
'

&

$

%

Research

An Approach from Software Engineering to an IoT
and Machine Learning Technological Solution that
Allows Monitoring and Controlling Environmental
Variables in a Coffee Crop
Un enfoque desde la ingeniería de software a una solución
tecnológica de IoT y aprendizaje automático que permita
monitorear y controlar las variables medioambientales en un
cultivo de café
William Ruiz-Martínez 1, Arnaldo Andrés González-Gómez 1

1Corporación Unificada Nacional de Educación Superior (Bogotá, Colombia).
correspondence e-mail: william_ruizmar@cun.edu.co, arnaldo_gonzalez@cun.edu.co

Recibido: 15/08/2021. Modificado: 27/08/2021. Aceptado: 15/09/2021.'

&

$

%

Abstract
Context: Software engineering allows us to approach software design and development from the practi-
cal application of scientific knowledge. In the case of this IoT solution and the machine learning approach
to the monitoring and control of environmental variables in a coffee crop, it allows us to visualize certain
artifacts of the system in their interaction with users and their behavior with other artifacts or devices
that constitute a technological solution.
Method: For this work, the application of software engineering from a conceptual approach and the
behavior of the system is proposed. To meet these objectives, we decided to use the Unified Mode-
ling Language (UML) in such a way that the most important components of the technological solution
could be represented from a static perspective through the use case diagrams, as well as from a dynamic
viewpoint through the sequence diagrams.
Results: Through the application of the UML, it was possible to develop the conceptual and behavioral
modeling of certain artifacts and components. This knowledge allowed identifying the interaction bet-
ween physical components and devices (machine to machine) and human-machine interaction, that is,
the relationship between users and the processes that make up the technological solution.
Conclusions: Through software engineering, and more specifically the UML, we were able to establish
the importance of knowing the different software artifacts that make up a system or application from a
different technical and functional approach, while being able to collect valuable information about the
behavior of certain system artifacts, as well as the interaction between users and processes.
Keywords: Internet of Things, machine learning, computer application, UML, static views, dynamic
views, conceptual modeling, behavioral modeling
Language: English

�

�

�

�
Cite this paper as: Ruiz Martinez, W, Gonzalez Gomez Arnaldo Andres. An approach from the software engineering of
an IoT and machine learning technological solution that allows monitoring and controlling environmental variables in a
coffee crop. INGENIERÍA, Vol. 26, Num. 3, 2021. 465:478. © The authors; reproduction right holder Universidad Distrital
Francisco José de Caldas. https://doi.org/10.14483/23448393.18495

INGENIERÍA • VOL. 26 • NO. 3 • ISSN 0121-750X • E-ISSN 2344-8393 • UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS 465

https://orcid.org/0000-0001-9617-9348
https://orcid.org/0000-0003-1609-7516
https://creativecommons.org/licenses/by-nc-sa/2.5/co/
https://doi.org/10.14483/23448393.18495


An Approach from Software Engineering to an IoT and Machine Learning Technological Solution

'

&

$

%

Resumen

Contexto: La ingeniería de software nos permite abordar el diseño y desarrollo de software desde
la aplicación práctica del conocimiento científico. En el caso de esta solución de IoT y el enfoque de
aprendizaje automático en el monitoreo y control de las variables medioambientales en un cultivo de
café, nos permite visualizar determinados artefactos del sistema en su interacción con los usuarios y en
el comportamiento con otros artefactos o dispositivos que integran una solución tecnológica.
Método: Para el presente trabajo, se plantea la aplicación de la ingeniería del software desde un enfoque
conceptual y del comportamiento del sistema. Para cumplir con estos objetivos se optó por emplear el
lenguaje unificado de modelado (UML) de forma tal que se pudieran representar los componentes más
importantes de la solución tecnológica desde una perspectiva estática a través de los diagramas de casos
de uso y desde el punto de vista dinámico a través de los diagramas de secuencia.
Resultados: Mediante la aplicación del UML, fue posible desarrollar el modelamiento conceptual y del
comportamiento de ciertos artefactos y componentes. Este conocimiento permitió identificar la interac-
ción entre componentes y dispositivos físicos (máquina a máquina) y la interacción hombre-máquina, es
decir, la relación entre usuarios y procesos que componen la solución tecnológica.
Conclusiones: A través de la ingeniería de software y más específicamente del UML, pudimos estable-
cer la importancia de conocer los diferentes artefactos que componen un sistema o aplicación desde un
enfoque técnico y funcional diferente, pudiendo recopilar información valiosa sobre el comportamiento
de ciertos artefactos del sistema, así como de la interacción entre usuarios y procesos.
Palabras clave: Internet de las cosas, aprendizaje automático, aplicación informática, UML, vistas
estáticas, vistas dinámicas, modelamiento conceptual, modelado del comportamiento
Idioma: Inglés

1. Introduction
Many times, we have wondered why software engineering is so important today; we cannot igno-

re the potential growth of the software industry at a global level. But how can we define software
engineering? Let us take some valuable definitions from experts on the subject. According to [1],
software engineering is the study of the principles and methodologies for the development and
maintenance of software systems.

In another definition given by [2], the author defines software engineering as the practical ap-
plication of scientific knowledge to the design and construction of computer programs and the
associated documentation required to develop, operate, and maintain them. This is also known as
software development or software production. It is the application of a systematic, disciplined, and
quantifiable approach to the development, operation, and maintenance of software, that is, the ap-
plication of software engineering [3].

By analyzing the above, we can develop our own definition and establish that software enginee-
ring is actually a discipline or area that is responsible for generating a series of methodologies or
guidelines to develop the life cycle of the software, regardless of the adapted or implemented met-
hodology, but always seeking to comply with each of its phases or stages through deliverables or
documentation that allows supporting the functionality or interaction of an artifact or system com-
ponent with other components or roles of the same system or, in certain cases, with subsystems or
external systems as needed.

466 INGENIERÍA • VOL. 26 • NO. 3 • ISSN 0121-750X • E-ISSN 2344-8393 • UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS



Ruiz Martinez, W • Gonzalez Gomez, A.

More specifically, we want to delve into aspects such as conceptual modeling and system beha-
vior while using the Unified Modeling Language (UML). According to [4], UML is a standard that
has been adopted internationally by numerous organizations and companies to create schematics,
diagrams, and documentation related to software development (informatic programs).

According to [5], UML is the combination of three different methodologies developed by its
creators, who aim for the user to understand the reality of the implemented technology, as well as
giving them the possibility to make decisions before investing large amounts of money and time in
projects if they are not sure about their development, and much less in the construction of artifacts
that will constitute said model.

Considering the above, we can conclude that UML is a standard for the construction of software
models that allows knowing the operation of certain artifacts or components of a software deve-
lopment, as well as the interaction that said components or artifacts may have with the users of
the system, with other devices or artifacts, with subsystems of the same system, or even with other
external systems.

This article presents the application of software engineering regarding the lifting of functional
and non- functional requirements, conceptual modeling, and the behavior of a series of artifacts
that represent certain functionalities of a technological solution based on technologies such as the
Internet of Things (IoT) for data collection and artificial intelligence techniques such as machine
learning for data analysis. Such integration of technologies seeks to monitor and control overall
performance, as well as the performance of certain environmental variables that have an impact
on a coffee crop and its production. It should be clarified that we do not intend to publicize the
operation of the solution from the perspective of its technical or technological characteristics, but,
as previously expressed, to provide a perspective of the technological solution from the point of
view of its conceptual modeling and the behavior of its main artifacts or components.

In crops, especially coffee, the control of environmental variables is considered a vital aspect in
the harvest process, since the correct evaluation of variables such as temperature, environmental
humidity and soil humidity, among others, depends to a great extent on measuring the quality of
the resulting grain.

2. Materials and methods

2.1. Research methodology

For the development of this research, the following phases we can see in fig. 1:

1. Document review: In this phase, a review of different documents related to the proposed to-
pic was conducted, with the aim of establishing the artifacts or components that represent the
most prominent and important functionalities of the technological solution. Two approaches
contemplated by the UML were used: static and dynamic views.

INGENIERÍA • VOL. 26 • NO. 3 • ISSN 0121-750X • E-ISSN 2344-8393 • UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS 467



An Approach from Software Engineering to an IoT and Machine Learning Technological Solution

Figure 1. Phases of the research proposed for the development of the project

2. Survey of requirements: It is carried out in accordance with the information collected to
determine and document the functional and non-functional requirements of the technological
solution.

3. Conceptual modeling: A general use case diagram is presented, where the main processes
of the technological solution and the interactions with users or actors are visualized. Subse-
quently, sub-use case diagrams of three of the main processes and their respective documen-
tation are made.

4. Behavioral modeling: The diagrams of the behavior part of the technological solution are
elaborated. For this specific case, the construction of a component diagram and a deployment
diagram is proposed.

2.2. Description of the architecture
This section presents the architecture design of the wireless network used in the project, as well as

its components and devices. It also identifies the protocols used for communication, as can be seen
in Fig. 2. It is a wireless sensor network (WSN), which is made up of a series of devices distributed
autonomously in a growing area. The proposed system consists of three sensor nodes, and each of
these nodes consists of a Lucy3 programmable card, to which a temperature and humidity sensor
and a soil humidity sensor are connected. Each node is located at a distance of 100 linear meters
from each other, covering a total area of 300 linear meters of coffee crops. The nodes communi-
cate with each other wirelessly via the ZigBee protocol of the modules (Xbee Module) installed
in each one. They also communicate with the Gateway, which is responsible for complementing

468 INGENIERÍA • VOL. 26 • NO. 3 • ISSN 0121-750X • E-ISSN 2344-8393 • UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS



Ruiz Martinez, W • Gonzalez Gomez, A.

Figure 2. Architecture of the wireless sensor network and the cloud platforms

the information sent wirelessly with a wired network. The protocol selected for the project is the
ZigBee standard in an ISM 2.4 GHZ channel, with a transmission speed of 250 Kbps, and based on
the IEEE 802.15.4 or IEEE 802.11 (WIFI) standards or proprietary radios, which are normally 900
MHz [6]. The Zigbee protocol was selected for the project considering factors such as low device
costs, transmission distance, and low power consumption of nodes and sensors.

A Gateway is responsible for coordinating and communicating the sensor nodes with the base
station through the 802.3 standard. Finally, the data collected through the sensors is sent to a cen-
tral unit or base, where it is uploaded to the cloud platform, Ubidots, which is a very user-friendly
platform for monitoring sensors and actuators, in addition to its ease of configuration and low costs
when acquiring a charging plan and data monitoring is desired. This information is sent from the
base station for later storage and processing. Subsequently, a file in CSV format is downloaded
from this platform. This input is uploaded to the BigML platform, where it goes to the information
analysis phase and the application of the supervised learning model, which allows decision-making
regarding the behavior of the environmental variables in the crop and their corresponding corrective
measures or actions to be taken.

For the communication between sensor nodes and Gateway, we found several standards that meet
the necessary characteristics and conditions, but the ZigBee 802.15.4 protocol or standard was
selected, mostly due to economic factors. The ZigBee Alliance [7], comprises an association of
industries that work together to develop standards and products. ZigBee is the name of the specifi-
cation for a set of high-level wireless communication protocols for use in low-consumption digital
broadcasting applications, which is based on the IEEE 802.15.4 standard for wireless personal area
networks Network or WPAN. ZigBee technology is integrated into a wide range of products and
applications for commercial, industrial, and government consumers.

INGENIERÍA • VOL. 26 • NO. 3 • ISSN 0121-750X • E-ISSN 2344-8393 • UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS 469



An Approach from Software Engineering to an IoT and Machine Learning Technological Solution

2.3. System requirements

Requirements engineering allows us to know the needs of the interested parties with respect to an
information system, regardless of whether it is based on hardware components for operability or
functionality. In the same way, it is evident that hardware without software does not make any sense.

It is interesting to know the opinion of some experts on the term requirements. According to [8],
it refers to a condition or need of the user to solve a problem and achieve a goal. Another de-
finition given by [9] states that requirements are the capabilities and conditions with which the
proposed system must be identified. Likewise, [9] define it as the branch of software engineering
that deals with setting the objectives, functions, and restrictions of software systems, as well as
with the relationship between these factors in order to establish precise specifications. According
to [10], requirements engineering is the discipline in charge of developing complete, consistent,
and unambiguous specifications, which will serve as the basis for common agreements between all
parties involved, where the functions that the system will perform are also described. In general, we
can say that it is a process by which different points of view are exchanged between users, clients,
sponsors (i.e., stakeholders), and members of a development team, in order to collect and model
what and how the proposed system should perform. Likewise, this process uses a set of methods,
tools, and actors that generate a model from which a requirements document is created.

As for the technological solution to be developed, Table I shows its functional requirements,
which, according to [11], are those that express or describe the nature of the system’s operation
in relation to its environment, regardless of its implementation. They also specify how the system
should react to particular inputs and how it should behave under particular situations. In general
they determine what the system should do [12].

On the other hand, the non-functional requirements must also be considered, which can be defined
as those criteria or aspects of the system that do not have a direct relationship with its functional
behavior (how should the system interact based on indirect factors?). These requirements are also
regarded as restrictions on the services and functionalities offered by the system. According to [13],
non-functional requirements represent general characteristics and restrictions of the application or
technological solution that is being developed. Additionally, their definition tends to be difficult,
since their conformity or non-conformity could be subject to free interpretation, for which it is
advisable to accompany its definition with acceptance criteria that can be measured. Regarding the
technological solution to be developed, Table II relates the non-functional requirements.

2.4. Conceptual modeling

According to [14], conceptual modeling represents the initial phase of the development of per-
manent data design and data storage for a system. In many cases, persistent data are managed by
a relational database management system (RDBMS). In this phase or stage of the life cycle, it is a
matter of establishing how the system will perform the functionalities that were raised in the requi-
rement. In a few words, it will answer the question: how is the system going to do it? It is important
to start with an introduction to the Unified Modeling Language (UML).

470 INGENIERÍA • VOL. 26 • NO. 3 • ISSN 0121-750X • E-ISSN 2344-8393 • UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS



Ruiz Martinez, W • Gonzalez Gomez, A.

Table I. Functional requirements of the technological solution
Code Req. Name Description Priority

RF-001
The sensors must be
configured.

The sensors must be configured to
collect soil humidity, ambient
temperature, and ambient humidity
data.

Low

RF-002
The sensors must collect
data on environmental
variables.

The sensors placed in each of the
nodes that make up the wireless
sensor network (WSN) measurement
the conditions of humidity, ambient
temperature, and soil humidity in a
coffee crop every 60 seconds.

High

RF-003

The communication
module must send the
data to the Gateway or to
another node as needed.

As shown in Fig. 2, each sensor node
has a communication module based
on the Xbee protocol. This module is
in charge of sending data through the
wireless network to the Gateway or,
in a specific case, from one node to
another if necessary.

High

RF-004

The Gateway must send
the data received from
the nodes to the base
station.

Upon receiving the information from
the sensor nodes, the Gateway must
send this information to the base
station.

High

RF-005

An operating system
must be installed and
configured to receive
data from the Gateway.

In this case, TinyOs-1.x was chosen,
which is an open-source operating
system for embedded sensor
wireless networks.

Low

RF-006

It must be possible to
generate a file to be
uploaded to the Ubidots
platform.

This file should be uploaded
automatically on a daily basis in
order to store the data collected by
the sensors on the measurements
made to environmental variables
such as humidity, relative
temperature, and soil humidity.

High

RF-007

One must be able to
download a file in CSV
format in order to upload
it to the BigML platform.

Twice a week, it should be possible to
download a file in CSV format that
contains the data collected by the
sensors on the measurements
carried out on environmental
variables such as humidity, relative
temperature, and soil humidity.

Medium

RF-008
The uploaded data must
be transformed.

Once the CSV file is uploaded to the
BigML platform, a data
transformation must be performed
to generate a readable format
adapted to the subsequent
application of a learning model.

Medium

RF-009
A dataset must be
generated.

Once the transformation of the data
in the CSV file has been completed,
an already transformed dataset is
generated so that a learning model
can be applied to it.

Medium

RF-010
A learning model must be
applied, and its results
must be evaluated

With the dataset ready, the
appropriate learning model must be
applied (in this case, decision trees)
and its results evaluated.

Low

RF-011
The obtained results
must be evaluated.

The applied learning model is
evaluated, and it is determined
whether its results are adequate to
determine the validity of the learning
model.

Low

RF-012
Decision-making
procedures must be
established.

Decision-making procedures are
established according to the results
of the applied learning model.

Medium

RF-013
The application of a new
learning model must be
evaluated.

If the model was not satisfactory, we
proceed with the application and
evaluation of the results produced by
a new learning model.

Low

INGENIERÍA • VOL. 26 • NO. 3 • ISSN 0121-750X • E-ISSN 2344-8393 • UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS 471



An Approach from Software Engineering to an IoT and Machine Learning Technological Solution

Table II. Non-functional requirements of the technological solution
Code Req. Name Description Quality

RNF-001
The security of the
technological solution
must be guaranteed.

Any intruder can access the information
from a wireless sensor network because
the nodes are usually distributed in an
easily accessible environment, and security
in wireless networks is still very unreliable.
To guarantee data security, symmetric key
algorithms such as (SKE), message
authentication codes (MAC), and public
key cryptography (PKC) are proposed.

Execution

RNF-002
The scalability of the
technological solution
must be guaranteed.

The network architecture must allow
adding new nodes without affecting the
performance of the system. The initial
network consists of three sensor nodes.
Each node has several types of sensors to
collect sensitive information about the
crop under study, which covers an area of
300 linear meters, if monitoring of an area
is required. It must be taken into account
that each sensor node covers an area of
100 linear meters, in addition to requiring
repeaters to amplify the signal and avoid
noise interference or data loss due to
latency.

Evolution

RNF-003
The functionality of the
technological solution
must be guaranteed.

The nodes and their sensors must provide
a function to the technological solution
that allows measuring signal intensity, in
addition to allowing integration with other
sensors for future developments.

Evolution

RNF-004
The reliability of the
technological solution
must be guaranteed.

A technological solution with high
reliability is sought. For this reason, the
hardware used must be stable and robust,
with minimal malfunctions and long life of
its components.

Evolution

According to [15], the UML unifies, above all, the 800ch, Rumbaugh (OMT), and Jacobson
methods, but its scope will become much broader. At the moment, UML is in the process of stan-
dardization with the Object Management Group. Likewise, the author defines UML as a standard
language for building software plans. We can divide it into four basic approaches: to visualize,
specify, build, and document the artifacts of a system that involves software. In another definition
given by [16], UML is a standard that has been adopted internationally by numerous organizations
and companies to create diagrams and documentation related to software development (computer
programs). It should be clarified that, at this point, we will not focus specifically on the diagrams
and documentation of the use cases. It also seems important to know, from the point of view of
various experts on the subject, different definitions of what a use case is.

According to [17], a use case is a technique for capturing potential requirements of a new system
or software update. Each use case provides one or more scenarios that indicate how the system
should interact with the user or with another system to achieve a specific goal. Normally, in use
cases, the use of technical jargon is avoided, preferring instead a language closer to the end user.

472 INGENIERÍA • VOL. 26 • NO. 3 • ISSN 0121-750X • E-ISSN 2344-8393 • UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS



Ruiz Martinez, W • Gonzalez Gomez, A.

We intend to make an approach to the reader about the interaction of the different actors of the
system with its main processes. To this effect, we propose the presentation of the general diagram
of use cases of the proposed technological solution, which can be observed in Fig. 3.

At this point, it is important to break down two of the most important processes in the general use
case diagram. To begin with, we want to provide a detailed the process of generation and uploading
of the CSV file into the BIGML platform, which can be observed in Fig. 4.

To continue, it is very important to detail the process carried out to evaluate the results obtained
from the model, given that, in this process, it is established whether the model meets the initial
expectations for the data analysis and its relevance in the object of study. Fig. 5 shows the use case
in question.

Figure 3. Main use case diagram of the technological solution

INGENIERÍA • VOL. 26 • NO. 3 • ISSN 0121-750X • E-ISSN 2344-8393 • UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS 473



An Approach from Software Engineering to an IoT and Machine Learning Technological Solution

Figure 4. Use case CSV file generation and upload

Figure 5. Evaluation of the results obtained from the model

2.5. Behavioral modeling

As expressed by [18], behavioral modeling in software development allows determining how cer-
tain objects of the system are related and behave. These are not static as in conceptual modeling,
but rather have a dynamic behavior. Let us say that I can determine how an object is at a given
moment, for example, by sending messages between objects to know its state, which may imply
changes in state from one object to another or certain types of activities that a process performs
from its beginning to its end. In another definition given by [19], it is emphasized that the objective
of dynamic models is to present or describe artifacts that exhibit the behavior of the system over
time.

Taking this concept into account, we are interested in knowing which are the components that ma-
ke up the proposed technological solution at a physical level. For this purpose, we want to present
the deployment diagrams, which, as expressed by [20], allow us to represent the hardware structure
where our software system will be. To this effect, we can represent each component as nodes. A
node is any element that is a hardware resource, that is, it is the generic name for our equipment.
Fig. 6 shows the proposed deployment diagram for the technological solution.

474 INGENIERÍA • VOL. 26 • NO. 3 • ISSN 0121-750X • E-ISSN 2344-8393 • UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS



Ruiz Martinez, W • Gonzalez Gomez, A.

Figure 6. Technological solution deployment diagram

3. Results

We were able to determine the importance of knowing, in an organized and detailed way, the
functional and non- functional requirements of a technological solution, since the adequate elabo-
ration and documentation of these requirements depends on subsequent phases of the life cycle that
continue to work correctly, in line with the objective of the proposed solution.

Through the general use case diagram, we were able to establish the main processes of the pro-
posed technological solution, as well as each of the related actors in each of these processes. This
vision is of utmost importance to determine that the functional requirements of the system are fulfi-
lled in accordance with what is requested by the interested parties of the project. Likewise, the use
sub-cases allowed knowing each of the different sub-processes involved in the project, such as the

INGENIERÍA • VOL. 26 • NO. 3 • ISSN 0121-750X • E-ISSN 2344-8393 • UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS 475



An Approach from Software Engineering to an IoT and Machine Learning Technological Solution

generation and uploading of CSV files, which constitute main input for data analysis on the BIGML
platform. Once the data is loaded there, it undergoes a transformation process into the platform’s
own formats, and then a learning model is selected and applied. In the other process, the machine
learning applied to said data was examined, and it was evaluated whether the obtained results were
in accordance with the established parameters.

On the other hand, the deployment diagram allowed us to thoroughly understand the operation of
the components, not only of the hardware, but also of the software involved in the proposed tech-
nological solution. This is of great importance to understand what happens with the data collected,
sent, and processed at a specific moment, and it allows us to have a more detailed view of each
component and its interaction in the system.

We were able to appreciate the importance of a modeling language like UML, since it allowed
examining the processes and interactions in the system from different perspectives, in addition to
identifying the relationships between users and processes.

One of the great advantages of UML is that it can be used and applied in all stages of the life
cycle of a technology system, from modeling to validation testing. Another of its great advantages
is that it is able to determine the feasibility of a proposal or project in advance, which allows us to
financially demonstrate to investors that the idea to be presented brings value to the business.

In this part of the results, we focus more on the obvious advantages of using software engineering
through UML modeling than on figures or performance statistics that are not the central object of
study. It was possible to show that the application of software engineering through UML modeling
allows showing aspects of great importance in the technological solution, such as the different ac-
tors involved in the processes through use cases. In the same way, it is possible to obtain vision
of the interaction between the different hardware and software components of the solution and un-
derstand aspects such as communication between these devices.

Through the conceptual modeling of the technological solution, we were able to identify the most
relevant processes that allow us to know what is the basic operation of the solution and the Man-
Machine and Machine-machine interactions that are presented.

Equally interesting is that the reader can know, at least in general, the non-functional requirements
of the system, which are often more important than the functional requirements themselves. Table
II talks about the scalability of the solution that, for now, covers 300 linear meters, but that can be
expanded to improve the coverage of the land when deemed necessary. This principle of scalability
is very important when considering the development of an IoT solution.

4. Conclusions

It is important to know the technological aspects of a system, solution, or technological appli-
cation, but software engineering allows us to delve into more specific details and learn about as-
pects of great importance in the conceptual and behavioral modeling of a certain software artifact.

476 INGENIERÍA • VOL. 26 • NO. 3 • ISSN 0121-750X • E-ISSN 2344-8393 • UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS



Ruiz Martinez, W • Gonzalez Gomez, A.

Another aspect of great importance is being able to thoroughly understand the functional and non-
functional requirements of a system or technological solution, since, many times, by not conside-
ring non-functional requirements, highly relevant quality attributes are neglected or are not given
the adequate importance, for example, the response time of a device or server to a request, or access
to unauthorized information.

We were able to identify, at a very reduced scale, the importance of the application of software
engineering in a technological solution. On the other hand, we established the importance and great
applicability of methodologies such as UML in both static and dynamic views of a system.

References
[1] M. Rossainz-López, Diseño orientado a objetos, México D.F., México: Universidad Autónoma de Puebla, 2012.

↑466
[2] B. Boehm, “A view of 20th and 21st century software engineering,” in 28th Int. Conf. Soft. Eng. (ICSE ’06),

Shangai, China, May 2006. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
97.4717&rep=rep1&type=pdf ↑466

[3] IEEE, IEEE Guide to Software Design Descriptions, Piscataway, NJ, USA: IEEE, 1993. ↑466
[4] C. Larman, UML y patrones, Madrid: Pearson, 2003. ↑467
[5] J. Rumbaugh, I. Jacobson, and G. Booch, El lenguaje unificado de modelado: manual de referencia, Madrid:

Addison Wesley, 2000. ↑467
[6] L. Ramírez, “Diseño de una arquitectura para redes de sensores con soporte para aplicaciones de detección de

eventos,” Doctoral Thesis, Universidad Politécnica de Valencia, Valencia, Spain, 2012. https://riunet.upv.
es/bitstream/handle/10251/15152/tesisUPV3764.pdf ↑469

[7] N. D. Castro C, L. E. Chamorro F, and C. A. Viteri M, “Una red de sensores inalámbricos para la automatización
y control del riego localizado,” Revista de ciencias agrícolas, vol. 33, nº 2, pp. 106-116, Aug. 2016. http://dx.
doi.org/10.22267/rcia.163302.57 ↑469

[8] K. E Kendall and J. E Kendall, Analisis y diseño de sistemas, Mexico D.F., México: Prentice Hall, 2011. ↑470
[9] E. Rozic and S. Herzovich, UML y desarrollo de software orientado a objetos, México D.F., México: Universidad

de San Andrés, 2016. ↑470
[10] R. Yeh and P. Zave, “Specifiying Software Requirements,” Proc. IEEE, vol. 68, no. 9, pp. 1077-1085, 1980.

https://doi.org/10.1109/PROC.1980.11806 ↑470
[11] B. Boehm, “Software Engineering,” IEEE Trans. Comp., vol. 25, no. 12, pp. 1226-1241, Dec. 1976.

https://doi.org/10.1109/TC.1976.1674590 ↑470
[12] A. N. Camacho-Zambrano, “Herramienta para el análisis de requerimientos dentro de la pequeña empresa desa-

rrolladora de software en Bogotá D.C.,” Undergraduate Thesis, Pontificia Univesidad Javeriana, Bogotá D.C., Co-
lombia, 2005. http://hdl.handle.net/10554/7480 ↑470

[13] R. Pressman, Ingenieria del software un enfoque práctico, Bogotá D.C., Colombia: McGraw Hill, 2010. ↑470
[14] E. J. Naiburg and R. A. Maksimchuk, UML For Database Design, New York, NY, USA: Addison-Wesley Publis-

hing Company, 2001. ↑470
[15] M. Fewler, UML Gota a Gota, México D.F., México: Pearson Educación, 1999. ↑472
[16] C. Krall, “aprenderaprogramar.com,” https://bit.ly/3srfpe9 (accessed Apr. 10, 2021). ↑472
[17] E. Kendall and J. Kendall, Analisis y diseño de sistemas, México D.F.: Pearson Educacion, 2011. ↑472
[18] J. Schmuller, Aprendiendo UML en 24 horas, México D.F., México: Pearson, 2000. ↑474
[19] Universidad Carlos III de Madrid, Modelado dinámico básico, Madrid, Spain: Universidad Carlos III de Madrid,

2018. ↑474
[20] K. Cevallos, «Ingeniería del software,» https://bit.ly/3ah5xgw (accessed Apr 12, 2021). ↑474

INGENIERÍA • VOL. 26 • NO. 3 • ISSN 0121-750X • E-ISSN 2344-8393 • UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS 477

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.97.4717&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.97.4717&rep=rep1&type=pdf
https://riunet.upv.es/bitstream/handle/10251/15152/tesisUPV3764.pdf
https://riunet.upv.es/bitstream/handle/10251/15152/tesisUPV3764.pdf
http://dx.doi.org/10.22267/rcia.163302.57
http://dx.doi.org/10.22267/rcia.163302.57
https://doi.org/10.1109/PROC.1980.11806
http://hdl.handle.net/10554/7480
https://bit.ly/3ah5xgw


An Approach from Software Engineering to an IoT and Machine Learning Technological Solution

William Ruiz Martínez
Master’s degree in Strategic Management of Software Engineering, UNINI University of Puerto Rico. Project Ma-
nagement Specialist, Universidad Autónoma de Colombia. Systems Engineer, Universidad Autónoma de Colombia.
Full-time professor at Corporación Unificada Nacional de Educación Superior (CUN). He belongs to the AXON group
as a researcher, classified in category A by Colciencias.
Email: william_ruizmar@cun.edu.co

Arnaldo Andres González Gómez
Electronic engineer from Universidad Distrital Francisco José de Caldas. Full-time professor at Corporación Unificada
Nacional de Educación Superior (CUN). He belongs to the AXON group as a researcher, classified in category A by
Colciencias.
Email: arnaldo_gonzalez@cun..edu.co

478 INGENIERÍA • VOL. 26 • NO. 3 • ISSN 0121-750X • E-ISSN 2344-8393 • UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS


	Introduction
	Materials and methods
	Research methodology
	Description of the architecture
	System requirements
	Conceptual modeling
	Behavioral modeling

	Results
	Conclusions

