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Abstract 

Digital transformation is a great asset for companies that evolve and drive their 

activities towards new ways where technology is a great ally, in this evolution, 

cloud computing plays a key role for transformation. Each company measures its 

performance through a business model enabled and managed in the cloud and 

considers the customer experience to differentiate its strategy and opt for 
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technological solutions that make them different from the market competitors. As a 

strategic tool for digital transformation, moving from technological solutions from a 

local environment to one of serverless computing is the next step in the evolution 

of software. This allows software engineers to focus on coding for services, 

microservices, or functions to meet time-to-market without thinking too much on the 

complexity to implement and maintain the infrastructure. In this work, we propose a 

strategy to build and implement functions using a set of serverless runtimes 

provided by different Cloud Service Providers (CSPs). For the validation, a guided 

experimentation is carried out in three scenarios, considering the performance of 

the workload in each runtime and the average execution time of each CSP, which 

are monitored through analysis and visualization tools. The performance value 

associated with each CSP allows defining a serverless computing (FaaS) 

deployment strategy. 

Keywords: cloud computing; cloud serverless platforms; digital transformation; 

functions-as-a-service; serverless; serverless runtimes. 

 

Hacia la transformación digital: Estrategias de despliegue de funciones 

Serverless 

Resumen 

En la actualidad, la transformación digital es un gran activo para las empresas que 

evolucionan e impulsan su actividad hacia nuevas formas donde la tecnología es 

un gran aliado. En esta evolución, la computación en la nube juega un rol clave 

para dicha transformación. Cada empresa mide su desempeño a través de un 

modelo de negocio habilitado y gestionado en la nube y toma en cuenta la 

experiencia del cliente para diferenciar su estrategia y optar por soluciones 

tecnológicas que los diferencien de los competidores del mercado. Como 

herramienta estratégica para la transformación digital, pasar de soluciones 

tecnológicas desde un ambiente local a uno de computación sin servidor es el 

siguiente paso en la evolución del software. Esto permite a los ingenieros de 

software concentrarse en el código de los servicios, microservicios o funciones 

para cumplir con el time to market sin pensar mucho en la complejidad para 
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implementar y mantener la infraestructura. En este trabajo, proponemos una 

estrategia para construir e implementar funciones utilizando un conjunto de 

runtimes sin servidor provistos para diferentes Cloud Service Providers (CSP). 

Para la validación, se realiza una experimentación guiada bajo tres escenarios 

teniendo en cuenta el rendimiento de la carga de trabajo en cada runtime y el 

tiempo promedio de ejecución de cada CSP, los cuales se monitorean a través de 

herramientas de análisis y visualización.  

Palabras clave: computación en la nube; computación sin servidor; funciones 

como servicio; plataformas en la nube sin servidor; serverless runtimes; 

transformación digital. 

 

Rumo à transformação digital: estratégias de implantação de recursos sem 

servidor 

Resumo 

Atualmente, a transformação digital é um grande trunfo para empresas que 

evoluem e direcionam a sua atividade para novos caminhos onde a tecnologia é 

uma grande aliada. Nessa evolução, a computação em nuvem desempenha um 

papel fundamental nessa transformação. Cada empresa mede seu desempenho 

por meio de um modelo de negócios habilitado e gerenciado na nuvem e leva em 

consideração a experiência do cliente para diferenciar sua estratégia e optar por 

soluções tecnológicas que os diferenciam dos concorrentes de mercado. Como 

uma ferramenta estratégica para a transformação digital, passar de soluções de 

tecnologia de um ambiente local para um de computação sem servidor é o 

próximo passo na evolução do software. Isso permite que os engenheiros de 

software se concentrem no código para serviços, microsserviços ou funções para 

atender o tempo de colocação no mercado sem se preocupar muito com a 

complexidade de implementar e manter a infraestrutura. Neste trabalho, propomos 

uma estratégia para construir e implementar funções usando um conjunto de 

tempos de execução sem servidor fornecidos para diferentes Cloud Service 

Providers (CSPs). Para a validação, é realizada uma experimentação guiada em 

três cenários, levando em consideração o desempenho da carga de trabalho em 
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cada runtime e o tempo médio de execução de cada CSP, os quais são 

monitorados por meio de ferramentas de análise e visualização. 

Palavras-chave: computação em nuvem; computação sem servidor; funciona 

como um serviço; plataformas de nuvem sem servidor; tempos de execução sem 

servidor; transformação digital. 
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I. INTRODUCTION 

Today, digital transformation is enabling enterprises to increase capacity and 

integrate IT infrastructure components to improve and innovate processes, 

applications, and services used by customers and business partners [1]. This 

involves the inclusion of cultural philosophies such as DevOps [2] practices and 

tools that improve collaboration and automate deployment processes and 

continuous delivery. One of the trends in software development involves the 

decomposition of the system into functional pieces that are developed and 

deployed independently through environments that allow continuous integration 

and continuous deployment (CI/CD) [3]. Small functional pieces are known as 

services, microservices, and Function as a Service (FaaS). A service is considered 

an abstract resource that represents a specific business capability [4].  

At the software level, services expose their functionality through interfaces and 

ports to be consumed by applications or as input to compose other services 

according to business needs [5]. Microservices as architecture allow the 

composition of an application through a set of small, individual, and independent 

services that run in their process and communicate through lightweight 

mechanisms, where each service is dedicated to solving a single business 

capability [6]. Function as a Service (FaaS), as one of the categories of cloud 

computing, provides a platform that allows each small piece of code (function) to 

run, manage itself, and use computational resources only when required [7], 

simplifying the development process, especially when performing virtualizations by 

reducing execution times and operational management through cloud service 

providers [1]. 

 In this paper, we propose to evaluate the execution time of three functions written 

in Python programming language. We first benchmark Cloud Service Providers 

(CSP) such as AWS Lambda, Google Cloud Functions, Azure Functions or IBM 

Cloud Functions [9] that support FaaS implementation. Then each function is 

written following the programming model proposed by the CSPs and using 

runtimes, supported libraries, and triggers that allow evaluating the execution of the 

function in "cold start" and "warm start". Finally, to obtain results, real-time data 
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storage and analysis tools are configured to visualize the 300 invocations 

performed by each function in the CSPs. Works such as [10] exposed AWS 

Lambda and Amazon MXNET [11] as Deep learning frameworks to evaluate the 

platform capacity. Cold start and warm start are used for function execution, and 

metrics such as execution time and performance to evaluate horizontal scaling.  

The functions under study SqueezeNet [12], ResNet [13], ResNet-50 [14] are used 

in computer vision work. In [15] the performance of AWS, Microsoft Azure, Google, 

and IBM Cloud and the ability to execute compiled files containing mathematical 

functions coded in NodeJS are evaluated. Two suites of services are used for 

benchmarking, the first for automated deployment of functions and the other for the 

orchestration of parallel tasks that enable the execution of such mathematical 

functions. In [7] the performance of AWS, Azure, IBM, Google and OpenWhisk is 

evaluated when executing three functions: Fast Fourier Transformation, Matrix 

multiplication and Sleep function. The execution results show which service 

provides better performance comparing metrics such as execution time, and 

performance per resource consumption. 

 

II. METHODOLOGY 

The goal of this work is to evaluate the execution time, and performance of three 

functions written in Python for different contexts (Table 1). For the evaluation, 

experiments are designed using programming models proposed by CSP. Python 

3.6 and Python 3.7 are used to code the functions. The execution of the functions 

is performed in cold start and warm start [16] using AWS Lambda, Microsoft Azure 

Functions, Google Cloud Functions, and IBM Cloud Functions. Finally, tools such 

as Influxdb and Grafana are used for real-time analysis and monitoring of the 

functions. 

 

Table 1. Experimentation functions and requirements. 

Function 
type 

Context Description 
Requirements 

Services Libraries 

Mathematics 
Scientific- 

Mathematics 

Performs operations to 
obtain the Fast Fourier 

transform 
Not applicable Numpy 

Machine  Artificial Performs object recognition Not applicable MXNET 
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Function 
type 

Context Description 
Requirements 

Services Libraries 

Learning Inteligence in images 

General General 
Performs data backup 

operations 

AWS Dynamo DB, Azure 
Mongo DB, Google 

Datastore, IBM Cloudant 

Boto3 
PyMongo 
DataStore 
Cloudant 

 

A. Experimental Functions 

This section describes the 3 functions used to evaluate the execution time and 

performance of the runtime of each platform. Each function is coded separating the 

business logic from the entry point to the function. That is, generic code is created 

for the four platforms and the function entry point is developed based on the 

programming model specified for each CSP. 

1) Mathematical Function. This function uses mathematical procedures to 

calculate The Fast Fourier Transform (FFT). The implementation of this type of 

algorithm within a function becomes relevant by eliminating or simplifying a large 

number of repetitive processes, achieving results with lower execution costs. The 

code of the function implemented in Python shows the main procedures to find the 

frequency and magnitude of a wave, which is generated from numbers obtained at 

random. The resulting values are stored in a vector. In the function, the variable 

sample corresponds to data sent from the input function and the rate related to the 

space between samples. Explaining the function code, in lines 9 to 10, the random 

signal is generated; in line 12, the FFT is obtained; and in line 14, the FFT 

frequencies are obtained (Fig. 1). 

 

 

Fig. 1. Fast Fourier Transform function code. 
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2) Machine Learning Function. The purpose of this function is to perform 

procedures that simulate machine learning. For this purpose, Apache MXNet is 

used as a flexible and efficient library for Deep Learning. Additionally, the concept 

of convolutional neural networks is also applied in this function for the processing 

and recognition of objects in images. The code implemented in the function shows 

the use of pre-trained models taken from MXNET's own set of models (See Fig. 2). 

Explaining the code, it can be seen that in line 10 the Python-pk module, which 

must be installed on the host operating system, is deactivated. The function 

proposes 2 methods, the first one called transform (line 16 to 24) is in charge of 

preparing the image to be used by the second method called run (line 27 to 44). In 

the run method, the image prediction is performed using a training model provided 

by MXNet and this model is specified in line 35. In lines 37 to 44, the download of 

the classification labels needed for the prediction is performed. It is worth 

mentioning that the implementation of this function could not happen on the IBM 

Cloud Functions platform. In a first attempt, we tried to implement it by creating an 

implementation package that exceeds the limits of the platform (maximum 48MB, 

53MB obtained). In a second attempt, we tried to implement it using Docker, 

however, the incompatibility of MXNet to run on Linux Alpine did not allow the 

correct implementation of this feature. 
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Fig. 2. Machine Learning function code. 

 

3) General Context Function. The purpose of this function is to perform the 

processing of a file with CSV extension and store each of the records in a NoSQL 

key-value database. However, given the different NoSQL services that each cloud 

provider provides, the functions intended to be executed on the platform are coded 

according to the specifications of each of them. Therefore, 4 variants of this 

general context function are created with the objective that they interact uniquely 

and exclusively with the service provided by the CSP. Each of these variants 

implements batch insertion mechanisms, a method that proves to be optimal 

compared to record-by-record insertion. The variants of the general function coding 

according to the supported FaaS platform (Fig. 3-6) are: 

- AWS Lambda. AWS offers a Software Developer Kit available for Java, C#, PHP, 

Python that allows the use of the Python SDK called Boto3 (Fig. 3). In lines 13 to 

23, we visualize the record insertion operation in DynamoDB by implementing the 

table.batch_writer( ) method, which controls the batch size and record insertion. It 

is important to mention that within the AWS DynamoDB service, the default 
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configuration was modified to move from the free layer to the on-demand layer to 

adjust the number of computational resources required to execute the function. 

- Azure Functions. This function uses MongoDB, which is part of the CosmosDB 

service provided by Microsoft Azure (Fig. 4). Line 27 shows the implementation of 

MongoDB's collection.bulk_write method to perform bulk insertion of records. 

However, this method requires making use of a list object which is defined in line 

15 to store in memory the records to be inserted into the repository. In the 

CosmosDB service, the default values of MongoDB API and AWS DynamoDB 

related to the Request Units - RU/s are adjusted from 400 to the upper limit 

corresponding to 10,000 RU/s to improve the performance of this service. 

- IBM Cloud Functions. IBM Cloud provides the NoSQL database service called 

Cloudant. This service, like MongoDB, requires the configuration of a list object 

within the database.bulk_docs method to store the records. Such functionality is 

accessible through the specification made in line 1 from Cloudant import CouchDB 

(Fig. 5). 

- Google Cloud Functions. Google Cloud Platform provides a NoSQL service 

called Google Cloud DataStore (Fig. 6). Line 1 visualizes the use of the library 

available for Python under the same name of the service. This service allows the 

insertion of records in batches, however, the batch size must be controlled by the 

same code taking into account that a maximum of 500 records are allowed in each 

insertion (see lines 21 to 27).   
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Fig. 3. AWS Lambda. 

 

Fig. 4. Azure Functions. 

 

Fig. 5. IBM Cloud Functions. 

 

Fig. 6. Google Cloud Functions. 

 

B. Experimental Configurations 

The experiment scenario is designed to obtain runtime related metrics by 

performing 300 invocations of each function. The invocations of the CSPs are 

performed through multiprocess scheduling from a local device. To avoid 

processing overhead, a time delay is implemented between each of the 300 

invocations regardless of the completion of function processing in the serverless 

runtime [8]. The total execution time for each function is obtained by subtracting 

the completion time from the processing start time in each serverless runtime. 

1) Experimental Environment. The experimentation environment consists of 3 
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components: (1) deployment and configuration of the functions on serverless 

platforms; (2) invocation towards the HTTP endpoints generated by the HTTP 

triggers for each function; and (3) analysis and monitoring tools to store and 

visualize the results of each execution in a Local and Cloud Environment (Fig. 7). 

In the Cloud Environment, the functions are hosted together with their main 

dependencies and in the Local Environment the invocations are performed and the 

results of the invocations are stored. This scheme also shows the interaction of the 

client with each platform, which starts with a request to invoke the function; after 

finishing the execution, the platform uses a response that contains the execution 

time of the function. These values are stored locally within InfluxDB and queried 

through the Grafana graphical interface. Within the Local Environment, the 

invocations are managed by a script that coordinates their simultaneous sending to 

the CSPs and the respective time delay established between each invocation. 

 

 

Fig. 7. Cloud Environment. 

 
There are platform-specific characteristics that condition the execution of the 

functions (runtime, execution time, memory, etc.). Table 2 shows the values 
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configured in the platforms, the Python runtime version, the maximum execution 

time of each function, the deployment regions used in each CSP, and the memory 

allocated to each function. From these, it is highlighted that in Azure Functions the 

allocation is dynamically performed up to 1536MB limits as the platform sees fit. 

 

Table 2. Cloud Platforms Configuration. 

 AWS 
Lambda 

Azure Cloud  
Functions 

Google Cloud  
Functions 

IBM Cloud 
Functions 

Runtime Python 3.7 Python 3.6 Python 3.7 Python 3.7 

Memory 3008 Dynamic 2048 2048 

Time 15 10 9 10 

NoSQL Service On Demand 
layer 

10.000 Rus Default Free Layer 

Region us-east-1 us-east us-central1 Dallas 

 

Table 3 shows the number of invocations that the client performs on the platform. It 

also shows the size of the image files whose format is .jpg. These files are used for 

the Machine Learning function to perform object recognition on images. In addition, 

the size of the file with extension .CSV and the number of records it contains − 

which are processed in the general context function − are shown. Finally, the table 

also shows the size of the registers configured for the variable samples and that 

are required for the mathematical function to simulate a digital signal randomly 

generated by the function itself.  

 

Table 3. Initial Conditions for Implementation. 

Function Number of invocations Samples (records) File size 

Mathematics 

300 

20097152 Not applicable- 

Machine Learning 10,000 8349 kB 

General Context Not applicable 15.6 kB 

 

III. RESULTS 

The results and metrics obtained by performing the experiments with 300 

invocations for each function are shown below:  

 

A. Mathematical Function 

The execution times of the mathematical function that obtains The Fast Fourier 

Transform (FFT) are presented in Fig. 8, where it is visualized that the AWS 
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platform provides better performance than Azure Functions when performing 300 

invocations of the function. The period spent is approximately 6 hours. The 

requests were performed simultaneously on each platform with a 60 seconds 

difference between each request. 

 

 

 

Fig. 8. Results of mathematical function execution. 
 

Fig. 9. Performance per platform when 

invoking the mathematical function. 

 

Fig. 9 shows the individual performance per platform according to the provider of 

service. For this purpose, the time invested to execute the mathematical function is 

considered; as part of the results, AWS Lambda presents a certain degree of 

homogeneous performance in contrast to the rest of the platform, since there is no 

evidence of variations in the performance peaks. However, if we visualize its 

performance individually, there is a constant variation in the time used to perform 

the 300 executions of the function. There is relative similarity with the times 

obtained using IBM Cloud Functions and Google Cloud Functions. However, the 

minimum times of these 2 platforms are above the maximum times achieved by 

AWS Lambda, accentuating the fact of presenting constant variations with respect 

to the execution times in the 3 platforms (AWS Lambda, IBM Cloud Functions and 

Google Cloud Functions). To establish a benchmark with respect to execution time, 

Table 4 shows the most representative times (minimum, maximum, and average) 

obtained on each platform. It can be seen that the longest execution time in AWS 

Lambda is well below the shortest execution times of the other platforms. The 
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relative similarity in the average time spent in the execution of this function in the 

IBM and Google platforms is also evident; however, there is a 1 second difference, 

therefore, in Google there is better use and provisioning of computational 

resources.  Finally, we can highlight the high consumption of time invested by 

Azure Functions, a platform that invests about 2 times more average time in the 

execution compared to the average obtained in AWS Lambda. 

 

Table 4. Time Distribution Calculation. 

Platform Minimum time Maximum Time Average 

AWS Lambda 24 s 26 s 24 s 

Azure Functions 50 s 93.6 s 53 s 

Google Cloud Functions 33 s 43 s 37 s 

IBM Cloud Functions 35 s 41 s 38 s 

 

B. Machine Learning Function 

The execution times of the Machine Learning function in AWS, Azure, and Google 

are presented in Fig. 10. It is important to note that in each one the request is 

made for the 3 platforms to simultaneously execute the function code with 1 

second difference between each of the requests. Finally, it can be seen that AWS 

has better performance with respect to function execution. 

 

 

 

Fig. 10. Machine Learning function execution times. 

 

 

Fig. 11. Performance per platform when 

invoking Machine Learning function, 

 

 

Fig. 11 shows the different performance values in terms of execution time (Y-axis) 

that have been employed by each platform at certain stretches of the request 
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period (X-axis).  It can be concluded that Azure Functions runtime spends more 

time compared to AWS Lambda and GoogleCloud Functions. Google presents 

marked fluctuations in the peaks with high and low performance in FaaS platform 

presented during the period of request, denoting an unstable and unpredictable 

behavior. However, it is also established that despite the behavior found in Google 

Cloud Functions, this platform improves the average performance obtained in 

Azure Functions but remains relatively far from that achieved by AWS Lambda. 

Table 5 presents, in summary, the most significant times obtained during the 

execution of this function. The platform provided by Google executes this function 

with lower time consumption compared to Azure Functions which needs a high 

time range. However, AWS Lambda still evidences the best performance by 

presenting less time to obtain the same results compared to Google and Azure 

platforms. 

 

Table 5. Distribution of calculation times. 

Platform Minimum time Maximum Time Average 

AWS Lambda 500 ms 2.617 s 544 ms 

Azure Functions 829 ms 3.725 s 978 ms 

Google Cloud Functions 716 ms 1.591 s 878 ms 

 

It is worth mentioning the implementation of this function has not been possible in 

the IBM Cloud Functions platform. In a first attempt we tried to implement it by 

creating an implementation package that exceeds the limits of the platform 

(maximum 48MB, obtained 53MB), in second instance we tried to implement it 

using Docker, however, the incompatibility of MXNet to run on Linux Alpine 

truncated the correct implementation of this function. 

 

C. General Context Function 

Regarding the general context function, the results obtained from the execution 

times of the function in the 4 platforms are shown in Fig. 12, where it is evident that 

IBM provides the best performance. 
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Fig. 12. General context function. 

 

Fig. 13. Performance per platform when 

invoking the general function. 

 

Fig. 13 shows the results of the execution of this function segmented by CSP. The 

unstable or unpredictable behavior of each platform can be observed. Despite this, 

better stability is observed when executing this function on the Microsoft Azure 

platform. Similarly, a marked difference is shown in the AWS and IBM platforms 

with those of Azure and Google, where although this function is subject to the 

operation of NoSQL services, the execution times obtained with IBM Cloud are 

lower than those of Azure Functions (optimized NoSQL service) and Google Cloud 

Functions. However, these times are high compared to those of AWS Lambda 

(optimized NoSQL service); notwithstanding, they can be considered acceptable 

bearing in mind that no modifications were made to IBM Cloudant. Another 

noteworthy aspect lies in the time invested by Google Cloud Functions where the 

fact of finding limitations concerning the size of the batches sent can become a 

variable that directly affects the optimal execution of the function. In addition, the 

low performance of Azure Functions when executing this function is visualized. 

Finally, despite the modifications made to its NoSQL service, the average 

execution time of this function is above those obtained by the rest of the platforms. 

Table 6 summarizes the most relevant times during the execution of the functions 

on each platform. This table shows that while in AWS Lambda the insertion of 

10000 records is performed in less than half a second, Google Cloud Functions 
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takes about 2 minutes to perform the same operation. In addition, the average time 

consumption of the executions in IBM Cloud Functions denotes better performance 

when compared to the times presented in Azure Functions, although they were 

executed on the free layer of IBM's NoSQL service. 

 

Table 6. Distribution of calculation times. 

Platform Minimum Time Maximum Time Average 

AWS Lambda 421 ms 682 ms 496 ms 

Azure Functions 52 s 1.64 min 56 s 

Google Cloud Functions 1.59 min 1.90 min 1.66 min 

IBM Cloud Functions 2 s 3 s 2 s 

 

IV. CONCLUSIONS AND DISCUSSION 

After performing the experiments with 300 invocations for each function on different 

platforms, it can be mentioned that AWS Lambda provides runtimes with higher 

stability that consume fewer resources, improving function execution times 

regardless of their context. Experimentation results also show instability on 

platforms such as Azure Functions with the Python runtime, which generates high 

execution times compared to the other platforms. It should be noted that the IBM 

service for NoSQL database (Cloudant) did not undergo modifications and it was 

possible to use the free layer, unlike the optimization performed on AWS, 

DynamoDB, and Azure CosmosDB-MongoDB API where performance can be 

improved by moving from the free layer to the standard layer. It is important to 

highlight the performance obtained by Google Cloud Functions when running AI 

context functions where, despite not having obtained the best execution time, it is 

close to AWS Lambda time. The light version of Linux (Linux Apline) implemented 

in IBM Cloud Functions containers (Apache Openwhisk) has incompatibility with 

some libraries, which ultimately prevents the use and exploitation of this platform.  

As conclusions, serverless architectures have emerged as an alternative in terms 

of empowerment and innovation of new services. CSPs use different features, 

languages, and programming models within their FaaS platforms, which allow 

identifying variations in the availability of runtimes. For example, the addition of 

support for code written in Ruby and Go in AWS Lambda and Google, respectively. 
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In addition to status changes regarding the availability of Python in Azure 

Functions, or the extension of the memory allocation limit from 512MB to 2048 MB 

in IBM Cloud Functions. The different runtime options provided by FaaS platforms 

allow the selection of the programming language according to the needs of each 

component (function) of a serverless architecture, including the selection of 

libraries to satisfy code dependencies. At the programming language level, Python 

presents the best characteristics in terms of platform support, due to the existence 

of libraries that adapt to the limitations of these for the creation of experimentation 

functions. The results obtained when executing the experimentation functions have 

allowed comparing different behaviors on each platform, where AWS Lambda 

stands out because it spends less time executing the functions, unlike the rest of 

the analyzed platforms. 

 

AUTHOR’S CONTRIBUTION 

Armando Cabrera-Silva: supervision, investigation, writing – original draft. 

José Carrillo-Verdún: supervision, methodology, writing – review & editing. 

Patricio Martínez-Palacios: experimental design, validation. 

Daniel-Alejandto Guamán-Coronel: writing – original draft, validation. 

 

FUNDING 

This article is the result of the research project "Construction of an Architectural 

Framework for the Management of Customer-Centric Digital Enterprises" 

developed jointly by the Department of Computer Science and Electronics of 

Universidad Técnica Particular de Loja - UTPL and the Faculty of Computer 

Science of the Universidad Politécnica de Madrid - UPM. 

 

REFERENCES 

[1] M. Smith, P. R. Saunders, L. Lyons, A Practical Guide to Microservices and containers, 2018. 

[2] W. Gottesheim, “Challenges, benefits and best practices of performance focused DevOps,” in 

Proceedings of the 4th International Workshop on Large-Scale Testing, 2015, p. 3. 

https://doi.org/10.1145/2693182.2693187  

[3] T. Kohlborn, A. Korthaus, T. Chan, M. Rosemann, “Identification and analysis of business and software 

services-a consolidated approach,” IEEE Transactions on Services Computing, vol. 2, no. 1, pp. 50–64, 

https://doi.org/10.19053/01211129.v30.n56.2021.12776
https://doi.org/10.1145/2693182.2693187


Towards Digital Transformation: Serverless Function Deployment Strategies 

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 30 (56), e12776. April-June 2021. Tunja-Boyacá, 
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328. 

DOI: https://doi.org/10.19053/01211129.v30.n56.2021.12776  

2009. https://doi.org/10.1109/TSC.2009.6  

[4] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, vol. 2nd. 2012. 

[5] H. Lee, K. Satyam, G. Fox, “Evaluation of production serverless computing environments,” in IEEE 11th 

International Conference on Cloud Computing (CLOUD), 2018, pp. 442–450. 

https://doi.org/10.1109/CLOUD.2018.00062  

[6] J. Lewis, M. Fowler, “Microservices: a definition of this new architectural term,” 2014. 

https://martinfowler.com/articles/microservices.html  

[7] T. Back, V. Andrikopoulos, “Using a microbenchmark to compare function as a service solutions,” in 

Lecture Notes in Computer Science, Springer, 2018. https://doi.org/10.1007/978-3-319-99819-0_11  

[8] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian, N. Mitchell, V. Muthusamy, R. Rabbah, A. 

Slominski, P. Suter, “Serverless computing: Current trends and open problems,” Research Advances in 

Cloud Computing, Springer, 2017, pp. 1–20. https://doi.org/10.1007/978-981-10-5026-8_1  

[9] D. Poccia, AWS Lambda in Action: Event-driven serverless applications. Manning Publications Co., 2016. 

[10] V. Ishakian, V. Muthusamy, A. Slominski, “Serving Deep Learning Models in a Serverless Platform,” in 

IEEE International Conference on Cloud Engineering (IC2E), 2018, pp. 257–262. 

[11] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, Z. Zhang, “Mxnet: A flexible 

and efficient machine learning library for heterogeneous distributed systems,” in Workshop on Machine 

Learning Systems, 2016. https://arxiv.org/abs/1512.01274  

[12] B. Wu, F. Iandola, P. H. Jin, K. Keutzer, “Squeezedet: Unified, small, low power fully convolutional neural 

networks for real-time object detection for autonomous driving,” in Proceedings of the IEEE Conference 

on Computer Vision and Pattern Recognition Workshops, 2017, pp. 129–137. 

https://doi.org/10.1109/CVPRW.2017.60  

[13] H. Lin, S. Jegelka, “Resnet with one-neuron hidden layers is a universal approximator,” in Advances in 

neural information processing systems, 2018, pp. 6169–6178. https://doi.org/10.5555/3327345.3327515  

[14] L. Wen, X. Li, L. Gao, “A transfer convolutional neural network for fault diagnosis based on ResNet-50,” 

Neural Computing and Applications, vol. 32, pp. 6111–6124, 2020. https://doi.org/10.1007/s00521-019-

04097-w  

[15] K. Figiela, A. Gajek, A. Zima, B. Obrok, M. Malawski, “Performance evaluation of heterogeneous cloud 

functions,” Concurrency and Computation: Practice and Experience, vol. 30, no. 23, e4792. 

https://doi.org/10.1002/cpe.4792  

[16] J. Manner, M. Endreß, T. Heckel, G. Wirtz, “Cold start influencing factors in function as a service,” in 

IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion), 

2018, pp. 181–188. 

https://doi.org/10.19053/01211129.v30.n56.2021.12776
https://doi.org/10.1109/TSC.2009.6
https://doi.org/10.1109/CLOUD.2018.00062
https://martinfowler.com/articles/microservices.html
https://doi.org/10.1007/978-3-319-99819-0_11
https://doi.org/10.1007/978-981-10-5026-8_1
https://arxiv.org/abs/1512.01274
https://doi.org/10.1109/CVPRW.2017.60
https://doi.org/10.5555/3327345.3327515
https://doi.org/10.1007/s00521-019-04097-w
https://doi.org/10.1007/s00521-019-04097-w
https://doi.org/10.1002/cpe.4792

