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Abstract
Aim of study: The objective was to perform an uncertainty analysis (UA) of the dynamic HORTSYST model applied to greenhouse 

grown hydroponic tomato crop. A frequentist method based on Monte Carlo simulation and the Generalized Likelihood Uncertainty Esti-
mation (GLUE) procedure were used.

Area of study: Two tomato cultivation experiments were carried out, during autumn-winter and spring-summer crop seasons, in a re-
search greenhouse located at University of Chapingo, Chapingo, Mexico.

Material and methods: The uncertainties of the HORTSYST model predictions PTI, LAI, DMP, ETc, Nup, Pup, Kup, Caup, and Mgup uptake, 
were calculated, by specifying the uncertainty of model parameters 10% and 20% around their nominal values. Uniform PDFs were speci-
fied for all model parameters and LHS sampling was applied. The Monte Carlo and the GLUE methods used 10,000 and 2,000 simulations, 
respectively. The frequentist method included the statistical measures: minimum, maximum, average values, CV, skewness, and kurtosis 
whilst GLUE used CI, RMSE, and scatter plots.

Main results: As parameters were changed 10%, the CV, for all outputs, were lower than 15%. The smallest values were for LAI 
(10.75%) and DMP (11.14%) and the largest was for ETc (14.47%). For Caup (12.15%) and Pup (12.27%), the CV was lower than the 
one for Nup and Kup. Kurtosis and skewness values were close as expected for a normal distribution. According to GLUE, crop density 
was found to be the most relevant parameter given that it yielded the lowest RMSE value between the simulated and measured values.

Research highlights: Acceptable fitting of HORTSYST was achieved since its predictions were inside 95% CI with the GLUE procedure. 
Additional key words: model simulation; transpiration; potential growth; Bayesian approach; crop modelling
Abbreviations used: CI (confidence intervals); CV (coefficient of variation); DMP (dry matter production); DSS (Decision support 

systems); ETc (crop transpiration); GLUE (generalized likelihood uncertainty estimation); LAI (leaf area index); LHS (Latin hypercube 
sampling); Nup, Pup, Kup, Caup, Mgup (N, P, K, Ca, Mg uptake); PDF (probability density function); PTI (photo-thermal time); RMSE (root 
mean square error); RUE (radiation use efficiency) UA (uncertainty analysis). Parameters: Tmax (top upper temperature); Tmin (top bottom 
temperature); Tob (optimum minimum temperature); Tou (optimum maximum temperature); k (extinction coefficient); a1, a2, a3, a4, a5 (N, P, K, 
Ca, and Mg concentration in the dry biomass at the end of the exponential growth period); b1, b2, b3, b4, b5 (slope of the relationship between 
dry biomass and nutrient concentration); c1 (slope of the PTI vs LAI curve); c2 (shape coefficient of LAI curve); A (radiative coefficient); Bd 
(daytime aerodynamic coefficient); Bn (nighttime aerodynamic coefficient);
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Introduction
An important issue in greenhouse horticulture is  

optimization of water and nutrients, which can be tackled 
by using decision-support-systems (DSS) based on dyna-
mic mathematical models such as VEGSYST (Gallardo 
et al., 2011). However, the development of a mathema-
tical model of a system implies not only the derivation 
of model structure and the quantification of relationships 
between the components of a system but also sensitivity 
and uncertainty analyses, parameter estimation and model 
evaluation. Uncertainty assessment (Walker et al., 2003) 
is a crucial stage in model development focused on quan-
tifying the reliability of model predictions. Refsgaard et 
al. (2005) emphasized that performing an uncertainty 
analysis (UA) on a model start with problem definition 
and identification of modeling objectives. In order to be 
most useful, the decision support model should also in-
clude information about the uncertainties related to each 
decision option as uncertainty of the desired outcomes 
may be the central criterion for the selection of the mana-
gement policy (Wallach et al., 2014; Uusitalo et al., 2015; 
Liang et al., 2017). 

Several methodologies and suitable tools for suppor-
ting uncertainty assessment have been developed and re-
ported by Cooman & Schrevens (2006). There are few 
studies reporting the frequentist uncertainty analysis 
(Monte Carlo method) applied to greenhouse crop mo-
dels, some of these are TOMGRO model applied to toma-
to (Cooman & Schrevens, 2006) and NICOLET model to 
lettuce (López-Cruz et al., 2012). Most of the research has 
been focused on open field crops using, for example, the 
CERES-maize model (Bert et al., 2007; Li et al., 2012), 
the SALUS model for maize, peanut and cotton (Dzotsi 
et al., 2013), and the WARM rice model (Confaloneri et 
al., 2016). However, only few studies, such as one invol-
ving the SIMRIW model for paddy rice and another using 
the CSM-CROPGRO-cotton model for open field crops 
(Iizumi et al., 2009; Pathak et al., 2012) have studied the 
generalized likelihood uncertainty estimation (GLUE) 
method. To the best of our knowledge GLUE is the 
most reliable uncertainty analysis procedure developed  
until now. 

HORTSYST is a new nonlinear dynamic growth model 
for tomato (Solanum lycopersicum L.) grown in hydro-
ponic greenhouse systems. The HORTSYST crop model 
predicts photo-thermal time (PTI), dry matter production 
(DMP), and nitrogen (Nup), phosphorus (Pup), potassium 
(Kup), calcium (Caup) and magnesium (Mgup) uptake, as 
state variables, because they are represented as daily va-
riation rates, and it predicts crop transpiration (ETc) and 
leaf area index (LAI) as output variables. This model 
was developed by Martinez-Ruiz et al. (2019; 2020) to 
be used as a tool for decision-support systems. Although 
it does not currently consider any kind of stress, future 

work should consider water and nutrients limitations. 
HORTSYST was developed based on the VegSyst model 
(Gallardo et al., 2011; 2014; 2016; Giménez et al., 2013; 
Granados et al., 2013), but HORTSYST has the following 
differences: 1) the HORTSYST dynamic model is writ-
ten explicitly in discrete time, 2) the LAI variable was 
added, and it is simulated from a concept called photo-
thermal time (which couples the effect of air temperature 
and global solar radiation measured in the greenhouse), 
3) it considers crop density as one of the most important 
parameters, 4) crop water consumption is calculated with 
a transpiration model based on mass and energy balances 
(Martinez-Ruiz et al., 2012; 2020), and 5) Nup, Pup, Kup, 
Caup  and Mgup uptake are included in the model structure.

As in the case of the VegSyst model, the HORTSYST 
model is intended to support the management of water and 
nutrient supply for greenhouse crops; however, the mo-
del’s ability to provide reliable forecasting under several 
input variables scenarios is currently unknown. Unfortu-
nately, it is not possible to carry out many experiments to 
determine the robustness of model predictions. Therefore, 
an uncertainty analysis based on Monte Carlo simulations 
is chosen to implement multiple simulations based on mo-
del parameters values sampled from probability density 
functions (PDF), with a given amount of uncertainty, as-
signed to each model parameter. From these scenarios the 
predicted variables are calculated, and their uncertainty 
quantified and analyzed using descriptive statistics.

There is little current research dealing with the appli-
cation of uncertainty analysis applied to greenhouse crop 
models and sometimes these methodologies are confused 
with sensitivity analysis procedures. Therefore, the objec-
tives of this research were: 1) to quantify the uncertainty 
present in the variables PTI, LAI, DMP, ETc, nitrogen, 
phosphorus, potassium, calcium, and magnesium uptake, 
predicted by the HORTSYST model by varying nomi-
nal parameter values by 10% and 20%; and 2) to calcu-
late model uncertainties with the frequentist uncertainty 
(Monte Carlo) method and the GLUE method using data 
from two experiments carried out in the autumn-winter 
and spring summer tomato crop growing seasons.

Material and methods
Greenhouse condition and data acquisition

Two experiments were carried out in greenhouses lo-
cated at the University of Chapingo, Mexico (19°29’ N, 
98°53’ W; 2240 m a.s.l.). During the autumn-winter and 
spring-summer seasons, tomato (Solanum lycopersicum 
L) cultivar "CID F1" was grown in a hydroponic sys-
tem. Plastic bags of 10 L capacity were used, which were  
filled with volcanic sand (Tuff) as substrate. Plants were 
distributed with a density of 3.5 plants m-2 for both crop 
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seasons. In the first experiment, tomato seeds were sown 
on July 18, 2015, and the seedlings were transplanted on 
August 21, 2015, in an 8 × 8 m chapel type glasshou-
se. For the second experiment, the seeds were sown on 
March 24, 2016, and the seedlings were transplanted on 
April 24, 2016, in 35 × 35 cm 12-L polyethylene bag 
pots in an 8 × 15 m plastic greenhouse with natural ven-
tilation. Both experiments were fertilized with Steiner 
nutrient solution (Martínez-Ruiz et al., 2019; 2020). A 
weather station (HOBO, Onset Computer Corporation, 
Bourne, MA, USA) was installed inside the greenhou-
se. Temperature and relative humidity were measured 
with an S-THB-M008 model sensor (Onset) placed at a  
height of 1.5 m. Global Solar Radiation was measured 
with an S-LIB-M003 sensor (HOBO, Onset) located at 
3.5 m above the ground. Both sensors were connected to a 
U-30-NRC model data logger (HOBO), and the data were 
recorded every minute, and subsequently the data were 
processed to obtain average data at hourly intervals.

In each experiment, three plants were randomly cho-
sen and harvested every ten days to measure the DMP, 
LAI, Nup, Pup, Kup, Caup, and Mgup. The plants were dried 
for 72 h at 70 °C in a convection drying oven (Binder, 
ED-400 model). Nutrients in the stems, leaves and fruits 
were determined. Then 0.5 g dry matter was subjected 
to wet digestion with mixture of 5 mL of sulfuric acid 
and perchloric acid at a 4:1 ratio, both acids with 99% 
purity. Samples were digested until fully mineralized at 
a temperature of 250 ºC for approximately six hours; 
subsequently, 2 mL of hydrogen peroxide at 30% were 
added to the mineralized samples, and they were adjus-
ted to 50 mL with deionized water. Nitrogen was deter-
mined by the Kjeldahl method (Sáez-Plaza et al., 2013). 
Phosphorus concentration was determined by the yellow 
molybdovanadate method, and K, Ca and Mg concentra-
tions were measured by atomic absorption spectropho-
tometry (Oliveira et al., 2010). LAI was estimated by a 
nondestructive method which consisted of randomly ta-
king four plants to measure the width and length of their 
leaves, and total leaf area was measured using a plant 
canopy analyzer (LAI-3100, LI-COR, Lincoln, NE, 
USA). From those measurements, nonlinear regression 
models were fitted to calculate the crop LAI. ETc was 
measured every minute by a weighing lysimeter located 
in the central row of each greenhouse. The device in-
cluded an electronic balance Sartorius QA model (scale 
capacity=120 kg, resolution ±0.5 g equipped with a tray 
holding four plants. The weight loss measured was assu-
med to be equal to the ETc (Martinez-Ruiz et al., 2012).

Model description

The dynamic HORTSYST model assumes no wa-
ter and nutrient limitations (Martínez-Ruiz et al., 2019; 

2020), and it simulates PTI (MJ m-2 d-1), DMP (g m-2),  
Nup  (g m-2), Pup  (g m-2), Kup,(g m-2), Caup  (g m-2), and 
Mgup  (g m-2) as the state variables, while ETc (kg m-2) and 
LAI (m2 m-2) were considered as output variables. Table 
S1 [suppl.] lists the mathematical equations of the seven 
state and two output variables. Fig. 1 shows the general 
structure of the model using a Forrester diagram, where 
the inputs, parameters, state variables and outputs of the 
model are drawn.

The model structure was based on the VegSyst model 
(Gallardo et al., 2011; 2014; 2016;  Giménez et al., 2013; 
Granados et al., 2013). The input variables of the model 
are hourly measurements of air temperature (°C), relati-
ve humidity (%), and global solar radiation (Wm-2). The 
models in the light use efficiency approach (Kang et al., 
2008; Lemaire et al., 2008; De Reffye et al., 2009) allow 
calculation of daily ∆DMP (Eq. 9, Table S1 [suppl.]), as a 
function of the photosynthetically active radiation (PAR) 
(Eq. 6), crop characteristics such as LAI (Eq. 8), and 
the parameter of radiation use efficiency (RUE, g MJ-1) 
as has been used by Shibu et al. (2010) and Soltani &  
Sinclair (2012).

The fraction of light intercepted (fi-PAR) is the fraction of 
global solar radiation used for the photosynthesis process 
that enters through the canopy of a crop and is characteri-
zed by the LAI. The extinction coefficient (dimensionless 
k parameter) is related to leaf size and leaf orientation. 
Leaf area (LA) was modeled as a function of PTI using 
the Michaelis-Menten equation and it was multiplied by 
the planting density d in order to calculate the LAI. For 
this purpose, the normalized thermal time  (TT, ºC), de-
fined as the ratio of the growth rate and the conditions of 
actual and optimum temperature ( Dai et al., 2006), was 
calculated with Eq. (4). Then, the daily ΔPTI (Eq. 7) was 
calculated as the product of normalized thermal time with 
the fraction of light intercepted (fi-PAR) and PAR radiation, 
and the accumulation of PTI was computed by Eq. (1) 
(Xu et al., 2010).

Daily ΔNup, ΔPup, ΔKup, ΔCaup and ΔMgup were calcu-
lated as the product of simulated DMP and nutrient con-
centration (Eq. 11). Previously the %N, %P, %K, %Ca 
and %Mg concentrations were determined by a power 
equation (Tei et al., 2002) (Eq. 10). Then their accumu-
lated values were computed by Eqs. (12-16). Finally, the 
ETc was simulated hourly by Eq. (18), using the data re-
corded for global solar radiation, vapor pressure deficit, 
the fraction of light intercepted, and LAI as shown in Eq. 
(17). The daily transpiration was accumulated for the 24-h 
period using Eq. (3).

Monte Carlo uncertainty method

Monte Carlo simulation is a statistical technique for 
stochastic modeling and analysis of error propagation in 
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calculations. Its aim is to trace out the structure of the  
probability distributions of the model output variables. 
These distributions are mapped by quantifying the de-
terministic results (realizations) for a large number of 
unbiased random draws (Matott et al., 2009) from the 
individual distribution function of input data and model 
parameters (Monod et al., 2006). 

The uncertainty analysis consisted of the following 
four steps (Monod et al., 2006): a) for the spring-sum-
mer season, uniform PDFs were selected for HORTSYST 
model parameters (Table 1). Other PDFs are possible but 
the only information available for model parameters were 
their nominal values. Nominal values for all parameters 
were taken from literature. The lower and upper limits 
of the uncertainty intervals were defined with 10% and 
20% of parameters variation around their nominal values 
as listed in Table 1; b) Latin hypercube sampling (LHS) 
was applied to choose model parameters values for the 
generation of N=10,000 scenarios; c) the output variables 
predicted by the model were calculated for all N scena-
rios, running N model simulations, using the climatic data 
measured in the greenhouse (Figs. 2a, 2b, 2c); and d) for 
the predicted variables (PTI, LAI, DMP, Nup, Pup, Kup, 
Caup, Mgup and ETc), the following statistical indicators 
were calculated: minimum, maximum, mean, coefficient 
of variation (CV), skewness, and kurtosis, as well as the 
histograms. 

The generalized likelihood uncertainty estima-
tion (GLUE) uncertainty method

This method is based on the Monte Carlo simulation, 
in which parameter sets may be sampled from some pro-
bability distribution function (PDF). The most commonly 
used PDF is a uniform distribution. Parameters values are 
also sampled from those PDF. Each parameter set is used 
to produce a model output; the acceptability of each mo-
del run is then assessed using a goodness-of-fit criterion 
which compares the predicted and observed values over 
some calibration period. As part of the GLUE procedure 
(Beven & Freer, 2001; Makowski et al., 2002; Stedin-
ger et al., 2008; Beven & Binley, 2014), several likeli-
hood functions can be used such as RMSE (root mean 
square error), inverse error variance, efficiency index,  
among others. 

The GLUE procedure was applied to the HORTSYST 
model using LHS with 2,000 samples. Thus, 2,000 simu-
lations were run using 10% and 20% of parameters varia-
tions around the nominal values of the 24 parameters (lis-
ted in Table 1), for the autumn-winter crop cycle. In order 
to confirm and compare the results that will be obtained 
with Frequentist Method what is considered the standard 
method for running a uncertainty analysis. The Matlab 
toolbox sensitivity analysis for everybody (SAFE) was 
used to implement the GLUE uncertainty analysis method 

Figure 1. Forrester´s relational diagram for the HORTSYST model of a greenhouse tomato crop: 
inputs, outputs, state variables, and parameters of the crop model. State variables are represented by 
rectangles, rate variables by valves, parameters with a horizontal line, input variables with a circle 
and a horizonal line, and auxiliary variables with ellipses. Flows of material are  represented by 
normal arrows and information flows with dashed lines. 
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since SAFE contains a module that allows not only per-
forming uncertainty analyses but also it includes visua-
lization tools such as scatter plots. This toolbox is freely 
available from the authors for non-commercial research 
and educational uses (Pianosi et al., 2015).

Results
Figs. 2a, 2b and 2c show the daily averaged measu-

rements of the integration of global solar radiation, air 
temperature, and relative humidity inside the greenhouses 
for the autumn-winter and spring-summer seasons. These 
data were fed as input variables into the HORTSYST mo-
del. Input variable values represent two different weather 
conditions since averaged values of global radiation were 
3.99 and 10.59 MJ m-2 d-1, respectively, although avera-
ged values of air temperature were 18.3°C and 17.8°C 
for both seasons. However, relative humidity was also 

somewhat contrasting not because of its averaged values 
of 78.6% and 76.8%, but rather for its minimum values 
of 62.5% and 29.5% compared to its maximum values of 
93.4% and 93.2%, respectively. Thus, the variation in re-
lative humidity during spring-summer (63%) was roughly 
twice that for autumn-winter (31%).

Model output uncertainty with Monte Carlo  
method

HORTSYST model behavior regarding PTI, LAI and 
DMP is shown in Figs. 3a, 3c, 3e, respectively. Measu-
red values are only reported for LAI and DMP, becau-
se PTI is computed during the simulations and has not 
been measured. The corresponding histograms are also 
reported (Figs. 3b, 3d, 3f). These results were obtained 
using the following input variables: global solar radia-
tion, temperature, and relative humidity recorded over the 

No. Symbol
Spring-summer crop cycle Autumn-winter crop cycle

Source
Range (10%) Range (20%) Range (10%) Range (20%)

1 Tmax 31.50-38.50 28.00-42.00 31.50-38.50 28.00-42.00 [1]
2 Tmin 9.00-11.00 8.00-12.00 9.00-11.00 8.00-12.00 [1]
3 Tob 15.30-18.70 13.60-20.40 15.30-18.70 13.60-20.40 [1]
4 Tou 21.60-26.40 19.20-28.80 21.60-26.40 19.20-28.80 [1]
5 RUE 2.79-3.41 2.48-3.72 3.37-5.35 3.89-5.83 [1], [3]
6 PTIIni 0.02-0.02 0.02-0.02 0.01-0.01 0.01-0.01 Estimated, [1]
7 DMPIni 0.22-0.27 0.20-0.29 1.07-1.31 0.95-1.43 Measured
8 d 3.15-3.85 2.80-4.20 3.15-3.85 2.80-4.20 Established
9 k 0.63-0.77 0.56-0.84 0.63-0.77 0.56-0.84 [1]
10 a1 5.99-7.33 5.33-7.99 5.27-6.44 4.68-7.02 Estimated, [1]
11 a2 1.59-1.95 1.42-2.12 0.47-0.58 0.42-0.63 Estimated
12 a3 2.61-3.19 2.32-3.48 2.61-3.19 2.32-3.48 Estimated
13 a4 2.56-3.12 2.27-3.41 2.56-3.12 2.27-3.41 Estimated
14 a5 2.94-3.60 2.62-3.92 1.72-2.10 1.53-2.29 Estimated
15 b1 -0.21-0.17 -0.23-0.15 -0.21-0.17 -0.23-0.15 [1]
16 b2 -0.17-0.14 -0.18-0.12 -0.07-0.06 -0.08-0.05 Estimated
17 b3 0.07-0.09 0.06-0.10 0.07-0.09 0.07-0.10 Estimated
18 b4 -0.11-0.09 -0.12-0.08 -0.11-0.09 -0.12-0.08 Estimated
19 b5 -0.32-0.26 -0.35-0.23 -0.11-0.09 -0.12-0.08 Estimated
20 c1 2.77-3.39 2.46-3.70 2.38-2.91 2.12-3.18 Estimated, [1]
21 c2 158.08-193.20 140.51-210.77 57.11-69.81 50.77-76.15 Estimated, [1]
22 A 0.33-0.41 0.30-0.45 0.57-0.69 0.50-0.75 [1], [2]
23 Bd 27.40-33.48 24.35-36.53 25.71-31.43 22.86-34.29 [1], [2]
24 Bn 23.40-28.60 20.80-31.20 9.23-11.28 8.20-12.30 [1], [2]

Table 1. HORTSYST model parameters with 10% and 20% of the variation of their nominal value, used for uncertainty simu-
lation under the experimental condition for the spring-summer and autumn-winter crop cycles.

[1] Martinez-Ruiz et al. (2020). [2] Martinez-Ruiz et al. (2012). [3] Challa & Bakker (1999)
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spring-summer cultivation period (Figs. 2a, 2b, 2c) and 
the 10,000 scenarios generated by the Monte Carlo pro-
cedure. The model simulation results for ETc, Nup and Pup 
(Figs. 4a, 4c, 4e) and their histograms (Fig. 4b, 4d, 4f) are 
presented. Finally, model predictions for Kup, Caup, and 
Mgup (Figs. 5a, 5c, 5e) together with their respective his-
tograms (Figs. 5b, 5d, 5f) are shown. 

Descriptive statistical measures calculated for all 
HORTSYST model predicted variables are summarized 
(Table 2). It is worthwhile noting that those quantities 
were calculated at the end of the cultivation period. In 
general, the uncertainty of the model predictions was 
increased with larger uncertainty intervals, as expec-
ted. The CV values of all variables were larger for 20% 
than 10% of the uncertainty variation in the model pa-
rameters. Furthermore, all predicted variables have CV 
values lower than 15% in the case of a 10% variation in 
the parameter values, which means the model is highly 
reliable and robust. Low CV values mean a reduction 

of average values for all predicted variables. Measu-
red values at the end of the cultivation cycle were 6.86 
m2 m-2 for LAI, 1304 g m-2 for DMP, and 291.69 kg 
m-2 for ETc. When these values were compared with 
HORTSYST model predictions, namely averaged va-
lues of predicted variables in Table 2 with 10% para-
meter variations, the deviations (difference between 
observed and estimated values) were: -1.7% for LAI, 
-1.7% for DMP and -0.3% for ETc. In the case of ma-
cronutrients, measured values and their corresponding 
deviations were: 27.4 g m-2 (1.6%) for Nup, 8.59 g m-2 
(-6.9%) for Pup, 68.76 g m-2 (6.1%) for Kup, 20.42 g m-2 
(2.9%) for Caup, and 7.63 g m-2 (3.3%) for Mgup. This 
means the average predicted values of LAI and DMP 
were slightly over-estimated and the predicted average 
values of ETc were close to the measured ones, whe-
reas they were under-estimated for Nup, Kup, Caup and 
Mgup, and only Pup was over-estimated with respect to 
the observed data.

Figure 2.  Daily averaged values of: a) the integration of global solar ra-
diation, b) the air temperature and c) relative humidity, measured inside the 
greenhouses located in Chapingo, Mexico during autumn-winter, 2015, and 
spring-summer, 2016. DAT: days after transplant.
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Figure 3.  HORTSYST model predicted variables: PTI= photo-thermal 
time (a), LAI = leaf area index (c), DMP = dry matter production (e) and 
their corresponding histograms (b), (d) and (f) calculated with 10% parame-
ter variation, using Latin hypercube sampling and data collected during the 
spring-summer season. Measured LAI and DMP are indicated by circles.

 
Figure 4.  HORTSYST model predicted variables: ETc = crop transpiration 
(a), Nup = nitrogen uptake (c), Pup = phosphorus uptake (e), and their correspon-
ding histrograms (b), (d), (f), calculated with 10% parameter variation, using 
Latin hypercube sampling and data collected during the spring-summer season. 
Measured ETc, Nup and Pup are represented by circles.
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Figure 5. HORTSYST model predicted variables: Kup = potassium up-
take (a), Caup = calcium uptake (c), Mgup = magnesium uptake and their  
corresponding histograms, calculated with 10% parameter variation, using 
Latin hypercube sampling and data collected during the spring-summer 
season. Measured Kup, Caup and Mgup are represented by circles. 

Outputs
Statistics

Minimum Maximum Mean CV Skewness Kurtosis
10% parameter variation

PTI (MJ m-2 d-1) 203.87 459.35 324.24 12.16 0.10 2.72
LAI (m2 m-2) 4.57 9.31 6.98 10.75 0.07 2.62
DMP (g m-2) 784.53 1799.42 1326.07 11.14 0.10 2.66
ETc (kg m-2) 162.38 460.04 292.45 14.47 0.21 2.85
Nup (g m-2) 17.13 40.07 26.97 12.75 0.32 2.85
Pup (g m-2) 5.49 13.58 9.18 12.27 0.24 2.86
Kup (g m-2) 32.15 98.99 64.54 13.83 0.27 2.85
Caup (g m-2) 10.95 29.22 19.82 12.15 0.22 2.85
Mgup (g m-2) 4.69 11.73 7.38 13.93 0.33 2.76

20% parameter variation
PTI (MJ m-2 d-1) 97.76 587.54 314.24 25.03 0.25 2.71
LAI (m2 m-2) 2.51 11.81 6.86 22.14 0.21 2.70
DMP (g m-2) 404.36 2263.10 1294.48 23.11 0.24 2.68
ETc (kg m-2) 73.89 653.32 287.30 29.56 0.47 3.10
Nup (g m-2) 8.41 59.09 26.54 26.08 0.62 3.41
Pup (g m-2) 2.78 18.81 9.02 25.73 0.59 3.33
Kup (g m-2) 15.36 137.30 63.11 28.58 0.51 3.12
Caup (g m-2) 6.20 38.82 19.40 25.03 0.48 3.13
Mgup (g m-2) 2.49 16.45 7.33 28.63 0.70 3.35

Table 2. Statistical summary for HORTSYST model predicted variables: photo-thermal time (PTI), crop leaf area index (LAI), 
dry matter production (DMP) and crop transpiration (ETc), nitrogen (Nup), phosphorus (Pup), potassium (Kup), calcium (Caup) and 
magnesium uptake (Mgup) with 10% and 20% model parameter variations around their nominal values.
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When the simulation used larger uncertainty intervals 
for model parameters (parameters varied 20% around 
their nominal values), the errors calculated from residuals 
between estimated (averaged values of predicted varia-
bles in Table 2 with 20% parameter variations) and me-
asured values were as follows: 0.1% for LAI, 0.7% for 
DMP, 1.5% for ETc, 3.2% for Nup, -5.0% for Pup, 8.2% 
for Kup, 5.0% for Caup, and 3.9% for Mgup. Except for Pup, 
all the average values predicted by the model were un-
der-estimated. Remarkably, the averaged values of LAI, 
DMP, and Pup were closer to the measured data with lar-
ger uncertainty. The average error of Nup, Pup, Kup, Caup 
and Mgup was higher with a larger uncertainty interval for 
model parameters. In the case of ETc, the average was 
more underestimated when the uncertainty included in the 
parameters was larger.

The differences between maximum and minimum va-
lues, for 10% variation of the parameters (Table 2), were 
255.48 MJ m-2 d-1 for PTI, 4.74 m2 m-2 for LAI, 1014.9 g 
m-2 for DMP, 297.66 kg m-2 for ETc, 22.94 g m-2 for Nup, 
8.09 g m-2 for Pup, 66.84 g m-2 for Kup, 18.27 g m-2 for Caup, 
and 7.04 g m-2 for Mgup. In the case of 20% variation (Ta-
ble 2) these values were 255.48 MJ m-2 d-1 for PTI, 9.3 m2 
m-2 for LAI, 1858.7 g m-2 for DMP, 579.43 kg m-2 for ETc, 
50.7 g m-2 for Nup, 16.03 g m-2 for Pup, 121.94 g m-2 for 
Kup, 32.62 g m-2 for Caup, and 13.96 g m-2 for Mgup. This 
shows that the intervals of the predicted values increased 

more than two-fold with a large variation of 20%. Larger 
differences between maximum and minimum values of all 
HORTSYST predicted variables were observed with lar-
ger uncertainty intervals for model parameters.

The skewness values were positive for all predicted 
variables, which means that data are more spread out to 
the right of the distribution, which was observed in the 
corresponding histograms for 10% parameter variation 
(Figs. 3b, 3d and 5f; Figs. 4b, 4d and 4f; Figs. 5b, 5d and 
5f). All skewness values were remarkably close to zero, 
which means all predicted variables fit a normal distri-
bution very well, but with greater variation (20% of un-
certainty) of the parameters, more asymmetric distribu-
tions are expected. In fact, skewness values are all greater 
for all variables in the case of 20% parameter variations 
than for 10% ones. Kurtosis values of predicted variables 
(Table 2) slightly deviate for both uncertainty intervals. 
This means that for both situations the behavior of pre-
dicted variables is remarkably close to a normal distri-
bution (Figs. 3b, 3d and 3f; Fig. 4b, 4d and 4f; Fig. 5b,  
5d and 5f).

Model output uncertainty with GLUE method

Fig. 6 shows HORTSYST model predictions with the 
GLUE procedure with a 95% confidence interval around 

 

Figure 6. HORTSYST model predicted variables with the GLUE uncertainty method 
with 10% parameter variations. LAI: leaf area index (a), DMP: dry matter production 
(b), ETc: crop transpiration (c), Nup: nitrogen uptake (d), Pup: phosphorus uptake (e), 
Kup: potassium uptake (f), Caup: calcium uptake (g), Mgup: magnesium uptake (h). DAT: 
days after transplant. Measured variables are represented by circles. Continuous lines 
show 95 % confidence intervals.
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measured data when 10% model parameter variation was 
used. Fig. 7 shows the GLUE uncertainty method outco-
mes in the case of 20 % parameter variation. It is apparent 
that with a smaller uncertainty interval for model parame-
ters (10% variation around their nominal values), there 
was lesser uncertainty in all predicted variables (Fig. 6) 
than when a larger uncertainty interval (20% variation) 
was used (Fig. 7). 

Although scatter plots between each HORTSYST 
parameter and the predicted variables generated by the 
GLUE uncertainty method were constructed, only those 
plots where minimum RMSE values can be identified are 
shown in Figs. S1-S3 [suppl.]. The best RUE parame-
ter value was between 4.0 and 5.5 MJ m-2 d-1 (Fig. S1c  
[suppl.]), which corresponds to the smallest values of 
RMSE. The best value for parameter c1 was between 2.5 
and 3.3 m2 (Fig. S2a [suppl.]), and for c2 it was between 
60 and 85 (Fig. S2b [suppl.]). In the case of Bd this was 
between 15 and 35 W m-2 kPa-1 (Fig. S1d [suppl.]). Figs. 
S1e and S1f [suppl.] show the parameter values of Nup; a 
(from 6.0 to 7.5 g m-2) and b (from -0.2 to -0.15).

According to the RMSE values shown on the scatter 
plots, the best value for parameter a2 was between 0.55 
and 0.65 g m-2 (Fig. S2a [suppl.]), for b2 between -0.08 
and -0.05 (Fig. S2b [suppl.]), for a3 between 2.5 and 3.5 g 
m-2 (Fig. S2c [suppl.]), for b3 between 0.08 and 0.12 (Fig. 
S2d [suppl.]), for a4 between 2.5 and -3.5 g m-2 (Fig. S2e  

[suppl.]), for b4 between -0.13 and -0.06 (Fig. S2f  
[suppl.]), for a5 between 1.7 and 2.3 g m-2 (Fig. S2g  
[suppl.]), and for b5 between -0.14 and -0.07 (Fig. S2h  
[suppl.]). The parameter b (the slope of nutrient concen-
tration curve) for all macronutrient concentrations were 
negative, except for Kup. The scatter plots (Fig. S3 [su-
ppl.]) between the plant density values (d) and the RMSE 
of HORTSYST predicted variables show that the best va-
lue for this parameter was between 3 and 4 plants m-2. 
Therefore, plant density plays an important role in the 
model’s general performance and it had a major effect on 
LAI and ETc. A density higher than three plants m-2 yiel-
ded better fitness values for Nup, Pup, Kup, Caup, Mgup and 
DMP (Fig. S3 [suppl.]), whereas the model’s performance 
was inferior with a density lower than three plants m-2.

Discussion
According to Monte Carlo uncertainty analysis, with 

small uncertainty intervals for model parameters the un-
certainty of HORTSYST model predictions, quantified by 
the CV, was in decreasing order: ETc > Mgup > Kup > Nup 
> Pup > PTI > Caup > DMP > LAI. The CV for all variables 
ranged from 10% to 14%. Although similar behavior was 
observed for larger uncertainty intervals, the range of un-
certainty variation (CV values ranged from 22% to 30%) 

 
Figure 7. HORTSYST model predicted variables with the GLUE uncertainty method with 
20% parameter variations. LAI: leaf area index (a), DMP: dry matter production (b), ETc: crop 
transpiration (c), Nup: nitrogen uptake (d), Pup: phosphorus uptake (e), Kup: potassium uptake 
(f), Caup: calcium uptake (g), Mgup: magnesium uptake (h). DAT: days after transplant. Mea-
sured variables are represented by circles. Continuous lines show 95 % confidence intervals.
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was also larger as expected. In both cases, LAI and DMP 
were predicted more accurately than Mgup, Kup, Nup, Pup, 
PTI, Caup, and ETc. Considering the error of the mean va-
lue of Monte Carlo simulations against the measured data 
for output variables, it is apparent that the HORTSYST 
model had good predictive ability, even though the para-
meter values included more uncertainty. However, it was 
observed that with larger uncertainty the accuracy of LAI, 
DMP and Pup estimations was increased. This is because 
the uncertainty analysis used nominal values of model pa-
rameters (values taken from the literature) instead of pa-
rameter values estimated by model calibration. Nominal 
parameter values can be near or far away from the optimal 
parameter values. Further work is needed to compare mo-
del uncertainty quantification before and after parameter 
estimation by using an optimization procedure. 

The GLUE uncertainty analysis procedure confirmed 
that HORTSYST predictions are reliable, according to the 
calculated 95% confidence intervals for both model para-
meter uncertainty intervals (10% and 20% parameter va-
riations around nominal values). Furthermore, this method 
provides parameter ranges for fitting model predictions to 
measured data. The intervals for optimal parameter values 
were in agreement with those obtained by model calibra-
tion (Martínez-Ruiz et al., 2019; 2020). Also, the value of 
the parameters RUE, required for DMP, parameters a and b, 
which are needed for Nup, were found in the ranges reported 
by Gallardo et al. (2014; 2016) for the VegSyst model.

According to Pathak et al. (2012), estimation of the 
GLUE and Monte Carlo uncertainty methods is based on 
the assumption that model parameters are independent. 
However, it is unlikely that this is the case since there are 
other sources of uncertainty, such as the input variables of 
the HORTSYST model (solar radiation, air temperature 
and humidity), initial conditions of state variables and the 
equations that are part of the model structure. Therefore, 
this work could be further extended by including other 
uncertain factors.

Based on the results of this work, the Monte Carlo and 
GLUE uncertainty analysis methods are necessary and com-
plementary approaches since the former does not directly 
use any measured data of predicted variables in contrast to 
GLUE in which the use of that information is compulsory. 

On the other hand, Lopez et al. (2018) found better fit to 
the measurement of HORTSYST model against VegSyst 
(Gallardo et al., 2016), the RMSE and the mean absolu-
te error resulted three times lower. The improvement in 
quality of the prediction of DMP by HORTSYST model 
can be explained by the good modeling of LAI and the 
introduction of PTI as state variable. For the quality of the 
predictions of the HORTYSYS model it is possible to use 
it in the development of a decision support system (DSS) 
for irrigation management and nutrition in greenhouses, 
like those implemented with the VegSyst model deve-
loped by Gallardo et al. (2014) for N management and 

irrigation in greenhouse crops in Mediterranean climates. 
Elia & Conversa (2015) applied the GesCoN-DSS for 
management of fertigation in open field vegetable crops 
and Pérez et al. (2017) implemented a cFertigUAL-DSS 
based on a model for the control of the fertilization dose. 

The results obtained in this study indicate that uncer-
tainty analysis using both the Monte Carlo and GLUE me-
thods can help in quantifying uncertainties in HORTSYST 
model predictions. Due to the small uncertainty associa-
ted with the model outputs, the model provides acceptable 
predictions (and it is reliable) when the nominal values 
of its parameters are varied between 10% and 20% under 
two different growing conditions (crop season). Howe-
ver, more research work is needed to determine whether 
HORTSYST can be applied to irrigation and nutrient  
supply management in greenhouse tomatoes grown under 
soilless culture. For example, future studies could consi-
der various crop densities, different irrigation and nutrient 
levels, and temperature-driven stress conditions.
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