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ABSTRACT 

The differentiation between the charcoal produced from (Eucalyptus) plantations and native forests is 

essential to control, commercialization, and supervision of its production in Brazil. The main contribution 

of this study is to identify the charcoal origin using macroscopic images and Deep Learning Algorithm. 

We applied a Convolutional Neural Network (CNN) using VGG-16 architecture, with preprocessing 

based on contrast enhancement and data augmentation with rotation over the training set images. on the 

performance of the CNN with fine-tuning using 360 macroscopic charcoal images from the plantation 

and native forests. The results pointed out that our method provides new perspectives to identify the 

charcoal origin, achieving results upper 95 % of mean accuracy to classify charcoal from native forests 

for all compared preprocessing strategies.  

Keywords: Charcoal, classification, deep learning, native wood, preprocessing. 
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INTRODUCTION 

Brazil is one of the largest charcoal producers, with a reaching 5,3 million tons in 2019 (Ministry of 

Mines and Energy 2020). Besides being a world producer, Brazil is also one of the largest consumers of 

charcoal. Most of this production is destined for the internal market, mainly for the pig-iron and steel 

sectors and lesser, for the ferroalloy sector and residential consumption (ABRAF 2013). However, this 

demand is not supplied through charcoal using planted forests, making the illegal exploitation of native 

forests attractive. 

In order to try to prevent this illegal production, the Ministry of the Environment, through Ordinance No. 

253/2006, established the Forest Origin Document (DOF), an obligatory license for the transportation 

and storage of forest products and by-products, that includes information about the origin of those 

products. This license expired in cases when the transported product does not correspond to the species 

authorized in the DOF. In this context, forensic identification is used in the analysis of the preserved 

wood in charcoal to determine his origin (Gonçalves et al. 2012, Nisgoski et al. 2014), i.e., to distinguish 

those produced with native forests from those from planted forests, mainly composed of species of 

Eucalyptus (Davrieux et al. 2010). The principal clones used to produce charcoal are Eucalyptus 

urophylla, E. grandis, and hybrids E. urophylla x grandis, E. urophylla x camaldulensis, and E. grandis 

x camaldulensis (Santos 2010, Pereira et al. 2012). 

Usually, the anatomic analysis of charcoal can be done through a macro or microscopic approach. In the 

microscopic identification is observed features of the tissues and the constituent cells of the wood (Zenid 

and Ceccantini 2012), while in macroscopic analysis, only anatomical features visible to the naked eye 

or with a magnifying glass, such as vessel arrangement and grouping, arrangement and abundance of 

axial parenchyma and ray width (Wheeler and Baas 1998). Both analyses can be used in the distinction 

between Eucalyptus and other genera. 
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Much has been proposed on the microscopic analysis, as reported in the studies proposed by Gonçalves 

et al. 2012, Albuquerque (2012) and Muñiz et al. (2012), with higher cost and limited logistics, can 

identify the charcoal to the level of species with trustable results, although this is not always necessary 

for charcoal identification for supervision purpose. On the other hand, just a few studies have been 

proposed the macroscopic analysis to distinguish the origin of charcoal, although it allows agility and 

practicality. The genus Eucalyptus present a homogeneous anatomical constitution among the species, 

under the morphological level, a factor that hinders the separation, based only on the composition and 

structural arrangement of the wood constituents (Tomazello Filho 1985, Oliveira 1997). This similarity 

can help in distinguishing this genus from the others. 

Digital image process and machine learning techniques are essential to this task because it allows the 

acquisition of visual features for the automatic classification. Some studies proposed to classify charcoal 

images with a non-automated user-based process. Khalid et al. (2008) proposed a method based on 

analysis of anatomical images of the transverse plane in order to differentiate charcoals of the genus 

Eucalyptus sp. from charcoal of native species. Andrade et al. (2019) proposed a system of classification 

of the origin of the charcoal using analysis of texture in digital images of the cross-section plane. For 

this, a database was produced containing 900 images of 18 species, 12 native and 6 of the genus 

Eucalyptus sp. After, texture features were extracted from each image using Level Co-occurrence 

Matrices (GLCM) (Haralick et al. 1973), which were used in training and in the evaluation of statistical 

classifiers that identified the origin of the charcoals correctly in about 97 % of the attempts. 

However, the previously cited works do not add much to the identification of the origin of the charcoal 

in the field, due to the subjective, expensive logistic limitation imposed by the use of microscopes and 

the preparation of the material. The computational resources advances have allowed deep learning 

approach outperforms techniques based on handcrafted feature extraction on several fields such as 

computer-aided medical diagnosis systems (Litjens et al. 2017, Rodrigues et al. 2020), remote sensing 
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(Nogueira et al. 2017, Zhu et al. 2017), forest species recognition (Hafemann et al. 2014), identification 

of ecosystems (Morales et al. 2018, Bayr and Puschmann 2019), agriculture (Kamilaris and Prenafeta-

Boldú  2018, Knoll et al. 2018), and other applications (Gu et al. 2018). 

Recently, Maruyama et al. (2018) proposed a method for automatic classification of native species of 

charcoal based on deep learning using Inception-V3 architecture (Szegedy et al. 2016) as a feature 

extractor. However, it was considered microscopy images, and these experiments performed a simple 

hold-out validation technique (Devijver et al. 1982), which can randomly create biased sets, causing the 

CNNs to fit non-representative (abnormal) samples and result in unexpected accuracies. Differently, we 

considered the VGG-16 architecture (Simonyan and Zisserman 2014) instead of Inception-V3. The 

VGG-16 network was chosen due to its simplicity and robustness. Moreover, it was the first architecture 

to replace the filters that require more computational power, by large sequences of convolutional filters 

with size 3x3. 

In this work, we study an efficient method for automatic identification of charcoal origin based on deep 

learning and cross-validation k-fold technique using macroscopic images. This is the first work to classify 

automatically in order to distinguish Eucalyptus and native species using the VGG-16 architecture. Also, 

preprocessing strategies based on contrast enhancement, data centralization, and data augmentation on 

the rotation of the training set images were tested to increase the performance of the CNN with fine-

tuning. 

MATERIAL AND METHODS 

The experiment was performed on a machine with an Intel i5 3,00 GHz processor, 16 GB RAM, and a 

GPU NVIDIA GeForce GTX 1050Ti with 4 GB memory. All experiments were programmed using 

Python 3.6, the PyTorch 1.7 deep learning framework (Paske et al. 2019) under CUDA version 10.1 

(2019) and cuDNN 7.6 (2020). The operating system was Ubuntu 18.04.5 LTS. 
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Images Acquisition 

The dataset of macroscopic images of charcoal was acquired from Wood Panel and Energy Laboratory 

(LAPEM) at the Federal University of Viçosa (UFV), Brazil. The material is composed of samples of 

carbonized wood of Eucalyptus and native species typical of the region of Zona da Mata, Minas Gerais. 

Native species were chosen based on the anatomical similarity to the genus Eucalyptus as well as their 

attractiveness to the illegal production of charcoal. Eucalyptus species were chosen from those 

predominantly used for the production of charcoal, as Pereira et al. (2012) define. 

In this dataset, each species or hybrid is represented by a sample coming from a single tree, without 

information of age or position of the trunk. The samples were charred in a muffle-type electric furnace, 

following an initial temperature of 150 ºC, with an increase of 50 ºC per hour, and the final temperature 

of 450 ºC, totaling 7 hours of carbonization. The condensable gases were collected in a condenser coupled 

to the muffle door. The species and hybrids used in this study and the numbers of samples for each 

species are presented in Table 1. 

Table 1: Species and hybrids used. 

Identification Common name Scientific Name 
Number of 

Samples 
1 5 Folhas Sparattosperma leucanthum 2 

2 Açoita Cavalo Luehea divaricata 7 

3 Adraga Bixa orellana 9 

4 Algaroba Prosopis juliflora 1 

5 Angá Inga edulis 2 

6 Angico Anadenanthera peregrina Speg 12 

7 Barbatimão Stryphnodendron adstringens 6 

8 Bico de Pato Machaerium nyctitans 9 

9 Brauninha Dictyoloma vandellianum A. Juss 8 

10 Caituá Ouratea polygyna Engl 1 

11 Camaudulensis Eucalyptus camaldulensis Dehnh 31 

12 Citriodora Corymbia citriodora 13 

13 Canudo de Pito Mabea fistulifera 17 

14 Casca Doce Glycoxylon inophyllum 2 

15 Casuarina Casuarina equisetifolia L. 6 
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16 Catingueira Caesalpinia pyramidalis 1 

17 Caviuna Machaerium scleroxylon 2 

18 Cedrinho Trattinninkia ferruginea Kuhlm 10 

19 Embaúba Cecropia pachystachya 15 

20 Fedegoso Senna macranthera 5 

21 Garapa Apuleia leiocarpa 9 

22 Grandis x Camaudulensis
Eucalyptus grandis x Eucalyptus 

camaldulensis
9 

23 Imburana Commiphora leptophloeos 3 

24 Jacarandá da Bahia Dalbergia nigra 2 

25 Jambo Syzygium jambos 4 

26 Jurema Branca Mimosa tenuiflora 3 

27 Jurema Preta Mimosa hostillis 2 

28 Mama de Porca Zanthoxylum rhoifolium Lam 4 

29 Marmeleiro Cydonia oblonga Mill 4 

30 Mofumbo Combretum leprosum 1 

31 Papagaio Aegiphila integrifolia 11 

32 Pau Bosta Sclerolobium paniculatum 5 

33 Pau Fumo Piptocarpha macropoda Baker 14 

34 Pimenteira Xylopia sericea A. St - Hil 8 

35 Quina Bathysa sp 13 

36 Só Brasil Colubrina glandulosa 18 

37 Sucupira Pterodon emarginatus Vogel 9 

38 Urocam 
Eucalytus urophyla x Eucalyptus 

camaldulensis 
25 

39 Urograndis 
Eucalyptus urophyla x Eucalyptus 

grandis 
31 

40 Urophylla Eucalyptus urophyla S. T. Blake 26 
 

The images were acquired using equipment with led light illumination and support for a cell phone, 

generating images with 12 megapixels and optical zoom of 20 times. As the charcoal pieces were broken, 

and not cut, there was a large amount of non-flat surfaces. With this zoom, a larger area in which there 

are no irregular breaks on the surface of the charcoal (that made it difficult to analyze the distribution of 

cellular components) could be analyzed.  
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The dataset is composed of 360 charcoal images, in which 135 images are of Eucalyptus species, and 

225 images of native species. An expert in wood anatomy analyzed the charcoal images classified them 

as Eucalyptus and native. To illustrate them, Table 2 shows information about name, quantity, and one 

image from each class. All images of charcoal dataset were categorized into two classes properly labeled: 

eucalyptus (135 images), and native (225 images). After, all images of the charcoal data set were 

randomly sampled and partitioned into five stratified sets (folds). 

Table 2: Information about each class in the dataset. 
Class Quantity 

Eucalyptus 135 

Native 225 

Total 360 

 

Image Preprocessing 

All images were resized to 224 x 224 pixels, size allowed for the input of the CNN architecture used in 

this work. Then was applied one of the preprocessing methods and used to train and test the VGG-16 

architecture.  

Figure 1 shows samples of charcoal images considering each preprocessing strategy evaluated. The 

original image from the dataset is defined as a strategy (a) (i.e., no preprocessing).  In (b), there is an 

example of contrast stretching strategy. 
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Figure 1: Contrast improvement applied in charcoal image: (a) original image (i.e. without 
preprocessing); (b) contrast stretching. Image instances from the charcoal dataset showing Eucalyptus 

(top) and native (bottom) classes. 
 

Data Augmentation 

Data augmentation is a strategy that consists of increase the training data without increasing the number 

of samples (Krizhevsky et al. 2012). In this study, we applied data augmentation based on rotations of 

the images considering angles of between 0∘ and 360∘ with steps of 45º, increasing the training set in 8 

times. 

Convolutional Neural Networks 

The main concepts addressed in the Deep Learning paradigm were obtained from Neural Networks, 

which aims to develop computer programs capable of solving problems that are difficult to solve through 

formal rules (Goodfellow et al. 2016). The main characteristic of a Convolutional Neural Network 

(CNN) is to be composed mainly of convolutional layers, and its main application is the processing of 

visual information (Ponti et al. 2017). A CNN consists of three types of neural layers, described below 

(Guo et al. 2016). 

• Convolutional: The convolutional layer is generated through a set of filters over an input image. 

Each filter is responsible for detecting a specific type of feature. Figure 2 illustrates the basic 
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structure of the convolutional layer define by 𝐶and composed by 𝑊
 filters with size of the 

spatial stent and the hyper-parameter from the input volume 𝑀ିଵ.  Finally, the convolution result 

is added to the bias 𝑏, generating 𝐾 2D feature maps stacked in an output volume 𝑀, defined by 

Equation 1 (Rodrigues et al. 2020). 

𝑀
 ൌ ∑ 𝑀ௗ

ିଵ ∗ 𝑊ௗ
  𝑏


ௗୀଵ   (1) 

 

Figure 2: Illustration of the convolutional layer. 

• Pooling: The pooling layer allows reducing the size of feature maps considering maximum or 

average pooling. The CNN architecture considered in this paper applies maximum pooling because 

this criterion results in better generalization and faster convergence (Scherer et al. 2010). Figure 3 

illustrates the maximum and average pooling considering a pooling layer with size 2 x 2. 
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Figure 3: Illustration of the pooling layer and the computations to maximum and average pooling. 

• Fully connected: The fully connected layer is present in the last layers and converted the two-

dimensional feature maps into a one-dimensional feature vector. Finally, the last layer is composed 

of softmax with neurons representing the number of classes in the dataset. Figure 4 illustrates the 

fully-connected layers after the convolutional and pooling layers and the softmax layer. 

   

  Figure 4: Illustration of the structure of fully-connected layers and softmax layer. 

Training based on fine-tuning 

The training strategy based on fine-tuning it is a practical and common approach for training deep 

learning architectures (Goodfellow et al. 2016). The network is previously trained for a classification 

task using a very large data set (Deng et al. 2009). The parameters values (weights) learned for the initial 
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layers of the network are kept (frozen), and the top layers trained over the data set of interest, which are 

intended to learn the more complex structures of the data. 

VGG-16 Architecture 

The VGG-16 network, which is composed of 13 convolutional layers, five pooling layers, and three fully-

connected (considering the softmax) (Simonyan and Zisserman 2014), was chosen due to its simplicity 

and robustness. In this study, we evaluated the VGG-16 improved with batch normalization. This strategy 

maintains the mean output close to 0 and the output standard deviation close to 1, increasing stability 

across the network and leading to a faster learning rate (Ioffe and Szegedy 2015). 

We keep fixed all convolutional layers blocks to maintain the parameters learned from training over the 

ImageNet dataset, while the top layers have their parameters adjusted using a small learning rate. Figure 

5 illustrates the VGG-16, and the blue box indicates the fixed layers. 

 

Figure 5: VGG-16 architecture. Blue box indicates the blocks of convolutional layers fixed during 
training based on fine-tuning. 

 
The training of the VGG-16 is defined as an optimization problem to improve the quality of prediction. 

In this study, we considered the loss function as the objective function. The loss function used was binary 

cross-entropy function, commonly used for binary classification problems.  In this way, we minimize 

this function using the Stochastic Gradient Descent (SGD) optimizer (Lecun et al. 1998), a popular 

optimization algorithm for parameter optimization of machine learning and deep learning models. It is 

based on a gradient descendent approximation using batches of randomly selected data samples instead 
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of computing the gradient for each object of the dataset. Thus, the SGD optimizer allows finding 

iteratively the parameter values that minimize the loss function (cross-entropy) (Goodfellow et al. 2016).  

VGG-16 was trained with a learning rate of 0,001, weight decay of 1eି, a momentum of 0.9, momentum 

Nesterov, mini-batch size of 32, REctified Linear Unit (RELU) function, and training considering 100 

epochs.  

Validation 

The validation of the classification is performed using k-fold cross-validation (Kohavi 1995) statistical 

method, which partition the data into k folds used for training and test. All images were sampled and 

partitioned into five stratified sets, i.e., the folds are build preserving (approximately) the proportion of 

examples for each class of the original set. We repeated the cross-validation five times, and for each 

iteration, one of the training folds is chosen for validation and the others for training. 

Additionally, the mean value of accuracy (Equation 2) is used to quantify the quality of the results. The 

accuracy index is based on the number of true positives (TP), true negatives (TN), false positives (FP) 

and false negative (FN), computed from the confusion matrix, that allows verifying the number of correct 

classifications as opposed to the classifications predicted for each class (Duda et al. 2000). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ ்ା்ே

்ା்ேାிାிே
 (2) 

Also, to visualize the True Positive Rate (TPR) against the False Positive Rate (FPR) at various decision 

thresholds, it was considered the Receiver Operating Characteristic (ROC). The Area Under ROC (AUC) 

is used as a reliable classification performance measure of all possible classification thresholds (Fawcett 

2006). 
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Figure 6: Approach proposed. 

 

RESULTS AND DISCUSSION 

We trained the VGG-16 architecture considering each contrast improvement strategy and average 

subtraction. Figure 7 shows the evolution of the loss values and accuracy’s for the considering the 

average of all k-fold iterations for each preprocessing strategy evaluated.  This behavior result suggests 

that the training did not overfit the data and maintaining the generalization property of the CNN. 

 
Figure 7: Evolution of accuracy values and loss values for each fold and each strategy evaluated  

 

In order to assess the values of True Positive Rate (TPR) against the False Positive Rate (FPR) we 

analyzed the ROC (AUC) for each iteration of the k-fold. The evolution of these values is shown 

graphically in Figure 8. It is important to note that an AUC upper of 80% for most of the folds results in 
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an average AUC of 84% and 81,6% for original and contrast stretching, respectively. Also, this result 

suggests that our approach is a promising method. 

 

Figure 8: ROC curves for each fold. 

The mean accuracy resulted from VGG-16 is presented in Table 3, considering each preprocessing 

strategy evaluated. The use of the original images is the best choice, resulting in a mean accuracy of 

85,8%. The data centralization performed by average image subtraction has a positive impact, 

independently of preprocessing. 

Table 3: Average test accuracy for each preprocessing strategy  
evaluated using VGG-16 architecture. 

Preprocessing Strategy Accuracy (%) 

Original 85,8 

Contrast 83,0 

 

The confusion matrices (see Table 4) allow observing some aspect of the classification problem 

investigated in this work. The presented values were obtained for training with the whole training set and 

prediction over the validation set (which is the 3rd fold). It is worth noticing that the charcoal from native 

wood is rarely misclassified as eucalyptus, which is the main objective of this research, i.e., to provide a 

computational method capable of preventing the exploitation of native wood. Although the best overall 
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result was obtained with the original images without preprocessing, it is possible to see that contrast 

widening allowed the identification of 97,78 % of native woods when fold-3 is considered.  

Figure 9 shows samples of native images classified as Eucalyptus for each strategy tested. Although the 

goal is to perform a binary classification, we found that native species with few samples in the database 

such as Cydonia oblonga Mill, Inga edulis, Prosopis juliflora, and Sclerolobium paniculatum may be 

classified as Eucalyptus. Therefore, a small number of samples of these species results in a lack of visual 

patterns. Also, we observed that the other native species misclassified presents visual patterns similar to 

Eucalyptus, like an increase in the thickness and distribution of the vessels in the center - bark direction 

(Jesus and Silva 2020). 

Table 4: Confusion Matrix of the best result for each preprocessing strategy. 
(a) Original (b) Contrast 

 Eucalyptus Native  Eucalyptus Native 

Eucalyptus 96,30 3,70 Eucalyptus 96,30 3,70 

Native 4,44 95,56 Native 2,22 97,78 

 

Figure 9: Examples of native images classified as Eucalyptus for each strategy evaluated.  
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CONCLUSIONS 

The results allow concluding that, for the classification of charcoal images, the VGG-16 architecture 

obtained better results when the augmented data set is analyzed considering the average subtraction as 

preprocessing strategy (values lying on 85,8 %, in terms of accuracy). Also, after learning the particular 

features, the VGG-16 architecture resulted from the proposed method was able to classify charcoal from 

native forests, at least, 95 % mean accuracy using original images, i.e., without preprocessing strategy, 

and considering the 5-fold cross-validation procedure. 

The presented results open new opportunities towards better exploiting deep learning for automatic 

classification between charcoal produced from planted wood (Eucalyptus), and those originated from 

native forests. As for future work, other data augmentation strategies may be tested, together with other 

normalization strategies and different types of convolutional neural networks. 
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