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INTRAURBAN ANALYSIS OF SURFACE URBAN HEAT ISLAND FROM DISAGGREGATED 
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ABSTRACT 

Surface Urban Heat Islands (SUHI) are areas with higher surface temperatures than their 
surroundings. Several studies have used thermal images from satellites to research the influence of 
urbanization on surface temperature patterns, however the low spatial resolution of thermal 
sensors limits the analysis of LST intraurban variations. Attempting to overcome this limitation, we 
used the Enhanced Physical Model (EPM) for disaggregation of land surface temperature (DLST) to 
generate fine scale LST for Sao Paulo city in Brazil. This method uses a linear regression and Planck’s 
law to combine NDVI, NDWI and UI to estimate LST at finer spatial detail. First, we calibrate the 
method by upscaling an ASTER thermal band to 1000 m and using EPM to estimate the original 100 
m thermal band. The original and estimated ASTER thermal bands achieved and R² of 0.66. Following, 
we apply the EPM model to estimate the LST at 15 m and compare it with data from meteorological 
stations. The 15 m LST image facilitated the identification of potential SUHIs. The EPM model 
provides an enhanced product with higher level of spatial detail, which allows researchers to identify 
changes of surface temperature that would not be evident from an ASTER LST (90 m spatial 
resolution) product. In summary, the model allowed us to quantify and map the influence of 
different urbanization patterns on the LST distribution.  

Keywords: land surface temperature, thermal, disaggregation, surface urban heat island. 
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RESUMO 

Ilhas de calor de superfície (ICS)são áreas com temperatura de superfície maior do que as áreas ao 
redor. Vários estudos têm usado imagens termais de satélite para investigar a influência da 
urbanização nos padrões de temperatura de superfície, entretanto a baixa resolução espacial dos 
atuais sensores termais limita a análise dos padrões de variação intraurbana de temperatura de 
superfície. Com o objetivo de superar essa limitação, nós utilizamos o Enhanced Physical Model (EPM) 
para gerar dados de temperatura de superfície com maior nível de detalhamento para a cidade de 
São Paulo- Brasil. Esse método utiliza um modelo de regressão linear e a lei de Planck para combinar 
NDVI, NDWI e UI para estimar a temperatura de superfície com maior nível de detalhes espaciais.  
Primeiro, para calibrar o modelo, nós reamostramos uma banda termal ASTER para 1000 m e 
utilizamos o método EPM para estimar a banda original de 100 m. A banda termal reamostrada de 
100 m atingiu um R2= 0.66 em relação a banda termal original. A seguir, nós aplicamos o método 
EPM para estimar a temperatura de superfície à 15 m. A imagem de temperatura de superfície de 
15 m facilitou a identificação de potenciais ilhas de calor de superfície. O modelo EPM fornece um 
produto com alto grau de detalhamento espacial, o que permite que pesquisadores identifiquem as 
mudanças de temperatura de superfície que não seriam evidentes na imagem termal ASTER original 
(90 m de resolução espacial). Em suma, o modelo nos permitiu quantificar e mapear a influência de 
diferentes padrões de urbanização na distribuição dos padrões de temperatura de superfície. 

Keywords: Keyword 1; Keyword 2; Keyword 3.  

 

INTRODUCTION 

Land Surface Temperature (LST), the radiative skin temperature of land surface, is a key 

modulator of the energy balance at the Earth’s surface and plays a leading role on surface processes 

at multiple scales (KHANDELWAL et al., 2017b). LST influences a myriad of physical processes in the 

atmosphere, such as heat fluxes, air motion, humidity distribution, evapotranspiration and local 

atmospheric circulation; for this reason LST has been used for varied  applications, such as estimate 

of soil humidity (MERLIN et al., 2012), detection of forestry fires (ECKMANN; ROBERTS; STILL, 2008), 

investigation of hydrological processes (CROW; WOOD, 2005; MCLAUGHLIN, 2002), exploring the 

relationship between disease vectors and urban heat islands (AZEVEDO et al., 2012), climatological 

studies (KUSTAS; ANDERSON, 2009) and monitoring urban surface heat islands (MEMON; LEUNG; 

CHUNHO, 2008; OGASHAWARA; BASTOS, 2012; ZHOU et al., 2011). 
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In climatology, LST is often used as a proxy for changes in heat distribution caused by land 

cover modification (GARTLAND, 2008; MONTEIRO, 1976; OKE, 1987; VOOGT; OKE, 2003). Since the 

80’s, urban climatology has been using thermal images to analyse LST distribution and its 

relationship with land cover changes at coarse to medium spatial scale (ANIELLO; MORGAN; 

NEWLAND, 1995; EFRAIN et al., 2013; KHANDELWAL et al., 2017a; MCMICHAEL et al., 2008; MEMON; 

LEUNG; CHUNHO, 2008; ROTH; OKE, 1989; TAN et al., 2010). LST daily and seasonal cycles have been 

studied using thermal images from meteorological satellites, and earth observation satellites like 

Terra and Aqua (MEMON; LEUNG; CHUNHO, 2008; TAN et al., 2010; YANG et al., 2011; ZHOU et al., 

2011; ZHU; LŰ; JIA, 2013); but  fine spatial scale LST analysis is still incipient because of the trade-off 

between spatial and temporal resolutions for thermal images (Table 1). 

Table 1 – Satellites with thermal sensors on board and respective resolutions 

Satellite/Sensor Spatial resolution (m) Temporal resolution 

GOES/ I-M 4000 30 minutes 

NOAA/ AVHRR 1100 6 hours 

Terra & Aqua/MODIS 1000 2 days 

Source: Authors (2021). 

 

The analysis of LST at a finer scale could help improving our understanding of Urban Heat 

Islands (UHI) in big cities. UHI are a modification of heat distribution driven by changes in roughness 

and urban surface emissivity. Urban structures characteristically store more energy for longer 

durations, which consequently leads to increased local temperature. The temperature increase may 

cause humans thermal discomfort, economic and social losses, negative impacts to health, and 

damages to mental and physical efficiency (GARTLAND, 2008; MONTEIRO, 1976; OKE, 1987; VOOGT; 

OKE, 2003).  

The investigation of the relationship between land cover and UHI originated with the 

development of the first orbital thermal sensors; however this work has primarily been dedicated to 

studying the general influence of urbanization on land surface temperature patterns (ANIELLO; 

MORGAN; NEWLAND, 1995; EFRAIN et al., 2013; KHANDELWAL et al., 2017a; MCMICHAEL et al., 



Revista Geoaraguaia  
ISSN:2236-9716 

Barra do Garças – MT 
v.11 n. Esp. Geotecnologias 

 p. 07-33. Ago-2021 
 

 
 

Revista Geoaraguaia – ISSN: 2236-9716 – V.11 nº Especial Geotecnologias. Ago-2021 

10 

2008; MEMON; LEUNG; CHUNHO, 2008; ROTH; OKE, 1989; TAN et al., 2010). The general scope of 

these studies is partially a result of the trade-off between a satellites spatial and temporal resolution, 

especially for thermal sensors (Table 1). Finer spatial resolutions would enable the characterization 

of the relationship between each land cover class and its LST pattern. 

Typically orbital sensors cannot distinguish intraurban objects, with the exception of a few 

high resolution sensors (World View II, Pleiades, Rapid Eye), which leads to a pixel mixing effect, i.e., 

the signal of multiple objects being recorded inside the same pixel (ZHAN et al., 2013). The mixture 

effect is inherent to the imaging process and is more pronounced for spectral bands with low 

signal/noise ratio (SNR). Thermal bands are characterized by a low signal to noise ratio, which is 

improved by integrating the signal over a bigger area, i.e., using a coarser resolution. Despite 

continued improvements in thermal sensors, the mixture effect remains with thermal orbital 

satellite images.  In urban areas, the mixture effect is especially problematic, because urban objects 

are almost always smaller than what can be represented by the spatial resolution of these images.  

In an effort to deal with the mixture effect, methods for disaggregation of land surface 

temperature (DLST), also known as downscaling methods, have been developed. DLST methods 

allow scientists to generate more spatially detailed thermal datasets by combining auxiliary datasets, 

statistical methods and/or concepts from physics. Methods for DLST have been applied to extract 

land surface temperature in urban environments (NICHOL; WONG, 2009), analyse urban heat island 

daily cycles (ZAKŠEK; OŠTIR, 2012), estimate thermal radiance (LIU; PU, 2008), and detect wildfire at 

the subpixel scale (DENNISON et al., 2006).  

Several DLST methods have been proposed  (BECHTEL; BÖHNER; WIESNER, 2013; 

ECKMANN; ROBERTS; STILL, 2008; KAWASHIMA, 1994; LIU; PU, 2008; LIU; ZHU, 2012; NICHOL; 

WONG, 2009; SZYMANSKI et al., 1999; YANG et al., 2010) but linear regression based methods (LIU; 

PU, 2008; LIU; ZHU, 2012) are the most computationally straightforward . They usually require one 

image in the visible spectrum, one near-infrared band, thermal infrared spectral bands and a land 

surface temperature product from same day and approximately same time.  
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The main objective of this research is to use a DLST model based on linear regression to 

generate more detailed LST images for urban areas and consequently be able to perform more 

detailed analyses on urban surface temperature patterns and Surface Heat Island (SUHI). The main 

advantages of the use of linear regression to develop the DLST model are its lower computational 

cost and possibility to perform further quantitative analyses of the accuracy of the resulting LST 

estimates. The DLST model we employ builds from model proposed by (LIU; PU, 2008) and we use it 

to analyse intraurban LST patterns and detect potential UHIs in the São Paulo municipality of Brazil.  

BACKGROUND 

URBAN HEAT ISLAND (UHI) 

Changes in the spatial and temporal distribution of the air temperature and heat content 

are one of the most impactful climate phenomena for humans (GARTLAND, 2008).  The UHI effect is 

defined as the increase of surface and air temperature in urban areas compared to surrounding rural 

areas (GARTLAND, 2008; OKE, 1987), or in a more general form, the positive temperature differential 

of a rural or green area from the urban area.  UHI’s are a result of changes on how energy is 

absorbed, reflected, and emitted by the Earth’s surface (i.e., the energy balance), which are 

associated with urban development and structures (GARTLAND, 2008; OKE, 1987). These changes 

bias the liquid radiation balance, which is the difference between the income solar radiation and the 

radiation emitted back to outer space by Earth. Under ideal conditions, the Earth liquid radiation 

balance is positive during the night and negative during day and a thermal equilibrium is obtained. 

However, this equilibrium is not observed in many urban areas, which often results in an increasing 

trend in temperature from the urban periphery toward the downtown urban core (CLIMATE 

PROTECTION PARTNERSHIP, 2010; GARTLAND, 2008; LOMBARDO, 1985).  

UHIs can be categorized as one of two types: Atmospheric UHI (AUHI), which have higher air 

temperatures than surrounding rural areas and Surface UHI (SUHI), which have higher surface 

temperatures than surrounding rural areas. Both AUHIs and SUHIs have different genesis, detection 

methods, mitigation strategies and intensity (Table 2). 
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Table 2 – Characteristics of SUHI and AUHI 

Characteristic Surface UHI Atmospheric UHI 

Period 
During the entire day. 

More intense during the day and in 
summer. 

Small or non-existent during the day. 
More intense during the night, at daybreak 

and in winter. 

Intensity peak 

Bigger spatial and temporal 
variation: 

Day: between 10°C and 15°C. 
Night: between 5°C and 10°C. 

Smaller variations: 
Day: between -1°C and 3°C. 

Night: between 7°C and 12°C. 

Detection methods 
Indirect measurements: 

Remote Sensing. 

Direct measurements: Meteorological 
stations; 

In situ measurements. 

Representation 
methods 

Thermal images. 
Isotherms maps; 

Temperature graphs. 

Source: Climate Protection Partnership, 2010 (modified). 

 

Regardless of type, UHIs are harmful to the environment and decreases the quality of life 

for those living under it. UHIs accelerate chemical weathering, which degrades urban physical 

structures, increases energy consumption (e.g., for air conditioning), decrease water quality, 

undermine human comfort and health, and increase pollutants and greenhouse gas emissions 

(CLIMATE PROTECTION PARTNERSHIP, 2010; GARTLAND, 2008; LOMBARDO, 1985; OKE, 1987). In 

addition, UHI’s can exacerbate heat waves and provide favourable conditions for the development 

of disease vectors (e.g., mosquito (AZEVEDO et al., 2012)), which can lead to an increase in disease 

transmission and mortality rates (HAJAT; KOSATKY, 2010; MCMICHAEL et al., 2008; TAN et al., 2010; 

WANG; HE; LIU, 2012).  

STUDY AREA 

The municipality of São Paulo lies within the state of São Paulo in the south-eastern part of Brazil 

(Figure 1).  We selected the municipality of São Paulo, hereafter São Paulo, as our study area because 

it is one of the largest urban metropolitan areas in the world, and it has an urbanization rate of 99.10% 

(IBGE, 2010). São Paulo’s climate is humid temperate with a dry winter and a warm summer 

(MENDONÇA; DANNI-OLIVEIRA, 2007); the average temperature is 15ºC for the coldest month and 
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22ºC for the warmest month. The average rainfall is between 39.mm for the driest month and 

256.mm for the wettest month. 

 

Figure 1 – Study area, the municipality of São Paulo is shown on an ASTER 3N(R)2(G)1(B) composition. The 
built-up area can be seen in shades of grey while red indicates the presence of vegetation.  

 
Source: Authors (2021). 

 

METHODOLOGY 

We applied a thermal unmixing DLST method, using one ASTER (Advanced Spaceborne 

Thermal Emission and Reflection Radiometer) image from 13th October 2002 taken at 10:30 am, the 

most recent date with valid Short Wavelength Infrared (SWIR) data available.  We also used the 

MODIS (Moderate-Resolution Imaging Spectroradiometer) land surface temperature product from 
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the same date and approximately same time and daily temperature data from the University of São 

Paulo’s (USP) meteorological station (Figure 1). 

DATA PRE-PROCESSING  

We corrected atmospheric effects and converted all 14 ASTER 1B bands from digital 

numbers (DN) to radiance, and subsequently to reflectance, using the FLAASH algorithm (Fast Line-

of-sight Atmospheric Analysis of Spectral Hypercubes) (ADLER-GOLDEN et al., 1999) with the Mid-

Latitude Atmospheric Model and Urban Aerosol Model, which is a mixture of 80% rural aerosol with 

20% soot-like aerosols.  

With the purpose of explaining temperature through other related environmental variables, we 

calculated three radiometric indices that address urban density, vegetation, and water content. For 

urban density we calculated the urban index (UI) (JAYAMANNA, 1996), which is based on the inverse 

relationship between the reflectance of urban areas in the near infra-red (NIR) and short wavelength 

infra-red (SWIR) bands. 

 

 

                                                          (1) 

 

For vegetation we used the normalized difference vegetation index (NDVI) (ROUSE et al., 

1973) that explores the inverse relationship of vegetation reflectance between NIR and Red bands. 

 

 

                                                       (2) 

For water content we modified the normalized difference water index (NDWI) (GAO, 1996) 

to adapt it to ASTER spectral bands. The modification was necessary because ASTER imagery does 

𝑈𝐼 =  
𝑆𝑊𝐼𝑅2.20𝜇𝑚 −  𝑁𝐼𝑅1.65𝜇𝑚

𝑆𝑊𝐼𝑅2.20𝜇𝑚 +  𝑁𝐼𝑅1.65𝜇𝑚
 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅1.65𝜇𝑚 −  𝑅𝐸𝐷0.82𝜇𝑚

𝑁𝐼𝑅1.65𝜇𝑚 + 𝑅𝐸𝐷0.82𝜇𝑚
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not include a band centred on 1.24 µm and the band centred on 2.26 µm is also free of water 

absorption. 

 

                                                        (3) 

At the same time, we created a cloud mask and used an unsupervised classification 

algorithm (IsoCluster) to classify the ASTER image into five broad land cover categories: forest, bare 

soil, other vegetation, urban area and water. 

DLST MODEL CALIBRATION 

SIMULATION OF COARSE RESOLUTION BANDS  

We created a grid with 990 m X 990 m cells, the same resolution as MODIS LST product, 

and excluded cells that overlapped with the cloud mask. This grid arrangement facilitated the 

integration of MODIS LST product with the bands of the three ASTER imaging subsystems: visible 

and NIR bands (15 m), SWIR (30 m) and Thermal Infra-Red (TIR) (90 m). In addition, we used this grid 

arrangement to resample the 14 ASTER bands by upscaling using the mean method; upscaling is the 

process whereby coarser resolution bands are computed from a higher resolution band.  

Based on the original ASTER bands we calculated, for each 990 m cell, the following attributes: 

average UI, average NDVI, average NDWI, average radiance of TIR Band 13 ASTER, MODIS LST 

product value and each land cover class percentage. 

RELATIONSHIP BETWEEN LST FROM MODIS PRODUCT AND RADIOMETRIC INDICES 

We conducted exploratory analyses between the radiometric indices (UI, NDVI and NDWI) 

and LST from MODIS product. The Pearson correlation matrix indicated, with p-values smaller than 

2.23x10-7, that the three radiometric indices are highly correlated to LST MODIS product. Next, we 

selected all the cells with at least 80.0% of one land cover class, which resulted in a total of 101 

selected cells. This selection process approaches the problem using the isothermal assumption, that 

𝑁𝐷𝑊𝐼 =  
𝑅𝐸𝐷0.82𝜇𝑚 − 𝑆𝑊𝐼𝑅2.26𝜇𝑚

 𝑅𝐸𝐷0.82𝜇𝑚 + 𝑆𝑊𝐼𝑅2.26𝜇𝑚
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a pixel composed of only one material (i.e., land cover class) will have constant internal temperature 

variation. 

Based on the 101 homogeneous cells we developed the following linear regression model:  

 

         (4) 

Where: 
 T̂990= estimated temperature in Celsius degrees for a 990 m cell; 
NDVI990 = average NDVI for a 990 m cell; 
NDWI990 = average NDWI for a 990m cell; 
UI990 = average UI for a 990m cell; 
39,46 = model intercept; 
ui = random error. 

 
The model achieved adjusted R2= 0.73, residuals were normally distributed based on the 

Komolgorov-Smirnov normality test and the Breusch Pagan homoscedasticity test. 

ESTIMATING EFFECTIVE EMISSIVITY AND ATMOSPHERIC RADIANCE CONTRIBUTION 

In order to find the effective emissivity for each land cover class and the atmospheric radi-

ance contribution, we considered the radiance registered by a sensor with its components, accord-

ingly to the equation (5) defined by (LIU; PU, 2008): 

R𝑠(i)990 = ∑ ɛ̅k . fk (i)990. 𝐵𝜆(Tk(i))990 + RA
K
k=1     (5) 

Where: 
Rs(i)990 = radiance registered by ASTER band 13 sensor for a 990 m cell;  
K = total number of land cover classes; 
ɛ̅k = Effective emissivity for land cover k; 
fk (i)990 = k land cover percentage inside 990 m cell i; 

(Tk(i))990= land surface temperature for land cover k inside 990 m cell i, from LST MODIS product; 

 Bλ(Tk(i))990= Thermal black body emittance for a given Tk(i) of a 990 m cell; 

RA= Atmospheric radiance contribution. 

 

𝑇 990 = 16,17 𝑁𝐷𝑉𝐼990 + 14,37 𝑁𝐷𝑊𝐼990 + 47,80 𝑈𝐼990 + 39,46 + 𝑢𝑖 
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(5) 

Where: 
𝑅𝑠(𝑖)990 = radiance registered by ASTER band 13 sensor for a 990 m cell;  

𝐾 = total number of land cover classes; 

ɛ𝑘 = Effective emissivity for land cover 𝑘; 

𝑓𝑘 (𝑖)990 = 𝑘 land cover percentage inside 990 m cell 𝑖; 

(𝑇𝑘(𝑖))990= land surface temperature for land cover 𝑘 inside 990 m cell 𝑖, from LST MODIS product; 

 𝐵𝜆(𝑇𝑘(𝑖))990= Thermal black body emittance for a given 𝑇𝑘(𝑖) of a 990 m cell; 

𝑅𝐴= Atmospheric radiance contribution. 

First, we computed Bλ(Tk(i))990 for each 990 m cell. The Bλ parameter is calculated via 

Planck’s law integration; we integrated Planck’s law considering the temperature from LST MODIS 

product and the spectral range between 10.55 µm and 11.54 µm, the same range of MODIS 31 

Thermal Band used to generate LST MODIS product. The Planck’s law integration provides the total 

energy amount emitted by a blackbody in a given temperature, however the MODIS sensor does 

not detect the total amount. The energy is detected accordingly to the band spectral response curve, 

what means for MODIS 31 Thermal Band that 48.00% of the total energy amount is detected. There-

fore, the radiance calculated with Planck’s law integration was rescaled by a 0.48 multiplication fac-

tor. After this, we can rewrite Equation 5 as following: 

Rs(i)990 = RA + ∑ ɛ̅k . Pk990
K
k=1                        (6) 

Where: 
Rs(i)990 = radiance registered by ASTER band 13 sensor for a 990 m cell;  
RA= Atmospheric radiance contribution; 
ɛ̅k  = Effective emissivity for land cover k; 

Pk990 =fk (i). Bλ(Tk(i))990, defined previously in Equation 5. 

Equation 6 shows that the Rs(i)990 variable is a linear combination of the other variables. 

Thus, we can say that each ɛ̅k  is an angular coefficient from this line and RA is its linear coefficient. 

R𝑠(i)990 =  ɛ̅k . fk (i)990. 𝐵𝜆(Tk(i))
990

+ RA

K

k=1
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Once Rs(i)990 and Pk990 are calculated for the 990 m cellular plan, we estimate RAand ɛk  (Table 4) 

using a linear regression model. All p-values were significant (< 0.001), and the model achieved an 

adjusted R2= 0.84. Residuals were normally distributed based on the Komolgorov-Smirnov normality 

test and the Breusch Pagan homoscedasticity test. 

Table 4 – Linear regression model parameters for R̂A and ɛ̅ k  

Variable Estimate Standard deviation 

𝑅𝐴 4,44 0,77 

ɛ̅𝑈𝑟𝑏𝑎𝑛  0,74 0,09 

ɛ̅𝑆𝑜𝑖𝑙  0,75 0,10 

ɛ̅𝑊𝑎𝑡𝑒𝑟 0,63 0,10 

ɛ̅𝑂𝑡ℎ𝑒𝑟 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 0,67 0,10 

ɛ̅𝐷𝑒𝑛𝑠𝑒 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛  0,69 0,10 

Source: Authors (2021). 

ESTIMATING THE THERMAL RADIANCE AT  90 M SPATIAL RESOLUTION 

We generated a second grid arrangement with regular 90 m x 90 m cells. For each cell we calculated 

the following attributes: average UI, average NDVI, average NDWI, average radiance of TIR Band 13 

ASTER and each land cover class percentage. Assuming that the relationships between the variables 

are independent of the scale, we applied the previously developed linear model (Equation 4) to each 

cell in the 90 m grid arrangement to obtain the temperature estimates at 90 m.  

We applied Equation 5 to estimate a radiance value for each 90 m cell. After that, we calculated a 

linear regression between the estimated radiance and the original 90 m radiance from TIR Band 13 

ASTER for each 90 m cell. This regression, by least squares method, allowed us to adjust the 

estimated values accordingly to Equation 7: 

 

Rs(i)90 = 0,97. Rs(i)90 + 0,25                          (7) 

Where:  

Rs(i)90 = B13 ASTER original radiance 90 m; 

R𝑠(i)90 = Estimated radiance for a 90 m cell in the cellular plan. 
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The model residuals are well-behaved and were approved (significance of 0.05) by the Ko-

molgorov-Smirnov normality test and the Breusch Pagan homoscedasticity test. 

ESTIMATING THE THERMAL RADIANCE AT 15M SPATIAL RESOLUTION USING THE 

DLST MODEL 

Assuming that the relationships between the variables are kept independently of the scale 

(ZHAN et al., 2013), we applied the calibrated DLST model for the original ASTER data to generate 

an estimated TIR Band 13 ASTER with 15 m spatial resolution.  

IDENTIFICATION OF POTENTIAL SUHI AREAS 

The radiance TIR Band 13 ASTER (90 m) and the Radiance TIR Band 13 estimated by the DLST model 

(15 m) were used as input to the emissivity reference channel technique, which assumes a single 

emissivity channel for all pixels in a band to calculate the land surface temperature (KEALY; HOOK, 

1993). However, instead of using a single emissivity channel we chose to use one emissivity channel 

for each land cover class. The emissivity values for each class were defined through bibliographical 

research (JENSEN, 2006; NOVO, 2010; REES, 2001) as following: urban area = 0.95; bare soil = 0.90; 

water bodies = 0.92; forest = 0.98 and other vegetations = 0.97. 

To assess the accuracy of the temperature estimate we subtracted the temperature ex-

tracted from the original TIR Band 13 ASTER (90 m) from the temperature extracted from estimated 

TIR Band 13 ASTER (90 m). We performed a visual comparison between the 15 m, 90 m and 990 m 

land surface temperature images in an area free of clouds in order to try to identify potential SUHI 

areas.  

We also chose three further smaller study areas for a more detailed evaluation of the poten-

tial of the DLST model to identify SUHI effects. In order to numerically define urban heat island for 

the study area, we consulted meteorological temperature data for the image day at 10:00 and 11:00 

am. As the ASTER satellite revisit time is at 10:30 am, we considered that the temperature increase 

is linear and calculated the average temperature between 10:00 and 11:00 am as a referential 
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temperature to compare with the images. This way, we subtracted 27.05ºC from the estimated DSLT 

temperature image (15 m), from the original ASTER temperature (90 m) and from the MODIS tem-

perature (990 m); This was done in order to first make it easier to compare the three temperature 

images with different resolutions and second because we assume that temperatures above this con-

stant value are a result of urban environment interference (this assumption is based on the fact that 

the meteorological station is located in a green area with perfect measurement conditions and that 

there is a correlation between air temperature and surface temperature). 

RESULTS 

DLST MODEL CALIBRATION AND APPLICATION FOR 15 M 

After the adjustment our model performed R2=0.66, i.e., approximately 66% of the variability of 

radiance B13 ASTER is explained by our estimated B13 ASTER (Figure 2). It is possible that the re-

maining 34% variability is related to other factors that were not considered in our linear regression 

model. 

Figure 2 – Scatterplot of original B13 ASTER radiance X estimated B13 ASTER radiance. The red line 
represents the adjustment function. The axis unit is W/(m².sr.μm). 

 
Source: Authors (2021). 
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The statistics of both images (Table 5) shows that the contrast (standard deviation) is smaller for 

estimated B13 ASTER radiance than for the original B13 ASTER radiance image, what is also seen in 

Figure 4. This lower variability occurs because the estimated image is based on radiometric indices 

that often saturate, i.e., after a certain reflectance value the index cannot distinguish the targets 

anymore and assigns the same value to targets with different intensity of urbanization, vegetation 

or water content. The same interference of radiometric indexes can be observed in the difference 

between Min and Max values. 

 

Table 5 – Summary statistics of original B13 ASTER radiance and estimated B13 ASTER radiance. The unit is 
W/(m².sr.μm). 

 Min 
1st 

quartile 
Mean 

3rd 
quartile 

Max 
Standard 
deviation 

B13 ASTER radiance 8.34 9.58 9.99 10.41 12.50 0.520 

Estimated B13 ASTER radiance 8.66 9.59 9.96 10.35 11.59 0.421 

Source: Authors (2021). 

 

In order to evaluate the model behaviour for each land cover class, we summarized statis-

tics with boxplots (Figure 3) for all land cover classes for original B13 ASTER radiance (B13) and 

estimated B13 ASTER radiance (DLST). 

Figure 3 – Boxplots for estimated B13 ASTER radiance (DLST) and original B13 ASTER (B13) radiance image 
for each land cover class. The dashed line is the mean and the continuous line is the median. 

 
Source: Authors (2021). 
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All classes showed a compression in variability compared to the original B13 ASTER (B13) 

radiance, mainly in the upper limits of the respective distribution. This data compression is charac-

teristic of saturated images and is common in radiometric indices. The water class showed similar 

statistics to the original B13 ASTER (B13) radiance, except for the lower variability in the 4th quartile, 

which may have occurred due to NDWI saturation. The bare soil class showed more considerable 

differences, with more intense variability compression of the whole data. This probably occurred 

because we did not use any specific radiometric indices for this land cover class (although it has 

spectral similarity to urban areas the UI is not the best way to represent this class). Both vegetation 

classes showed considerable differences in all statistics, except for the mean. All other statistics 

differ for more than 0.15 W/(m².sr.μm) from the original values. Considering that NDVI saturates 

due to leaf area index, atmospheric interferences, water content, view angle and other factors; it 

was expected that the estimated values for these classes would be more inaccurate, and the results 

confirm this. The urban class showed very similar statistics values: the largest difference between 

the original and estimated value was 0.97 W/(m².sr.μm) for maximum value. 

Based on these results, the DLST model was considered adequate, in particular for the ur-

ban class which is the main target of this work and had the best DLST model performance.  At 15 m 

spatial resolution, the model showed a good visual performance increasing the visible details, while 

however also generating some artefacts and a salt and pepper effect in certain locations. Figure 4 

shows the radiance images generated by the DLST model: upscaled 990 m, DLST 90 m and DLST 15 

m and the original ASTER radiance 90 m.  

LST EXTRACTION AND IDENTIFICATION OF POTENTIALS SUHI AREAS 

 The subtraction between the temperature extracted from original TIR Band 13 ASTER (90 m) 

and the temperature extracted from estimated TIR Band 13 ASTER (90 m) indicated that the 

temperature differences ranged from -5.60 ºC to 5.80 ºC. The largest negative differences were 

concentrated within vegetation classes, while the largest positive differences were concentrated 

within the bare soil class and the urban area class, show in differences from -1.99 ºC to 4.00 ºC. 
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The subtraction of 27.05 ºC from each temperature image allowed a better visualization of 

the potential SUHI areas in our study area. Figure 5 shows this at three different scales and levels of 

detail. The MODIS LST 990 m image generalized almost the whole area in the 7.56 ºC to > 9.72 ºC 

range, with no intraurban temperature details; the LST ASTER 90m image allowed the visualization 

of some details for different urban regions, ranging from 1.94 ºC to 7.20 ºC; the DLST model 15 m 

image enabled the visualization of details inside urban regions, for transition areas between land 

cover classes and for smaller intraurban areas with lower temperatures. In addition, with the DLST 

model 15 m image is possible to point out some more intense potential SUHI areas. 
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Figure 4 – B13 upscaled radiance 990 m, B13 original ASTER radiance 90 m, estimated B13 ASTER radiance 
90 m and estimated B13 ASTER radiance 15 m.

 
Source: Authors (2021). 
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Figure 5 – LST MODIS 990 m extracted from LST MODIS product; LST ASTER 90m extracted from B13 original 
ASTER radiance 90 m; DLST model 15 m extracted from estimated B13 ASTER radiance 15 m. 

 
Source: Authors (2021). 

 

In order to further analyse the behaviour of the DLST model 15 m, we identified three  po-

tential SUHI areas and explored these using the LST ASTER 90m extracted,  DLST model 15 m  and 

ASTER composite bands R(3)G(2)B(1). The LST MODIS 990 m image was not considered because, as 

shown in Figure 5, it is too coarse for this purpose.  

In most of the first selected area (Figure 6), Morumbi neighbourhood, temperatures are 

more pleasant than in its surrounding. This effect is due to a high arborisation rate, the larger spac-

ing between built-up areas and its location within the route of the most frequent and intense winds 

in this area. The Paraisópolis favela (marked with a black circle in Figure 6) is nearby Morumbi and 

it was already identified as an SUHI area by (FUCKNER, 2008). Compared to the LST ASTER 90m 

image, the DLST MODEL 15 m allows the visualization of temperature variations within Paraisópolis 
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and a surrounding damping zone, which is due to the vegetation in Morumbi neighbourhood. The 

DLST model 15 m was able to capture the effect of the distinct urbanization patterns on LST. Distinct 

urbanization patterns here are understood as the different materials used for construction, urban 

geometric arrangements, arborisation rates and land use. 

Figure 6 – LST for Morumbi neighbourhood and Paraisópolis shantytown (black circle), the scale is 1: 70000.   

 
Source: Authors (2021) 

 

Vila Leopoldina neighbourhood (Figure 7) shows only high temperatures in the LST ASTER 

90m image, (more than 9.72 ºC above the reference temperature of 27.05 ºC). The DLST model 15m 

however shows that the high temperatures are concentrated on an industrial complex area (marked 

with a black circle in figure 7). In this area roofs are made from materials that preserve the heat (e.g. 

metallic roofs and roofs constructed from asbestos). 
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Figure 7 – LST for Vila Leopoldina neighbourhood and its industrial complex area (black circle), the scale is 1: 
70000.   

 
Source: Authors (2021).  

 

In the area around the Paulista avenue (marked with a black ellipse in Figure 8) the DLST 

model identified temperature variations caused by the verticalized and high urban density area, 

which creates an urban canyon surrounding the avenue. The parallel traces of the streets in con-

junction with the canyon formed by the buildings create windy corridors. This causes that the wind 

passes through the streets at ground level, without moving the layer of hot air located just above 

the verticalized built-up area. This effect contributes to the consequent temperature increase.  
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Figure 8 – LST for Paulista Avenue (black ellipse) and its neighbourhood, the scale is 1: 70000.   

 
Source: Authors (2021) 

  

CONCLUSIONS 

The main objective of this research was to use a DLST model based on linear regression to 

generate more detailed LST images for urban areas and consequently be able to perform more de-

tailed analyses on urban surface temperature patterns and SUHI. The main advantages of the use 

of linear regression to develop the DLST model are its low computational cost and possibility to 

perform further quantitative analyses of the accuracy of the resulting LST estimates.  

Despite the inaccuracies in estimation of the radiance, the model was capable of providing 

details about the intraurban land surface temperature. In addition, the model was able to represent 

the intensity variations of SUHI’s which correspond to the urbanization pattern, the presence of 

vegetation and the thermal specifications of roof materials (in particular for industrial buildings).  

The analysis of the results showed that the proposed methodology has potential to support 

identification of intraurban SUHI areas. The DLST model achieved R² = 0.66 for a 3900 km2 study area 

with large variability in land cover and atmospheric conditions. While this is less than certain 
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previous studies (LIU; PU, 2008; LIU; ZHU, 2012) which report an R² between 0.77 and 0.82, it should 

be noted that our study area is approximately six times larger than study areas in these studies. 

We tested the method to identify the LST in different regions of our study area. Estimates 

were most accurate for the urban land cover class. The DLST 15 m image was able to identify details 

that the LST ASTER 90 m image could not is therefore an improvement for identification of SUHI 

areas. In addition, the DLST 15 m image contribute to the identification of diverse temperature 

patterns associated with a specific urbanization pattern. 

For future research we recommend to explore: (1) more images, in order to analyse the 

seasonality of surface intraurban heat island; (2) more radiometric indexes which could represent 

other variables that impact land surface temperature and this way improve the DLST model 

estimation. 

It is also highly recommended the acquisition of a thermal image with spatial resolution 

compatible to the final estimated image (15 m), in order to compare the model estimative with a 

ground truth thermal image. This way, instead of assuming that the relationships are kept 

independently of the scale, it would be possible to verify these relationships between more similar 

scales to check this premise.  

Another point to be explored is the application of DLST model on Landsat 8 images; as the 

Landsat 8 and MODIS coverages are asynchronous, it is not possible to disaggregate Landsat 8 

thermal data based on MODIS LST product. Thus, another alternative is required to realize this 

experiment, probably a thermal aero survey.  

It is important to highlight that this DLST model can be replied with orbital images of 

other satellites as: Landsat series, NOAA, AVHRR, since there is auxiliary data available and a LST 

product as reference. 
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