the problem, 
Fig. 1 presents a graphical description. The example is composed of four different time periods, 
where a delivery decision must be made for each customer (five in total, as represented by the 
blue circles). Each customer has their own inventory level constraints (maximum and minimum, 
represented by the bar) which must be fulfilled. For each time period, from the depot, it must 
be decided if a replenishment must be done (and the routing process), considering that demand 
over each time period is stochastic (thus, it is not known beforehand). 

 

 

Fig. 1. Description of the problem under study 

 

3.1. P-robustness description 

    The p-robustness approach [4] is based on a probability-based robustness measure, which is 
the deviation of a feasible solution provided by a scenario to the global optimal solution. This 
method proposes the combination of the benefits of stochastic and robust optimization models 
by the minimization of the expected costs and the min-max cost or regret. The approach then 
uses a set S of scenarios, where X is a feasible solution of the mathematical model, and a 
solution is deemed to be robust if the following constraint is guaranteed: 

 
𝑧𝑠(𝑋)− 𝑧

∗
𝑠

𝑧∗𝑠
≤ 𝜌 

(18) 

 

   where 𝑧𝑠
∗ is the optimal objective function for each scenario s ∈ S; 𝑧𝑠(𝑋) is the objective 

function of a feasible solution X; and 𝜌 is the desired robustness level or maximum allowable 
regret. To solve the problem, it is mandatory to have the optimal values of each scenario, which 
are solved as single deterministic problems. The left part of the equation corresponds to the 
relative regret for each scenario, where the combination of the 𝜌-robustness version (or 
constraint) with the minimization of the expected cost (as objective function) generates the 
stochastic 𝜌-robustness measure. 

4. Experimentation and results 

 
The mathematical model presented in section 3 is tested with the modification of instances 

presented in different studies [4], [15], [20], considering the scenario generation presented by 
[18].  In this case the scenarios generated are 20, and they aim to analyze the variability of 

𝑑1 
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demand, where the model is solved using FICO-Xpress-MP v. 12.1. The analyzed instance has 
the reference “abs1n5_HC3”, which is composed of 6 customers that have different values of 
demand over three time periods of the planning horizon (the deterministic version has 65, 35, 
58, 24, and 11 units of demand, respectively), and the scenarios are generated according to the 
behavior of the deterministic demand given variations of ± 20%. The capacity of each vehicle is 
fixed to 289 units, and the amount of product available at the depot corresponds to 193 units. 
In this sense, in Fig. 1, we present the results for a single instance contrasting the variation of 
the objective function in terms of the p-robustness parameter. 

 

 

Fig. 2. Variation of the objective function in terms of the p-robustness value 

 

   Fig. 2 shows that analyzing the trade-off between the p-robustness and the objective function 
(which measures the overall logistic costs) shows that, as the p-robustness value increases, the 
overall objective function decreases. This means that decision-makers can achieve cost 
reductions by choosing higher values of the p-robust parameter. In order to analyze the 
behavior of the obtained solution and regret for different scenarios, we have presented the 
results in Table I, where the first column corresponds to the uncertainty scenario, the second 
column is its optimal value, and the third column is the regret. 

 

 

Table I. Regret over scenarios 

Scenario O.F Regret 

1 2.023,9281 0,7628 

2 2.301,7102 0,4235 

3 1.983,5125 0,5649 

4 2.096,5508 0,7825 

5 2.224,9500 0,7207 

6 2.351,1462 0,7047 

7 2.064,4355 0,4654 

8 1.965,1252 0,2361 

1600

1650

1700

1750

1800

1850

1900

1950

2000

0,05 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 0,95 0,99
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9 2.352,8536 0,3342 

10 1.943,7287 0,4465 

11 2.087,4798 0,4078 

12 2.166,7138 0,1340 

13 1.965,8118 0,2151 

14 2.110,1409 0,4687 

15 2.350,2671 0,2974 

16 2.094,8021 0,4025 

17 2.361,5050 0,8206 

18 2.296,7829 0,4072 

19 2.007,2951 0,3264 

20 2.300,3686 0,3024 

 

   Table 1 shows the overall performance of the regret in every scenario of the optimization 
model. Roughly speaking, the obtained values are in some cases greater than those obtained 
by the deterministic model due to the uncertainty of the delivered quantities and the demand 
used in each scenario. On the other hand, as the regret obtained in different scenarios is 
somehow small, this model allows analysts to obtain robust solutions in order to deal with 
uncertain demands and manage logistic costs composed of the inventory holding and routing 
costs. 

 

5. Conclusions 

 

   In this paper, we have presented a mathematical model approach for the Inventory Routing 
Problem with demand uncertainty, where the modeling is carried out through the use of the p-
robustness criteria, which minimizes the worst-case cost or regret and combines the two 
objectives by minimizing the expected cost while bounding the relative regret in each scenario 
of uncertainty. The mathematical model contemplates a single-depot and single product but 
considers several customers within a planning horizon with variations in the demand. The 
experiments performed allow us to analyze the trade-offs obtained with the objective function 
contrasted with the parameter of the approach selected. To solve the proposed approach, the 
p-robustness model requires that several mathematical models are solved (given the number 
of scenarios) for using this information in the general version as a parameter for building the p-
robustness criteria (Constraint (2)).  

   This model can be extended to perform different analyses and increase the complexity of 
decisions; the impacts of several depots and products can be analyzed, and different types of 
sources of uncertainty can be considered, such as the transportation and inventory costs and 
the heterogeneity of vehicles. On the other hand, different methods for solving bigger instances 
can be proposed, such as heuristics, metaheuristics, or matheuristics, given the computational 
complexity of the basic problem, which is increased by the uncertainty. 
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