
Revista Facultad de Ingeniería, 30 (56), 2021, e12776

Revista Facultad de Ingeniería
Journal Homepage:

https://revistas.uptc.edu.co/index.php/ingenieria

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 30 (56), e12776. April-June 2021. Tunja-Boyacá,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.

DOI: https://doi.org/10.19053/01211129.v30.n56.2021.12776

Towards Digital Transformation:
Serverless Function Deployment

Strategies

Armando Cabrera-Silva1

José Carrillo-Verdún2

Patricio Martínez-Palacios3

Daniel-Alejandro Guamán-Coronel4

Received: March 12, 2021 Accepted: April 05, 2021 Published: April 20, 2021

Citation: A. Cabrera-Silva, J. Carrillo-Verdún, P. Martínez-Palacios, D.-A. Guamán-Coronel,

“Towards Digital Transformation: Serverless Function Deployment Strategies,” Revista Facultad

de Ingeniería, vol. 30 (56), e12776, 2021.

https://doi.org/10.19053/01211129.v30.n56.2021.12776

Abstract

Digital transformation is a great asset for companies that evolve and drive their

activities towards new ways where technology is a great ally, in this evolution,

cloud computing plays a key role for transformation. Each company measures its

performance through a business model enabled and managed in the cloud and

considers the customer experience to differentiate its strategy and opt for

1 M. Sc. Universidad Politécnica de Madrid (Madrid, España). armando.cabrerasilva@alumnos.upm.es.
ORCID: 0000-0002-3465-2440
2 Ph. D. Universidad Politécnica de Madrid (Madrid, España). jcarrillo@fi.upm.es
3 Universidad Técnica Particular de Loja (Loja, Ecuador). jpmartinez1@utpl.edu.ec. ORCID: 0000-0002-2390-
3291
4 M. Sc. Universidad Técnica Particular de Loja (Loja, Ecuador). daguaman@utpl.edu.ec. ORCID: 0000-0002-
2681-565X

https://revistas.uptc.edu.co/index.php/ingenieria
https://doi.org/10.19053/01211129.v30.n56.2021.12776
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.19053/01211129.v30.n56.2021.12776
mailto:armando.cabrerasilva@alumnos.upm.es
https://orcid.org/0000-0002-3465-2440
mailto:jcarrillo@fi.upm.es
mailto:jpmartinez1@utpl.edu.ec
https://orcid.org/0000-0002-2390-3291
https://orcid.org/0000-0002-2390-3291
mailto:daguaman@utpl.edu.ec
https://orcid.org/0000-0002-2681-565X
https://orcid.org/0000-0002-2681-565X

Towards Digital Transformation: Serverless Function Deployment Strategies

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 30 (56), e12776. April-June 2021. Tunja-Boyacá,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.

DOI: https://doi.org/10.19053/01211129.v30.n56.2021.12776

technological solutions that make them different from the market competitors. As a

strategic tool for digital transformation, moving from technological solutions from a

local environment to one of serverless computing is the next step in the evolution

of software. This allows software engineers to focus on coding for services,

microservices, or functions to meet time-to-market without thinking too much on the

complexity to implement and maintain the infrastructure. In this work, we propose a

strategy to build and implement functions using a set of serverless runtimes

provided by different Cloud Service Providers (CSPs). For the validation, a guided

experimentation is carried out in three scenarios, considering the performance of

the workload in each runtime and the average execution time of each CSP, which

are monitored through analysis and visualization tools. The performance value

associated with each CSP allows defining a serverless computing (FaaS)

deployment strategy.

Keywords: cloud computing; cloud serverless platforms; digital transformation;

functions-as-a-service; serverless; serverless runtimes.

Hacia la transformación digital: Estrategias de despliegue de funciones

Serverless

Resumen

En la actualidad, la transformación digital es un gran activo para las empresas que

evolucionan e impulsan su actividad hacia nuevas formas donde la tecnología es

un gran aliado. En esta evolución, la computación en la nube juega un rol clave

para dicha transformación. Cada empresa mide su desempeño a través de un

modelo de negocio habilitado y gestionado en la nube y toma en cuenta la

experiencia del cliente para diferenciar su estrategia y optar por soluciones

tecnológicas que los diferencien de los competidores del mercado. Como

herramienta estratégica para la transformación digital, pasar de soluciones

tecnológicas desde un ambiente local a uno de computación sin servidor es el

siguiente paso en la evolución del software. Esto permite a los ingenieros de

software concentrarse en el código de los servicios, microservicios o funciones

para cumplir con el time to market sin pensar mucho en la complejidad para

https://doi.org/10.19053/01211129.v30.n56.2021.12776

Armando Cabrera-Silva; José Carrillo-Verdún; Patricio Martínez-Palacios; Daniel-Alejandro Guamán-Coronel

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 30 (56), e12776. April-June 2021. Tunja-Boyacá,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.

DOI: https://doi.org/10.19053/01211129.v30.n56.2021.12776

implementar y mantener la infraestructura. En este trabajo, proponemos una

estrategia para construir e implementar funciones utilizando un conjunto de

runtimes sin servidor provistos para diferentes Cloud Service Providers (CSP).

Para la validación, se realiza una experimentación guiada bajo tres escenarios

teniendo en cuenta el rendimiento de la carga de trabajo en cada runtime y el

tiempo promedio de ejecución de cada CSP, los cuales se monitorean a través de

herramientas de análisis y visualización.

Palabras clave: computación en la nube; computación sin servidor; funciones

como servicio; plataformas en la nube sin servidor; serverless runtimes;

transformación digital.

Rumo à transformação digital: estratégias de implantação de recursos sem

servidor

Resumo

Atualmente, a transformação digital é um grande trunfo para empresas que

evoluem e direcionam a sua atividade para novos caminhos onde a tecnologia é

uma grande aliada. Nessa evolução, a computação em nuvem desempenha um

papel fundamental nessa transformação. Cada empresa mede seu desempenho

por meio de um modelo de negócios habilitado e gerenciado na nuvem e leva em

consideração a experiência do cliente para diferenciar sua estratégia e optar por

soluções tecnológicas que os diferenciam dos concorrentes de mercado. Como

uma ferramenta estratégica para a transformação digital, passar de soluções de

tecnologia de um ambiente local para um de computação sem servidor é o

próximo passo na evolução do software. Isso permite que os engenheiros de

software se concentrem no código para serviços, microsserviços ou funções para

atender o tempo de colocação no mercado sem se preocupar muito com a

complexidade de implementar e manter a infraestrutura. Neste trabalho, propomos

uma estratégia para construir e implementar funções usando um conjunto de

tempos de execução sem servidor fornecidos para diferentes Cloud Service

Providers (CSPs). Para a validação, é realizada uma experimentação guiada em

três cenários, levando em consideração o desempenho da carga de trabalho em

https://doi.org/10.19053/01211129.v30.n56.2021.12776

Towards Digital Transformation: Serverless Function Deployment Strategies

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 30 (56), e12776. April-June 2021. Tunja-Boyacá,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.

DOI: https://doi.org/10.19053/01211129.v30.n56.2021.12776

cada runtime e o tempo médio de execução de cada CSP, os quais são

monitorados por meio de ferramentas de análise e visualização.

Palavras-chave: computação em nuvem; computação sem servidor; funciona

como um serviço; plataformas de nuvem sem servidor; tempos de execução sem

servidor; transformação digital.

https://doi.org/10.19053/01211129.v30.n56.2021.12776

Armando Cabrera-Silva; José Carrillo-Verdún; Patricio Martínez-Palacios; Daniel-Alejandro Guamán-Coronel

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 30 (56), e12776. April-June 2021. Tunja-Boyacá,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.

DOI: https://doi.org/10.19053/01211129.v30.n56.2021.12776

I. INTRODUCTION

Today, digital transformation is enabling enterprises to increase capacity and

integrate IT infrastructure components to improve and innovate processes,

applications, and services used by customers and business partners [1]. This

involves the inclusion of cultural philosophies such as DevOps [2] practices and

tools that improve collaboration and automate deployment processes and

continuous delivery. One of the trends in software development involves the

decomposition of the system into functional pieces that are developed and

deployed independently through environments that allow continuous integration

and continuous deployment (CI/CD) [3]. Small functional pieces are known as

services, microservices, and Function as a Service (FaaS). A service is considered

an abstract resource that represents a specific business capability [4].

At the software level, services expose their functionality through interfaces and

ports to be consumed by applications or as input to compose other services

according to business needs [5]. Microservices as architecture allow the

composition of an application through a set of small, individual, and independent

services that run in their process and communicate through lightweight

mechanisms, where each service is dedicated to solving a single business

capability [6]. Function as a Service (FaaS), as one of the categories of cloud

computing, provides a platform that allows each small piece of code (function) to

run, manage itself, and use computational resources only when required [7],

simplifying the development process, especially when performing virtualizations by

reducing execution times and operational management through cloud service

providers [1].

 In this paper, we propose to evaluate the execution time of three functions written

in Python programming language. We first benchmark Cloud Service Providers

(CSP) such as AWS Lambda, Google Cloud Functions, Azure Functions or IBM

Cloud Functions [9] that support FaaS implementation. Then each function is

written following the programming model proposed by the CSPs and using

runtimes, supported libraries, and triggers that allow evaluating the execution of the

function in "cold start" and "warm start". Finally, to obtain results, real-time data

https://doi.org/10.19053/01211129.v30.n56.2021.12776

Towards Digital Transformation: Serverless Function Deployment Strategies

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 30 (56), e12776. April-June 2021. Tunja-Boyacá,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.

DOI: https://doi.org/10.19053/01211129.v30.n56.2021.12776

storage and analysis tools are configured to visualize the 300 invocations

performed by each function in the CSPs. Works such as [10] exposed AWS

Lambda and Amazon MXNET [11] as Deep learning frameworks to evaluate the

platform capacity. Cold start and warm start are used for function execution, and

metrics such as execution time and performance to evaluate horizontal scaling.

The functions under study SqueezeNet [12], ResNet [13], ResNet-50 [14] are used

in computer vision work. In [15] the performance of AWS, Microsoft Azure, Google,

and IBM Cloud and the ability to execute compiled files containing mathematical

functions coded in NodeJS are evaluated. Two suites of services are used for

benchmarking, the first for automated deployment of functions and the other for the

orchestration of parallel tasks that enable the execution of such mathematical

functions. In [7] the performance of AWS, Azure, IBM, Google and OpenWhisk is

evaluated when executing three functions: Fast Fourier Transformation, Matrix

multiplication and Sleep function. The execution results show which service

provides better performance comparing metrics such as execution time, and

performance per resource consumption.

II. METHODOLOGY

The goal of this work is to evaluate the execution time, and performance of three

functions written in Python for different contexts (Table 1). For the evaluation,

experiments are designed using programming models proposed by CSP. Python

3.6 and Python 3.7 are used to code the functions. The execution of the functions

is performed in cold start and warm start [16] using AWS Lambda, Microsoft Azure

Functions, Google Cloud Functions, and IBM Cloud Functions. Finally, tools such

as Influxdb and Grafana are used for real-time analysis and monitoring of the

functions.

Table 1. Experimentation functions and requirements.

Function
type

Context Description
Requirements

Services Libraries

Mathematics
Scientific-

Mathematics

Performs operations to
obtain the Fast Fourier

transform
Not applicable Numpy

Machine Artificial Performs object recognition Not applicable MXNET

https://doi.org/10.19053/01211129.v30.n56.2021.12776

Armando Cabrera-Silva; José Carrillo-Verdún; Patricio Martínez-Palacios; Daniel-Alejandro Guamán-Coronel

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 30 (56), e12776. April-June 2021. Tunja-Boyacá,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.

DOI: https://doi.org/10.19053/01211129.v30.n56.2021.12776

Function
type

Context Description
Requirements

Services Libraries

Learning Inteligence in images

General General
Performs data backup

operations

AWS Dynamo DB, Azure
Mongo DB, Google

Datastore, IBM Cloudant

Boto3
PyMongo
DataStore
Cloudant

A. Experimental Functions

This section describes the 3 functions used to evaluate the execution time and

performance of the runtime of each platform. Each function is coded separating the

business logic from the entry point to the function. That is, generic code is created

for the four platforms and the function entry point is developed based on the

programming model specified for each CSP.

1) Mathematical Function. This function uses mathematical procedures to

calculate The Fast Fourier Transform (FFT). The implementation of this type of

algorithm within a function becomes relevant by eliminating or simplifying a large

number of repetitive processes, achieving results with lower execution costs. The

code of the function implemented in Python shows the main procedures to find the

frequency and magnitude of a wave, which is generated from numbers obtained at

random. The resulting values are stored in a vector. In the function, the variable

sample corresponds to data sent from the input function and the rate related to the

space between samples. Explaining the function code, in lines 9 to 10, the random

signal is generated; in line 12, the FFT is obtained; and in line 14, the FFT

frequencies are obtained (Fig. 1).

Fig. 1. Fast Fourier Transform function code.

https://doi.org/10.19053/01211129.v30.n56.2021.12776

Towards Digital Transformation: Serverless Function Deployment Strategies

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 30 (56), e12776. April-June 2021. Tunja-Boyacá,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.

DOI: https://doi.org/10.19053/01211129.v30.n56.2021.12776

2) Machine Learning Function. The purpose of this function is to perform

procedures that simulate machine learning. For this purpose, Apache MXNet is

used as a flexible and efficient library for Deep Learning. Additionally, the concept

of convolutional neural networks is also applied in this function for the processing

and recognition of objects in images. The code implemented in the function shows

the use of pre-trained models taken from MXNET's own set of models (See Fig. 2).

Explaining the code, it can be seen that in line 10 the Python-pk module, which

must be installed on the host operating system, is deactivated. The function

proposes 2 methods, the first one called transform (line 16 to 24) is in charge of

preparing the image to be used by the second method called run (line 27 to 44). In

the run method, the image prediction is performed using a training model provided

by MXNet and this model is specified in line 35. In lines 37 to 44, the download of

the classification labels needed for the prediction is performed. It is worth

mentioning that the implementation of this function could not happen on the IBM

Cloud Functions platform. In a first attempt, we tried to implement it by creating an

implementation package that exceeds the limits of the platform (maximum 48MB,

53MB obtained). In a second attempt, we tried to implement it using Docker,

however, the incompatibility of MXNet to run on Linux Alpine did not allow the

correct implementation of this feature.

https://doi.org/10.19053/01211129.v30.n56.2021.12776

Armando Cabrera-Silva; José Carrillo-Verdún; Patricio Martínez-Palacios; Daniel-Alejandro Guamán-Coronel

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 30 (56), e12776. April-June 2021. Tunja-Boyacá,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.

DOI: https://doi.org/10.19053/01211129.v30.n56.2021.12776

Fig. 2. Machine Learning function code.

3) General Context Function. The purpose of this function is to perform the

processing of a file with CSV extension and store each of the records in a NoSQL

key-value database. However, given the different NoSQL services that each cloud

provider provides, the functions intended to be executed on the platform are coded

according to the specifications of each of them. Therefore, 4 variants of this

general context function are created with the objective that they interact uniquely

and exclusively with the service provided by the CSP. Each of these variants

implements batch insertion mechanisms, a method that proves to be optimal

compared to record-by-record insertion. The variants of the general function coding

according to the supported FaaS platform (Fig. 3-6) are:

- AWS Lambda. AWS offers a Software Developer Kit available for Java, C#, PHP,

Python that allows the use of the Python SDK called Boto3 (Fig. 3). In lines 13 to

23, we visualize the record insertion operation in DynamoDB by implementing the

table.batch_writer() method, which controls the batch size and record insertion. It

is important to mention that within the AWS DynamoDB service, the default

https://doi.org/10.19053/01211129.v30.n56.2021.12776

Towards Digital Transformation: Serverless Function Deployment Strategies

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 30 (56), e12776. April-June 2021. Tunja-Boyacá,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.

DOI: https://doi.org/10.19053/01211129.v30.n56.2021.12776

configuration was modified to move from the free layer to the on-demand layer to

adjust the number of computational resources required to execute the function.

- Azure Functions. This function uses MongoDB, which is part of the CosmosDB

service provided by Microsoft Azure (Fig. 4). Line 27 shows the implementation of

MongoDB's collection.bulk_write method to perform bulk insertion of records.

However, this method requires making use of a list object which is defined in line

15 to store in memory the records to be inserted into the repository. In the

CosmosDB service, the default values of MongoDB API and AWS DynamoDB

related to the Request Units - RU/s are adjusted from 400 to the upper limit

corresponding to 10,000 RU/s to improve the performance of this service.

- IBM Cloud Functions. IBM Cloud provides the NoSQL database service called

Cloudant. This service, like MongoDB, requires the configuration of a list object

within the database.bulk_docs method to store the records. Such functionality is

accessible through the specification made in line 1 from Cloudant import CouchDB

(Fig. 5).

- Google Cloud Functions. Google Cloud Platform provides a NoSQL service

called Google Cloud DataStore (Fig. 6). Line 1 visualizes the use of the library

available for Python under the same name of the service. This service allows the

insertion of records in batches, however, the batch size must be controlled by the

same code taking into account that a maximum of 500 records are allowed in each

insertion (see lines 21 to 27).

https://doi.org/10.19053/01211129.v30.n56.2021.12776

Armando Cabrera-Silva; José Carrillo-Verdún; Patricio Martínez-Palacios; Daniel-Alejandro Guamán-Coronel

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 30 (56), e12776. April-June 2021. Tunja-Boyacá,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.

DOI: https://doi.org/10.19053/01211129.v30.n56.2021.12776

Fig. 3. AWS Lambda.

Fig. 4. Azure Functions.

Fig. 5. IBM Cloud Functions.

Fig. 6. Google Cloud Functions.

B. Experimental Configurations

The experiment scenario is designed to obtain runtime related metrics by

performing 300 invocations of each function. The invocations of the CSPs are

performed through multiprocess scheduling from a local device. To avoid

processing overhead, a time delay is implemented between each of the 300

invocations regardless of the completion of function processing in the serverless

runtime [8]. The total execution time for each function is obtained by subtracting

the completion time from the processing start time in each serverless runtime.

1) Experimental Environment. The experimentation environment consists of 3

https://doi.org/10.19053/01211129.v30.n56.2021.12776

Towards Digital Transformation: Serverless Function Deployment Strategies

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 30 (56), e12776. April-June 2021. Tunja-Boyacá,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.

DOI: https://doi.org/10.19053/01211129.v30.n56.2021.12776

components: (1) deployment and configuration of the functions on serverless

platforms; (2) invocation towards the HTTP endpoints generated by the HTTP

triggers for each function; and (3) analysis and monitoring tools to store and

visualize the results of each execution in a Local and Cloud Environment (Fig. 7).

In the Cloud Environment, the functions are hosted together with their main

dependencies and in the Local Environment the invocations are performed and the

results of the invocations are stored. This scheme also shows the interaction of the

client with each platform, which starts with a request to invoke the function; after

finishing the execution, the platform uses a response that contains the execution

time of the function. These values are stored locally within InfluxDB and queried

through the Grafana graphical interface. Within the Local Environment, the

invocations are managed by a script that coordinates their simultaneous sending to

the CSPs and the respective time delay established between each invocation.

Fig. 7. Cloud Environment.

There are platform-specific characteristics that condition the execution of the

functions (runtime, execution time, memory, etc.). Table 2 shows the values

https://doi.org/10.19053/01211129.v30.n56.2021.12776

Armando Cabrera-Silva; José Carrillo-Verdún; Patricio Martínez-Palacios; Daniel-Alejandro Guamán-Coronel

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 30 (56), e12776. April-June 2021. Tunja-Boyacá,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.

DOI: https://doi.org/10.19053/01211129.v30.n56.2021.12776

configured in the platforms, the Python runtime version, the maximum execution

time of each function, the deployment regions used in each CSP, and the memory

allocated to each function. From these, it is highlighted that in Azure Functions the

allocation is dynamically performed up to 1536MB limits as the platform sees fit.

Table 2. Cloud Platforms Configuration.

 AWS
Lambda

Azure Cloud
Functions

Google Cloud
Functions

IBM Cloud
Functions

Runtime Python 3.7 Python 3.6 Python 3.7 Python 3.7

Memory 3008 Dynamic 2048 2048

Time 15 10 9 10

NoSQL Service On Demand
layer

10.000 Rus Default Free Layer

Region us-east-1 us-east us-central1 Dallas

Table 3 shows the number of invocations that the client performs on the platform. It

also shows the size of the image files whose format is .jpg. These files are used for

the Machine Learning function to perform object recognition on images. In addition,

the size of the file with extension .CSV and the number of records it contains −

which are processed in the general context function − are shown. Finally, the table

also shows the size of the registers configured for the variable samples and that

are required for the mathematical function to simulate a digital signal randomly

generated by the function itself.

Table 3. Initial Conditions for Implementation.

Function Number of invocations Samples (records) File size

Mathematics

300

20097152 Not applicable-

Machine Learning 10,000 8349 kB

General Context Not applicable 15.6 kB

III. RESULTS

The results and metrics obtained by performing the experiments with 300

invocations for each function are shown below:

A. Mathematical Function

The execution times of the mathematical function that obtains The Fast Fourier

Transform (FFT) are presented in Fig. 8, where it is visualized that the AWS

https://doi.org/10.19053/01211129.v30.n56.2021.12776

Towards Digital Transformation: Serverless Function Deployment Strategies

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 30 (56), e12776. April-June 2021. Tunja-Boyacá,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.

DOI: https://doi.org/10.19053/01211129.v30.n56.2021.12776

platform provides better performance than Azure Functions when performing 300

invocations of the function. The period spent is approximately 6 hours. The

requests were performed simultaneously on each platform with a 60 seconds

difference between each request.

Fig. 8. Results of mathematical function execution.

Fig. 9. Performance per platform when

invoking the mathematical function.

Fig. 9 shows the individual performance per platform according to the provider of

service. For this purpose, the time invested to execute the mathematical function is

considered; as part of the results, AWS Lambda presents a certain degree of

homogeneous performance in contrast to the rest of the platform, since there is no

evidence of variations in the performance peaks. However, if we visualize its

performance individually, there is a constant variation in the time used to perform

the 300 executions of the function. There is relative similarity with the times

obtained using IBM Cloud Functions and Google Cloud Functions. However, the

minimum times of these 2 platforms are above the maximum times achieved by

AWS Lambda, accentuating the fact of presenting constant variations with respect

to the execution times in the 3 platforms (AWS Lambda, IBM Cloud Functions and

Google Cloud Functions). To establish a benchmark with respect to execution time,

Table 4 shows the most representative times (minimum, maximum, and average)

obtained on each platform. It can be seen that the longest execution time in AWS

Lambda is well below the shortest execution times of the other platforms. The

https://doi.org/10.19053/01211129.v30.n56.2021.12776

Armando Cabrera-Silva; José Carrillo-Verdún; Patricio Martínez-Palacios; Daniel-Alejandro Guamán-Coronel

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 30 (56), e12776. April-June 2021. Tunja-Boyacá,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.

DOI: https://doi.org/10.19053/01211129.v30.n56.2021.12776

relative similarity in the average time spent in the execution of this function in the

IBM and Google platforms is also evident; however, there is a 1 second difference,

therefore, in Google there is better use and provisioning of computational

resources. Finally, we can highlight the high consumption of time invested by

Azure Functions, a platform that invests about 2 times more average time in the

execution compared to the average obtained in AWS Lambda.

Table 4. Time Distribution Calculation.

Platform Minimum time Maximum Time Average

AWS Lambda 24 s 26 s 24 s

Azure Functions 50 s 93.6 s 53 s

Google Cloud Functions 33 s 43 s 37 s

IBM Cloud Functions 35 s 41 s 38 s

B. Machine Learning Function

The execution times of the Machine Learning function in AWS, Azure, and Google

are presented in Fig. 10. It is important to note that in each one the request is

made for the 3 platforms to simultaneously execute the function code with 1

second difference between each of the requests. Finally, it can be seen that AWS

has better performance with respect to function execution.

Fig. 10. Machine Learning function execution times.

Fig. 11. Performance per platform when

invoking Machine Learning function,

Fig. 11 shows the different performance values in terms of execution time (Y-axis)

that have been employed by each platform at certain stretches of the request

https://doi.org/10.19053/01211129.v30.n56.2021.12776

Towards Digital Transformation: Serverless Function Deployment Strategies

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 30 (56), e12776. April-June 2021. Tunja-Boyacá,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.

DOI: https://doi.org/10.19053/01211129.v30.n56.2021.12776

period (X-axis). It can be concluded that Azure Functions runtime spends more

time compared to AWS Lambda and GoogleCloud Functions. Google presents

marked fluctuations in the peaks with high and low performance in FaaS platform

presented during the period of request, denoting an unstable and unpredictable

behavior. However, it is also established that despite the behavior found in Google

Cloud Functions, this platform improves the average performance obtained in

Azure Functions but remains relatively far from that achieved by AWS Lambda.

Table 5 presents, in summary, the most significant times obtained during the

execution of this function. The platform provided by Google executes this function

with lower time consumption compared to Azure Functions which needs a high

time range. However, AWS Lambda still evidences the best performance by

presenting less time to obtain the same results compared to Google and Azure

platforms.

Table 5. Distribution of calculation times.

Platform Minimum time Maximum Time Average

AWS Lambda 500 ms 2.617 s 544 ms

Azure Functions 829 ms 3.725 s 978 ms

Google Cloud Functions 716 ms 1.591 s 878 ms

It is worth mentioning the implementation of this function has not been possible in

the IBM Cloud Functions platform. In a first attempt we tried to implement it by

creating an implementation package that exceeds the limits of the platform

(maximum 48MB, obtained 53MB), in second instance we tried to implement it

using Docker, however, the incompatibility of MXNet to run on Linux Alpine

truncated the correct implementation of this function.

C. General Context Function

Regarding the general context function, the results obtained from the execution

times of the function in the 4 platforms are shown in Fig. 12, where it is evident that

IBM provides the best performance.

https://doi.org/10.19053/01211129.v30.n56.2021.12776

Armando Cabrera-Silva; José Carrillo-Verdún; Patricio Martínez-Palacios; Daniel-Alejandro Guamán-Coronel

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 30 (56), e12776. April-June 2021. Tunja-Boyacá,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.

DOI: https://doi.org/10.19053/01211129.v30.n56.2021.12776

Fig. 12. General context function.

Fig. 13. Performance per platform when

invoking the general function.

Fig. 13 shows the results of the execution of this function segmented by CSP. The

unstable or unpredictable behavior of each platform can be observed. Despite this,

better stability is observed when executing this function on the Microsoft Azure

platform. Similarly, a marked difference is shown in the AWS and IBM platforms

with those of Azure and Google, where although this function is subject to the

operation of NoSQL services, the execution times obtained with IBM Cloud are

lower than those of Azure Functions (optimized NoSQL service) and Google Cloud

Functions. However, these times are high compared to those of AWS Lambda

(optimized NoSQL service); notwithstanding, they can be considered acceptable

bearing in mind that no modifications were made to IBM Cloudant. Another

noteworthy aspect lies in the time invested by Google Cloud Functions where the

fact of finding limitations concerning the size of the batches sent can become a

variable that directly affects the optimal execution of the function. In addition, the

low performance of Azure Functions when executing this function is visualized.

Finally, despite the modifications made to its NoSQL service, the average

execution time of this function is above those obtained by the rest of the platforms.

Table 6 summarizes the most relevant times during the execution of the functions

on each platform. This table shows that while in AWS Lambda the insertion of

10000 records is performed in less than half a second, Google Cloud Functions

https://doi.org/10.19053/01211129.v30.n56.2021.12776

Towards Digital Transformation: Serverless Function Deployment Strategies

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 30 (56), e12776. April-June 2021. Tunja-Boyacá,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.

DOI: https://doi.org/10.19053/01211129.v30.n56.2021.12776

takes about 2 minutes to perform the same operation. In addition, the average time

consumption of the executions in IBM Cloud Functions denotes better performance

when compared to the times presented in Azure Functions, although they were

executed on the free layer of IBM's NoSQL service.

Table 6. Distribution of calculation times.

Platform Minimum Time Maximum Time Average

AWS Lambda 421 ms 682 ms 496 ms

Azure Functions 52 s 1.64 min 56 s

Google Cloud Functions 1.59 min 1.90 min 1.66 min

IBM Cloud Functions 2 s 3 s 2 s

IV. CONCLUSIONS AND DISCUSSION

After performing the experiments with 300 invocations for each function on different

platforms, it can be mentioned that AWS Lambda provides runtimes with higher

stability that consume fewer resources, improving function execution times

regardless of their context. Experimentation results also show instability on

platforms such as Azure Functions with the Python runtime, which generates high

execution times compared to the other platforms. It should be noted that the IBM

service for NoSQL database (Cloudant) did not undergo modifications and it was

possible to use the free layer, unlike the optimization performed on AWS,

DynamoDB, and Azure CosmosDB-MongoDB API where performance can be

improved by moving from the free layer to the standard layer. It is important to

highlight the performance obtained by Google Cloud Functions when running AI

context functions where, despite not having obtained the best execution time, it is

close to AWS Lambda time. The light version of Linux (Linux Apline) implemented

in IBM Cloud Functions containers (Apache Openwhisk) has incompatibility with

some libraries, which ultimately prevents the use and exploitation of this platform.

As conclusions, serverless architectures have emerged as an alternative in terms

of empowerment and innovation of new services. CSPs use different features,

languages, and programming models within their FaaS platforms, which allow

identifying variations in the availability of runtimes. For example, the addition of

support for code written in Ruby and Go in AWS Lambda and Google, respectively.

https://doi.org/10.19053/01211129.v30.n56.2021.12776

Armando Cabrera-Silva; José Carrillo-Verdún; Patricio Martínez-Palacios; Daniel-Alejandro Guamán-Coronel

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 30 (56), e12776. April-June 2021. Tunja-Boyacá,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.

DOI: https://doi.org/10.19053/01211129.v30.n56.2021.12776

In addition to status changes regarding the availability of Python in Azure

Functions, or the extension of the memory allocation limit from 512MB to 2048 MB

in IBM Cloud Functions. The different runtime options provided by FaaS platforms

allow the selection of the programming language according to the needs of each

component (function) of a serverless architecture, including the selection of

libraries to satisfy code dependencies. At the programming language level, Python

presents the best characteristics in terms of platform support, due to the existence

of libraries that adapt to the limitations of these for the creation of experimentation

functions. The results obtained when executing the experimentation functions have

allowed comparing different behaviors on each platform, where AWS Lambda

stands out because it spends less time executing the functions, unlike the rest of

the analyzed platforms.

AUTHOR’S CONTRIBUTION

Armando Cabrera-Silva: supervision, investigation, writing – original draft.

José Carrillo-Verdún: supervision, methodology, writing – review & editing.

Patricio Martínez-Palacios: experimental design, validation.

Daniel-Alejandto Guamán-Coronel: writing – original draft, validation.

FUNDING

This article is the result of the research project "Construction of an Architectural

Framework for the Management of Customer-Centric Digital Enterprises"

developed jointly by the Department of Computer Science and Electronics of

Universidad Técnica Particular de Loja - UTPL and the Faculty of Computer

Science of the Universidad Politécnica de Madrid - UPM.

REFERENCES

[1] M. Smith, P. R. Saunders, L. Lyons, A Practical Guide to Microservices and containers, 2018.

[2] W. Gottesheim, “Challenges, benefits and best practices of performance focused DevOps,” in

Proceedings of the 4th International Workshop on Large-Scale Testing, 2015, p. 3.

https://doi.org/10.1145/2693182.2693187

[3] T. Kohlborn, A. Korthaus, T. Chan, M. Rosemann, “Identification and analysis of business and software

services-a consolidated approach,” IEEE Transactions on Services Computing, vol. 2, no. 1, pp. 50–64,

https://doi.org/10.19053/01211129.v30.n56.2021.12776
https://doi.org/10.1145/2693182.2693187

Towards Digital Transformation: Serverless Function Deployment Strategies

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 30 (56), e12776. April-June 2021. Tunja-Boyacá,
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.

DOI: https://doi.org/10.19053/01211129.v30.n56.2021.12776

2009. https://doi.org/10.1109/TSC.2009.6

[4] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, vol. 2nd. 2012.

[5] H. Lee, K. Satyam, G. Fox, “Evaluation of production serverless computing environments,” in IEEE 11th

International Conference on Cloud Computing (CLOUD), 2018, pp. 442–450.

https://doi.org/10.1109/CLOUD.2018.00062

[6] J. Lewis, M. Fowler, “Microservices: a definition of this new architectural term,” 2014.

https://martinfowler.com/articles/microservices.html

[7] T. Back, V. Andrikopoulos, “Using a microbenchmark to compare function as a service solutions,” in

Lecture Notes in Computer Science, Springer, 2018. https://doi.org/10.1007/978-3-319-99819-0_11

[8] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian, N. Mitchell, V. Muthusamy, R. Rabbah, A.

Slominski, P. Suter, “Serverless computing: Current trends and open problems,” Research Advances in

Cloud Computing, Springer, 2017, pp. 1–20. https://doi.org/10.1007/978-981-10-5026-8_1

[9] D. Poccia, AWS Lambda in Action: Event-driven serverless applications. Manning Publications Co., 2016.

[10] V. Ishakian, V. Muthusamy, A. Slominski, “Serving Deep Learning Models in a Serverless Platform,” in

IEEE International Conference on Cloud Engineering (IC2E), 2018, pp. 257–262.

[11] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, Z. Zhang, “Mxnet: A flexible

and efficient machine learning library for heterogeneous distributed systems,” in Workshop on Machine

Learning Systems, 2016. https://arxiv.org/abs/1512.01274

[12] B. Wu, F. Iandola, P. H. Jin, K. Keutzer, “Squeezedet: Unified, small, low power fully convolutional neural

networks for real-time object detection for autonomous driving,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition Workshops, 2017, pp. 129–137.

https://doi.org/10.1109/CVPRW.2017.60

[13] H. Lin, S. Jegelka, “Resnet with one-neuron hidden layers is a universal approximator,” in Advances in

neural information processing systems, 2018, pp. 6169–6178. https://doi.org/10.5555/3327345.3327515

[14] L. Wen, X. Li, L. Gao, “A transfer convolutional neural network for fault diagnosis based on ResNet-50,”

Neural Computing and Applications, vol. 32, pp. 6111–6124, 2020. https://doi.org/10.1007/s00521-019-

04097-w

[15] K. Figiela, A. Gajek, A. Zima, B. Obrok, M. Malawski, “Performance evaluation of heterogeneous cloud

functions,” Concurrency and Computation: Practice and Experience, vol. 30, no. 23, e4792.

https://doi.org/10.1002/cpe.4792

[16] J. Manner, M. Endreß, T. Heckel, G. Wirtz, “Cold start influencing factors in function as a service,” in

IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion),

2018, pp. 181–188.

https://doi.org/10.19053/01211129.v30.n56.2021.12776
https://doi.org/10.1109/TSC.2009.6
https://doi.org/10.1109/CLOUD.2018.00062
https://martinfowler.com/articles/microservices.html
https://doi.org/10.1007/978-3-319-99819-0_11
https://doi.org/10.1007/978-981-10-5026-8_1
https://arxiv.org/abs/1512.01274
https://doi.org/10.1109/CVPRW.2017.60
https://doi.org/10.5555/3327345.3327515
https://doi.org/10.1007/s00521-019-04097-w
https://doi.org/10.1007/s00521-019-04097-w
https://doi.org/10.1002/cpe.4792

