
INGENIERÍA E INVESTIGACIÓN VOL. 41 NO. 3, DECEMBER - 2021 (e79308)

Research Article / Systems and Computer Engineering https://doi.org/10.15446/ing.investig.v41n3.79308

Full Model Selection Problem and Pipelines for Time-Series
Databases: Contrasting Population-Based and Single-point

Search Metaheuristics
Problema de selección de modelo completo y tuberías para bases de
datos de series de tiempo: contrastando metaheurísticas basadas en

población y de un solo punto de búsqueda

Nancy Pérez-Castro 1, Héctor Gabriel Acosta-Mesa 2, Efrén Mezura-Montes 3, and Nicandro
Cruz-Ramírez 4

ABSTRACT
The increasing production of temporal data, especially time series, has motivated valuable knowledge to understand phenomena
or for decision-making. As the availability of algorithms to process data increases, the problem of choosing the most suitable one
becomes more prevalent. This problem is known as the Full Model Selection (FMS), which consists of finding an appropriate set
of methods and hyperparameter optimization to perform a set of structured tasks as a pipeline. Multiple approaches (based on
metaheuristics) have been proposed to address this problem, in which automated pipelines are built for multitasking without much
dependence on user knowledge. Most of these approaches propose pipelines to process non-temporal data. Motivated by this, this
paper proposes an architecture for finding optimized pipelines for time-series tasks. A micro-differential evolution algorithm (µ-DE,
population-based metaheuristic) with different variants and continuous encoding is compared against a local search (LS, single-point
search) with binary and mixed encoding. Multiple experiments are carried out to analyze the performance of each approach in ten
time-series databases. The final results suggest that the µ-DE approach with rand/1/bin variant is useful to find competitive pipelines
without sacrificing performance, whereas a local search with binary encoding achieves the lowest misclassification error rates but has
the highest computational cost during the training stage.

Keywords: full model selection, time series, metaheuristics

RESUMEN
La creciente producción de datos temporales, especialmente de series de tiempo, ha motivado la extracción analítica de conocimiento
valioso para comprender fenómenos o para la toma de decisiones. A medida que aumenta la disponibilidad de algoritmos para
procesar datos, el problema de elegir el más adecuado se vuelve más frecuente. Este problema se conoce como la Selección del
Modelo Completo (SMC), que consiste en encontrar un conjunto apropiado de métodos y la optimización de hiperparámetros para
realizar un conjunto de tareas estructuradas como una tubería. Se han propuesto múltiples enfoques (basados en metaheurísticas)
para abordar este problema, en los que se construyen tuberías automatizadas para realizar múltiples tareas sin mucha dependencia
del conocimiento del usuario. La mayoría de estos enfoques proponen tuberías para procesar datos no temporales. Motivado por
esto, este artículo propone una arquitectura para encontrar tuberías optimizadas para tareas de series de tiempo. El algoritmo
de micro-Evolución Diferencial (µ-ED, metaheurística basada en población) con diferentes variantes y codificación continua, es
comparado contra una búsqueda local (BL, búsqueda de un solo punto) con codificación binaria y mixta. Se realizan múltiples
experimentos para analizar el rendimiento de cada enfoque en diez bases de datos de series de tiempo. Los resultados finales sugieren
que el enfoque de µ-ED con la variante rand/1/bin es útil para encontrar tuberías competitivas sin sacrificar el rendimiento, mientras
que la BL con codificación binaria logra las tasas de error de clasificación incorrecta más bajas, pero tiene el costo computacional más
alto durante la etapa de entrenamiento.

Palabras clave: selección del modelo completo, series de tiempo, metaheurísticas

Received: April 25th, 2019
Accepted: March 18th, 2021

1Ph.D. Artificial Intelligence, University of Veracruz Artificial Intelligence Research
Institute, México. Affiliation: Graduate of the PhD in Artificial Intelligence, University of
Veracruz Artificial Intelligence Research Institute, México. E-mail: naperez@uv.mx
2Ph.D. Artificial Intelligence, University of Sheffield, Sheffield, UK. Affiliation:
Research Professor, University of Veracruz Artificial Intelligence Research Institute,
México. E-mail: heacosta@uv.mx.
3Ph.D. Computer Science, Center for Research and Advanced Studies of the
National Polytechnic Institute (CINVESTAV-IPN), México. Affiliation: Research
Professor, University of Veracruz Artificial Intelligence Research Institute, México.
E-mail: emezura@uv.mx

4Ph.D. Artificial Intelligence, University of Sheffield, Sheffield, UK. Affiliation:
Research Professor, University of Veracruz Artificial Intelligence Research Institute,
México. E-mail: ncruz@uv.mx

How to cite: Pérez-Castro, N., Acosta-Mesa, H. G., Mezura-Montes, E., Cruz-
Ramírez, N. (2021). Full Model Selection Problem and Pipelines for Time-Series
Databases: Contrasting Population-Based and Single-Point Search Metaheuristics.
Ingeniería e Investigación, 41(3), e79308.
https://doi.org/10.15446/ing.investig.v41n3.79308

Attribution 4.0 International (CC BY 4.0) Share - Adapt
1 of 17

https://orcid.org/0000-0002-1831-6148
https://orcid.org/0000-0002-0935-7642
https://orcid.org/0000-0002-1565-5267
https://orcid.org/0000-0002-0708-9875
https://doi.org/10.15446/ing.investig.v41n3.79308
https://creativecommons.org/licenses/by/3.0/deed.en


Full Model Selection Problem and Pipelines for Time-Series Databases: Contrasting Population-Based and Single-Point Search Metaheuristics

Introduction
In recent years, the ability to generate and store data has far
outpaced the capability to analyze and exploit it (Rydning
2018). According to Gantza and Reisel (2012), just 3% of
global data are currently tagged and ready for manipulation,
and only 0,5% of this is used for analysis, at least in 2012.

Therefore, the interest in analyzing and extracting useful in-
formation to understand phenomena or for decision-making
has brought the attention of practitioners and the research
community. The increasing production of temporal data,
especially time series, has motivated the analysis for ex-
tracting valuable knowledge through knowledge discovery
in databases (KDD) processes and data mining (DM) tech-
niques (Sun, Yang, Liu, Chen, Rao, and Bai 2019, Boullé,
Dallas, Nakatsukasa, and Samaddar 2020).

Time series are an important class of temporal data objects,
and they can be easily obtained from scientific research (Fu
2011) and other domains such as medicine, engineering, earth
and planetary sciences, physics and astronomy, mathematics,
environmental sciences, biochemistry, genetic and molecular
biology, agricultural and biological sciences, among others.

Figure 1 shows a scientific document analysis by subject areas
where time series have been used, especially in classification
tasks during the last seven years, obtained from the Elsevier-
Scopus database, where 7 973 articles were considered.

Computer Science (27.,2%)

Engineering (14.,1%)

Earth and Planetary (10.,2%)
Mathematics (9.,2%)

Agricultural and Biology (5.,6%)

Medicine (5.,2%)

Environmental

Science (4.,7%)

Physics and

Astronomy (4.,3%)

Social Sciences (3.,0%)

Biochemistry, Genetics

and Molecular Biology (2.,8%)

Other (13.,8%)

Figure 1. Analysis of the time-series usage that has been reported in
scientific documents in the last seven years.
Source: Authors

Time series T = (t1, . . . ,tn) ∈ R is the result of the observation
of the underlying procedure in which a set of values is
collected through measurements made into uniformly spaced
time-instants. Therefore, a time series can be defined as
an ordered sequence of n real-valued variables (Esling and
Agon 2012, Jastrzebska 2019).

A wide variety of DM techniques has been proposed and
applied to dealing diverse tasks in domains where time series
can be involved (Gong, Chen, Yuan, and Yao 2019, Jastrzebska
2019, Ali, Alqahtani, Jones, and Xie 2019).

However, classical DM techniques often perform poorly in
the presence of time-series data, because most of them treat
time-series as unrelated data, thus resulting in inaccurate or
inconsistent models (Rashid and Hossain 2012).

To overcome the disadvantages of traditional DM techniques
with time series, a set of techniques has been proposed
which are part of Temporal Data Mining (TDM). TDM has a
huge array of techniques for tackling tasks such as query by
content, clustering, classification, segmentation, and others
(Yang 2017).

When time series data are involved in the data mining process,
the quality of the mined data can depend on two important
issues: the first is the choice of the appropriate algorithm for
a given task, while the second is the proper hyper-parameter
selection that may produce a relatively good performance.

Both issues are known as algorithm selection (AS), and model
selection (MS), and these are often solved separately. Never-
theless, there are some proposals which have addressed both
AS and MS at the same time under the issue known as full
model selection (FMS) (Escalante, Montes, and Sucar 2009).

Therefore, FMS consists of finding an appropriate set of meth-
ods and their hyperparameter optimization for multitasking.
This combination can be represented as a kind of pipeline,
characterized by avoiding the dependency on user knowledge
(Hutter, Kotthoff, and Vanschoren 2019).

Multiple approaches have been proposed to find automated
pipelines according to the hyperparameter optimization pro-
cess (Yu and Zhu 2020). These approaches can be categorized
into three main classes: a) approaches based on exhaustive
traditional search (Bergstra and Bengio 2012), b) approaches
based on Bayesian optimization (Shahriari, Swersky, Wang,
Adams, and de Freitas 2016), and c) approaches based on
metaheuristics (Hutter et al. 2019).

The first class of these approaches can be impractical and
costly because the search focuses on exhaustive exploration
defined for a particular block of the pipeline. In contrast
to exhaustive approaches, Bayesian approaches keep track
of past evaluation results, which they use to find better
model settings than random search in fewer iterations. The
major drawback of Bayesian optimization approaches is that
inference time grows cubically in the number of observations.

Metaheuristics represent a flexible option that has been
increasingly used to build optimized pipelines. Population-
based metaheuristics such as evolutionary or swarm intel-
ligence algorithms have been adopted to propose an au-
tomatic framework that finds streamlined pipelines (Sun,
Pfahringer, and Mayo 2013, Olson, Urbanowicz, Andrews,
Lavender, Kidd, and Moore 2016, de Sá, Pinto, Oliveira, and
Pappa 2017).

Most of the population-based metaheuristic approaches have
focused on building pipelines for databases in which the
temporary factor is not considered. Therefore, approaches
dealing with FMS while involving the building of time series
pipelines are scarce.

2 of 17 INGENIERÍA E INVESTIGACIÓN VOL. 41 NO. 3, DECEMBER - 2021



PÉREZ-CASTRO, ACOSTA-MESA, MEZURA-MONTES, AND CRUZ-RAMÍREZ

Single-point search, a part of metaheuristics, has been used
for search optimized structures or hyperparameter selection
(Aly, Guadagni, and Dugan 2019). Local search is an example
of a single-point search that has turned out to be a practical
option to solve complex problems despite being the most
straightforward.

In this paper, an architecture is proposed for finding an
optimized pipeline for time series databases in which the
FMS problem is related. It is empirically studied from two
points of view: the first, from a population-based approach,
where µ-DE is used as a search engine; and the second, from
a single-point search, where a local search is adopted.

The main objectives of this work are to empirically study the
proposed architecture, varying the search engine and solution
encoding; and to offer an alternative that automatically assists
the selection of an optimized pipeline for time series database
tasks, i.e., to solve the FMS problem for time series.

Related works
From the literature review, it is essential to note that FMS is
not a new trend. Since the 90s, solutions have emerged to
deal with the issue of selecting an algorithm from a portfolio
of options in order to carry out a single task (Rice 1976).

Subsequently, the need arises to incorporate more tasks
into said selection (multi-task) and deal with hyperparameter
optimization, resulting in machine learning pipelines (Hutter
et al. 2019).

Nowadays, learning pipelines are developed to be truly usable
by a non-expert. Against this background, a need for auto-
mated machine learning (AutoML, a recently coined term)
systems can be used to handle various tasks and solve the
FMS problem, a challenging and time-consuming process.

Grid search, random search, Bayesian optimization, and
metaheuristics are four conventional approaches to build-
ing AutoML systems for diverse applications (Bergstra and
Bengio 2012). Grid search and random search are traditional
hyperparameter optimization methods that could prove im-
practical to explore high-dimensional spaces at a high com-
putational cost.

Bayesian optimization has been effective in this realm and
has even outperformed manual hyperparameter tuning by
expert practitioners. Auto-WEKA (Hall et al. 2009), mlr (Bischl
et al. 2016) and auto-SKLearn (Pedregosa et al. 2011) are
approaches based on Bayesian optimization, and their prime
objective is to find the best combination between complete
learning pipelines and their respective parameters.

Both approaches follow a hierarchical method that first
chooses a particular algorithm and, only after this step, opti-
mizes its parameters. Thus, algorithms may be left out which,
with the right hyperparameters, could generate better results
than the selected ones.

On the other hand, metaheuristics, especially evolutionary
and swarm intelligence algorithms, have gained a particular
interest in the research community by allowing the construc-

tion of machine learning pipelines that can be complex and
extensive.

In the rest of this section, a set of metaheuristics-based
approaches for AutoML are described.

Metaheuristics-based approaches
In 2009, Escalante et al. (2009) proposed a machine learning
pipeline that included selecting a preprocessing algorithm, a
feature selection algorithm, a classifier and, all their hyper-
parameters. Their approach used a modified Particle Swarm
Optimization (PSO) to deal with the limited configuration
space and was called PSMS system. Although the authors
found that they could apply their method to different datasets
without domain knowledge, most of the datasets used had
unrelated attributes. In order to avoid overfitting, the authors
proposed using k-cross-validation, and then the approach
was extended with a custom assembling strategy that com-
bined the best solutions from multiple generations (Escalante,
Montes, and Sucar 2010).

Later, Sun et al. extended the idea of PSMS and proposed the
unification of the PSO algorithm and the Genetic Algorithm
(GA) (2013). This approach was called GPS (which stands
for GA-PSO-FMS). A GA were was used to optimize the
pipeline structure, while the PSO for the hyperparameter
optimization of each pipeline. The pipeline proposed by the
authors included selecting from a pool of methods such as
data sampling, data cleansing, feature transformation, feature
selection, and classification. The datasets used for evaluating
GPS were characterized by a high number of instances, thus
causing an increase in the computational cost during the loss
function evaluation. Therefore, the authors proposed the
use of an internal binary tree structure to speed up the GPS
system.

Another interesting line of research is the application of multi-
objective evolutionary algorithms. One of these approaches is
the Multi-objective Support Vector Machine Model Selection
(MOSVMMS) (Rosales-Pérez, Escalante, Gonzalez, Reyes-
Garcia, and Coello-Coello 2013), where the search is guided
by a Non-dominated Sorted Genetic Algorithm-II (NSGA-II).

The authors built a pipeline formed by feature selection,
pre-processing, and classification tasks focused only in the
SVM classifier. The models were evaluated under bias and
variance trade-off as prime objective functions. This ap-
proach was only tested on thirteen binary classification prob-
lems. Two extensions of this approach were reported, the
first called Multi-Objective Model Type Selection (MOMTS),
where a multi-objective evolutionary algorithm based on
decomposition (MOEA/D) was used instead of the NSGA-
II (Rosales-Pérez, Gonzalez, Coello-Coello, Escalante, and
Reyes-Garcia 2014). MOMTS focused only on selecting clas-
sification models without other involved tasks. However, the
authors explored the idea of measuring complexity models
through the Vapnik-Chervonenkis dimension, which could
have a high computational cost as the dimension of the
datasets grows.

INGENIERÍA E INVESTIGACIÓN VOL. 41 NO. 3, DECEMBER - 2021 3 of 17



Full Model Selection Problem and Pipelines for Time-Series Databases: Contrasting Population-Based and Single-Point Search Metaheuristics

For that reason, the second extension proposed by Rosales-
Pérez, Gonzalez, Coello, Escalante, and Reyes-Garcia was
the Surrogate Assisted Multi-Objective Model Selection
(SAMOMS) (2015), in which a pipeline structure is con-
sidered, (preprocessing, feature selection, and classification).
They proposed a surrogate assistant to speed up the fitness
evaluation.

The Tree-Based Pipeline Optimization Tool (TPOT) is an
open-source software package for configuring pipelines in
a more flexible manner (Olson et al. 2016). TPOT uses a
genetic programming algorithm for optimizing structures and
hyperparameters. The main operator included in TPOT has su-
pervised classification, feature preprocessing operators, and
feature selection operators, all of them taken from scikit-learn.
The main drawback of TPOT is considering unconstrained
search, where resources can be spent on generating and
evaluating invalid solutions.

So far, these approaches do not present evidence of the
treatment of time-series databases. Most of them use a
fixed pipeline length in sequential steps. TPOT is, to date,
the approach that stands out for optimizing the design of
pipes. Early efforts for an approach that suggests automated
pipelines for time series can be found a previous work pro-
posed by Pérez-Castro, Acosta-Mesa, Mezura-Montes, and
Cruz-Ramírez (2015). The authors proposed using a micro
version of differential evolution to solve the FMS problem, and
they suggested optimized pipelines. In that work, smoothing,
time series representation, and classification through the
k-nearest neighbor algorithm are only considered. This work
is an extension of the work mentioned above.

FMS problem in time-series databases
The FMS term, conceived by Escalante et al. (2009), consists
of selecting a combination of suitable methods to obtain a
learning pipeline for a particular database with a low general-
ization error.

In this paper, the FMS problem in time series databases is
tackled as a single-objective optimization problem, defined by
Equation (1), based on the definition made by Díaz-Pacheco,
Gonzalez-Bernal, Reyes-García, and Escalante-Balderas (2018),
which consists of searching for suitable pipeline composed
by a smoothing s∗λ ∈ S, a time series representation r∗λ ∈
R, a numerosity reduction e∗λ ∈ E, and classification method
c∗λ ∈ C with their related hyper-parameter setting λ from the
corresponding domain space ∧.

For each pipeline, a loss function L is estimated over a
labeled time-series database D = {(x⃗1,y1), . . . ,(x⃗n,yn)}, where
for i = 1, . . . ,n, let x⃗i ∈ Xd, which denotes an ordered
sequence of n real-valued variables (univariate time series),
and yi ∈ Y for the corresponding label value.

In order to build pipelines with a low generalization error,
database D is divided into k disjoint partitions (D(i)

t and D(i)
v

for i = 1,2, . . . ,k).

s∗λ, r
∗

λ, e
∗

λ, c
∗

λ ∈ arg min
s(i)∈S,r(i)∈R,e(i)∈E,c(i)∈C,λ∈∧

1
k

k∑
i=1

L(sλ, rλ, eλ, cλ,Di
t,D

i
v)

(1)

Where, S is the set of available smoothing methods; R is the
set of available time series representation methods; E is the
set of available numerosity reduction methods; C is the set
of available classifiers; λ is a vector of hyperparameters; Dt
is a training data partition; Dv is a validation partition; L is
a loss function computed on the validation set; and argmin
returns the lowest values estimated by the loss function.

Methodology overview
Materials
Benchmark databases

In this article, a part of the well-known collection of univariate
time series databases is used (Keogh et al. 2011). The
essential characteristics of those databases are summarized
in Table 1.

Table 1. Time-series databases description

No. Name No. of
classes

Training
set size

Testing
set size

Time-series
length

1. Beef 5 30 30 470

2. CBF 3 30 900 128

3. Coffee 2 28 28 286

4. ECG200 2 100 100 96

5. FaceFour 4 24 88 350

6. Gun-Point 2 50 150 150

7. Lightning-2 2 60 61 637

8. Lightning-7 7 70 73 319

9. OliveOil 4 30 30 570

10. Trace 4 100 100 275

Source: Authors

A brief description of each database is presented below:

• Beef: This database consists of five classes of beef
spectrograms acquired from raw samples, cooked us-
ing two different cooking regimes. Each beef class
represents a differing degree of contamination with
offal (Al-Jowder, Kemsley, and Wilson 2002).

• CBF: Cylinder-Bell-Funnel is a simulated database
where each class is standard normal noise plus an
offset term that differs for each category (Saito 2000).

• Coffee: The coffee database consists of two spec-
trograms class that distinguish between Robusta
and Arabica coffee beans (Bagnall, Davis, Hills, and
Lines 2012).

• ECG200: The electrocardiogram (ECG) database con-
tains the measurements recorded by one electrode
during one heartbeat. The two classes correspond

4 of 17 INGENIERÍA E INVESTIGACIÓN VOL. 41 NO. 3, DECEMBER - 2021



PÉREZ-CASTRO, ACOSTA-MESA, MEZURA-MONTES, AND CRUZ-RAMÍREZ

to a normal heartbeat and a myocardial infarction,
respectively (Olszewski 2001).

• FaceFour: This database was built from face profile
images. Each time series was obtained by converting a
local (outer) angle at every point x of the face profile
contour, starting from the head profile’s neck area
(Keogh et al. 2011).

• Gun-Point: This database was obtained from motions
with hands involving one female actor and one male
actor. Two classes were identified: Gun-Draw (actors
point the gun at a target for approximately one second)
and Gun-Point (actors point with their index fingers
to a goal for about one second). Each time series
corresponds to the centroid of the actor’s right hands
in the x-axis (Ratanamahatana and Keogh 2005).

• Lightning-2 and Lightning-7: The FORTE satellite de-
tects transient electromagnetic events associated with
lightning using a suite of optical and radio-frequency
(RF) instruments. Data is collected with a sample rate
of 50 MHz for 800 microseconds that are transformed
into spectrograms, which are collapsed in frequency
to produce a power density time series, with 3 181
samples in each time series. These are then smoothed
to produce time series of length 637 and 319 (Eads
et al. 2002).

• OliveOil: This is another example of the food spectro-
graphs used in chemometrics to classify food types.
Each class of this database corresponds to virgin
olive oils originating from four European producing
countries.

• Trace: It is a synthetic database created by Davide
Roverso and designed to simulate instrumentation
failures in a nuclear power plant. All instances are
linearly interpolated to have the same length of 275
data point (Roverso 2000).

It can be seen that most databases describe real phenomena.
A behavior analysis of time-series databases was carried out.
This analysis consisted of observing three characteristics: a)
class separation (CS), b) noise level (NL), and c) the similar-
ity between the training and testing sets (SBS). The mean,
median, and average of these per class for each database
were computed and plotted from raw databases. From the
visualization, the three characteristics of the above-listed
were ranked. CS 1 means non-separable, and a value of 3
means easily separable. NL can take values between 1-5,
where 1 means low noise and five high noise. SBM was mea-
sured in a range of 1 to 3, where 1 represents low similarity,
and 3 means high similarity. The results of this analysis are
summarized in Table 2.

It is important to note that the data was not pre-processed
for the experimental stage.

Table 2. Characteristics of visual analysis in time-series databases

No. Name CS NL SBS
1. Beef 2 1 3
2. CBF 2 2 2
3. Coffee 2 1 3
4. ECG200 3 2 3
5. FaceFour 3 1 2
6. Gun-Point 2 1 1
7. Lightning-2 2 3 1
8. Lightning-7 1 4 1
9. OliveOil 2 4 3
10. Trace 2 2 1

Note: Acronyms: CS (Class Separation); NL (Noise Level); SBS
(similarity between the training and testing sets)
Source: Authors

Pipeline tasks: available methods

In this work, four main tasks are considered to build a
learning pipeline for time series which involves solving the
FMS problem.

1. Smoothing: It is usually used to soften out the irregular
roughness to see a clearer signal. This task does not
provide a model, but it can be a promising first step
in describing various series components (Giron-Sierra
2018). It is common to use the term filter to describe
the smoothing procedure. Moving Average (Baijal,
Singh, Rani, and Agarwal 2016), the Savitzky-Golay
filter (Savitzky and Golay 1964), and Local Regression
(with and without weights) are considered with related
hyper-parameters (Cleveland and Loader 1996).

2. Time-series representation: This task consists of trans-
forming the time series to another domain to reduce
dimensionality, followed by an indexing mechanism.
Piecewise Aggregate Approximation (PAA) (Keogh,
Chakrabarti, Pazzani, and Mehrotra 2001), Symbolic
Aggregate approXimation (SAX) (Lin, Keogh, Wei, and
Lonardi 2007) and Principal Component Analysis (PCA)
are available methods (Page, Lischeid, Epting, and
Huggenberger 2012).

3. Numerosity reduction: It is a procedure used to re-
duce data volume by using suitable forms of data
representation. The Monte Carlo 1 (MC1) and IN-
SIGHT approaches were included (Garcia, Derrac,
Cano, and Herrera 2012, Buza, Nanopoulos, and
Schmidt-Thieme 2011).

4. Clasification: It is a machine learning supervised task
that consists of identifying the category to which a
new observation belongs, based on a training set of
data containing examples whose category membership
is known. Some classifiers were considered, such
as k-nearest neighbors, Naive Bayes, among others
(Bishop 2006).

Table 3 shows a summary of the available methods for each
pipeline tasks and their related hyperparameters.

INGENIERÍA E INVESTIGACIÓN VOL. 41 NO. 3, DECEMBER - 2021 5 of 17



Full Model Selection Problem and Pipelines for Time-Series Databases: Contrasting Population-Based and Single-Point Search Metaheuristics

Table 3. Description of available methods for each pipeline task and the
description of their hyperparameters (values in square brackets indicate
lower and upper limits)

ID Method Type Hyper-parameters Description
1 SG S k ∈ [1; 5] Polynomial order

f ∈ [1; TSL] Frame size
2 MA S span ∈ [2; TSL] Span size
3 LRw S %span ∈ [0,1; 1,0] Percentage span size
4 LRe S %span ∈ [0,1; 1,0] Percentage span size
1 SAX R nseg ∈ [2; TSL/2] Number of segments

a ∈ [2; 20] Alphabet
2 PAA R nseg ∈ [2; TSL/2] Number of segments
3 PCA R %red ∈ [0,2; 0,9] Percentage of reduction
1 INSIGHT NR %ins ∈ [0,5; 1] Percentage of instances
2 MC1 NR %ins ∈ [0,5; 1] Percentage of instances

nitera ∈ [1; 500] Number of iteration
1 KNN-ED C k ∈ [1; 7] Number of neighbors
2 KNN-

LBDTW
C k ∈ [1; 7] Number of neighbors

r ∈ [0,0; 0,05] Percentage of warping
3 NB C tk ∈ [1; 4] Type of kernel
4 DT C tsc ∈ [1; 3] Split criterion

1 = gdi
2 = twoing
3 = deviance

maxCat ∈ [2; 20] Maximum levels
5 AB C n ∈ [2; 500] Number of learners

6 SVM C −t ∈ [0; 3] Type of kernel
0 = linear
1 = polynomial
2 = radial
3 = sigmoid

−d ∈ [1; 50] Degree in kernel function
−g ∈ [1; 100] Gamma in kernel function
−r ∈ [0; 100] Coef0 in kernel function
−c ∈ [1; 1 000] Cost

Note: Acronyms: S (Smoothing); R (Representation); NR (Numerosity
Reduction); C (Classification); TLS (Time-series length); SG
(Savitzky-Golay Filter); MA (Moving Average); LRw (Local
Regression-lowess); LRe (Local Regression-loess); SAX(Aggregate
approXimation); PAA (Piecewise Aggregate Approximation); PCA
(Principal Component Analysis); INSIGHT (Instance Selection based on
Graph-coverage and Hubness for Time-series); MC1 (Monte Carlo 1);
KNN-ED (K-Nearest Neighbor-Euclidean Distance); KNN-LBDTW
(K-Nearest Neighbor-Lower Bounding Dynamic Time Warping); NB
(Naive Bayes); DT (Decision Tree); AB (AdaBoost); SVM (Support Vector
Machine)
Source: Authors

Encoding pipeline solutions

A candidate solution for the learning pipeline for time-series
databases is represented as a vector in this work. Each vector
can be formed by continuous values, binary values, or mixed
values (continuous and discrete values).

Continuous encoding: Each potential solution is encoded as
a continuous vector which is formed as in Equation (2).

x⃗i = [x j,s; h j,1,...,ns; x j,r; h j,1,...,nr; x j,e; h j,1,...,ne; x j,c; h j,1,...,nc] (2)

Where j depicts each position within a particular vector; and
x j,s ∈ [1; 4], x j,r ∈ [1; 3], x j,e ∈ [1; 2], and x j,c ∈ [1; 6] represent
the ID of the selected smoothing, time-series representation,
numerosity reduction, and classification available methods,
respectively.

h j,1,...,ns, h j,1,...,nr, h j,1,...,ne, and h j,1,...,nc encode the set of hyper-
parameters related to the overall available methods, where ns,
nr, ne, and nc represent the number of hyperparameters per
type of task into the learning pipeline that has different limits.
Each position can take random continuous values according
to Equation (3), which determines a value between the lower
and upper bounds of each hyperparameter, described in
Table 3.

f (xi) = lbi + (ubi − lbi) ∗ rand (3)

In Equation (3), lbi is a lower bound, ubi an upper bound,
and rand represents a random value between 0 and 1. Figure
3 shows an example of the structure of a continuous vector
solution. Black boxes represent the positions that encode the
selected method according to the task in the learning pipeline
(smoothing, time-series representation, numerosity reduction,
and classification), and the white boxes encode their related
hyperparameters. For continuous encoding, vectors of 24
dimensions are considered to represent a learning pipeline,
which is equivalent to a candidate solution of FMS problem
for time-series databases.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Positions for hyperparameters

ID classif cation method (ID_C)

ID numerosity reduction method (ID_NR)

ID representation method (ID_R)

ID smoothing method (ID_S)

Figure 2. Graphical representation of a solution encoding used in
contentious or mixed encoding.
Source: Authors

Mixed encoding: Mixed encoding consists of a vector of 24
dimensions, as shown in Figure 2. However, for this option,
both continuous and discrete values are permitted.

Continuous values are generated by Equation (3), according
to the limits of each position. In contrast, discrete values
are generated by randi(), the function of MATLAB language
that returns integer values drawn from a discrete uniform
distribution, where limits are also respected.

Binary encoding: Binary encoding consists of a vector formed
by binary values (0 or 1). These values can be grouped into
binary strings that represent continuous or discrete values.

The length of a particular binary string depends on the bound-
ary of values to be expressed. Binary string length l j is
computed with Equation (4), where int expresses a integer
value, log2 is the log base 2, ub the upper boundary, lb the
lower boundary, and precision is a constant that means the
number of decimal places to encode.

l j = int[log2[(ub j − lb j) · 10precision] + 0,9] (4)

6 of 17 INGENIERÍA E INVESTIGACIÓN VOL. 41 NO. 3, DECEMBER - 2021



PÉREZ-CASTRO, ACOSTA-MESA, MEZURA-MONTES, AND CRUZ-RAMÍREZ

Then, the overall binary vector length bvl to encode a potential
pipeline solution is the concatenation of each binary string.
Equation (5) states how it is computed, where D is the amount
of continuous or discrete values that can be encoded as binary
strings, and l j is the maximum length of these binary strings.

bvl =
D∑

j=1

l j (5)

If a mixed vector structure is considered containing 24 values
that represent a potential pipeline solution, which respects
the boundaries of the values presented in Table 3, then vector
with a length of 169 positions is required. It can be seen
in Figure 3 that the first three binary values correspond to
a binary string representing integer values between 1 and 4
that are the number of available smoothing methods. The
next binary strings encode the rest of the values.

0 1 1 0 0 1 0 1 0 0 0 1 . . . 1 0 0 1 1 1 0 1 0 1 0 1

1 2 3 4 5 6 7 8 9 10 11 12 . . . 158 159 160 161 162 163 164 165 166 167 168 169

Binary strings

Continuous or discrete values

Figure 3. Graphical representation of a binary encoding.
Source: Authors

A decoding process is needed to compute the quality of
each binary encode solution. Decoding is performed for
each binary string xs of complete binary vector according
to Equation (6), where lb j is the lower boundary used for
this binary string, ub j is the upper boundary used for this
binary string, xint is the result of traditional binary to decimal
conversion, and l j is the binary string length performed
obtained from (4).

xs = lb j +
xint(ub j − lb j)

2l j − 1
(6)

Fitness function

The Cross Validation Error Rate (CVER) is used as the fitness
function fx to evaluate the quality of a learning pipeline under
a particular time-series database. Equation (7) describes fx,
where a represents the portion of instances in the time-series
database that was incorrectly classified, and b is the total
number of instances in such database. k depicts the number
of stratified subsamples (folds) chosen randomly but with
roughly equal size in the cross validation method that is
adopted to avoid over-fitting.

f (x) = CVER =
1
k

k∑
i=1

(
a
b

)i (7)

Methods: search engines
Micro Differential Evolution (µ-DE)

Population-based metaheuristics such as evolutionary algo-
rithms have a reduced population version that has proven
to be efficient for solving large scale optimization problems

(Olguín-Carbajal et al. 2019, Salehinejad, Rahnamayan, and
Tizhoosh 2017). The reduced population versions usually are
denoted with the prefix µ. Besides the small population, µ
algorithms are characterized by a restart mechanism to avoid
stagnation.

The µ-DE cycle and conventional operations, based on the
scaled difference between two vectors of a population set, re-
main the same as in the classical DE. Usually, the population
size in µ-DE can take a value between four and six vectors
(Viveros Jiménez, Mezura Montes, and Gelbukh 2012, Caraf-
fini, Neri, and Poikolainen 2013). Regarding the restart
mechanism, µ-DE requires randomly replacing the N worst
vectors each R generations. In this paper, the µ-DE pro-
posed by Parsopoulos (2009) is used as a population-based
metaheuristic.

Algorithm 1 summarizes the main steps of the adopted µ-
DE. Step six shows the mutation and combination process,
for that, different variants such as rand/1/bin, rand/1/exp,
best/1/bin, and best/1/exp are used in the experimentation.

Algorithm 1 µ-DE
Require: NP ∈ [3; 6] (Size of population), G (maximum number of

generations), CR ∈ [0; 1] (Crossover Rate) , F > 0 (scale factor), N ∈
N (number of restart solutions), R ∈N (replacement generation).

1: Generate an initial population of size NP.
2: Compute fitness function of initial population by Equation (7).
3: Restarts N worst solution each R generations.
4: repeat
5: For each target vector, three vectors must be selected randomly.
6: Generate a trial vector trough mutation and combination operators.

7: Replace the worst vectors, according to fitness function values.
8: this
9: until G is reached

Ensure: Final best vector found.

This results in four versions to solve FMS problem, called
P-DEMS1 (Population-Differential Evolution Model Selec-
tion 1, using rand/1/bin), P-DEMS2 (Population-Differential
Evolution Model Selection 2, using rand/1/exp), P-DEMS3
(Population-Differential Evolution Model Selection 3, using
best/1/bin), and P-DEMS4 (Population-Differential Evolution
Model Selection 4, using best/1/exp).

Local search (LS)

LS, a single-point optimization metaheuristic, is considered to
be the oldest and most straightforward method (Talbi 2009).
However, it has recently been used to train complex struc-
tures of neural networks and examine their hyperparam-
eters for successful image classification (Aly et al. 2019).
The LS algorithm used in this paper is briefly described in
Algorithm 2.

For each iteration of the LS, a single solution s is replaced
by a neighbor as long as the objective function is improved.
Otherwise, the original solution is preserved. The search
stops when all candidate neighbors are worse than the current
solution, meaning that a local optimum is reached.

INGENIERÍA E INVESTIGACIÓN VOL. 41 NO. 3, DECEMBER - 2021 7 of 17



Full Model Selection Problem and Pipelines for Time-Series Databases: Contrasting Population-Based and Single-Point Search Metaheuristics

Algorithm 2 LS
Require: Nk (Neighborhood size), I (Maximum number of iterations)
1: Set i = 0
2: s0; /* Generate an initial solution */
3: while i < I do
4: s = s0
5: Generate (N(s)); /* Generation of candidate neighbors*/
6: if there is a better neighbor then
7: s = s′; /* Select a better neighbor s′ ∈ N(s)*/
8: end if
9: end while

10: i = i + 1
Ensure: Final solution found (local optima)

Step five (Algorithm 2) corresponds to the operator that gen-
erates the N neighbors of a slightly varied solution, according
to the type of solution encoding. The neighbors are generated
based on nvar ∈ [1; D] modifications that equivalent to the
selected random positions. For example, Figure 4a shows a
binary vector where nvar = 3. Thus, 3 positions are switched
(0 instead 1 or vice-versa).

1 0 0 1 1 0

nvar = 3

0 1 0 0 1 0

neighbor 1 2 3.5 0.7 1 1025 0.1

nvar = 3

2 5.2 0.3 1 1025 0.8

neighbor 1

(a) (b)

Figure 4. Examples of neighbors generated by LS. (a) Using a binary
encode. (b) Using mixed encode.
Source: Authors

On the other hand, when mixed encoding is used, the nvar
selected values are replaced with new values that are within
boundaries of their corresponding variables (Figure 4b).

Two versions of LS are adopted as search engines: S-LSMS1
(Single-Local Search Model Selection, where binary encoding
is used) and S-LSMS2 (Single-Local Search Model Selection,
where mixed encoding is used).

Methodology architecture
In this section, the general architecture adopted for evaluating
both population-based and single-point search approaches for
solving the FMS problem to find a suitable learning pipeline
for time-series databases is described.

Figure 5. General methodology for FMS approaches in time series.
Source: Authors

The architecture can be summarized into four main steps
(Figure 5).

1. A training time-series database is considered as input
data.

2. The training database is split into k stratified subsets
(each subset contains approximately the same percent-
age of samples of each target class as the complete set)
that are available during the search process.

3. This step consists of the search process guided by the
metaheuristics, either the population-based or single-
point versions. Regarding population-based options
(based on Algorithm 1), these generate random solu-
tions according to continuous encoding. The overall
population is evaluated thought the fitness function
(Equation 6) under the stratified subsets generated
in the second step. The solutions evolve throughout
an established number of iterations, and, in the end,
the best solution is obtained. Regarding single-point
search (based on Algorithm 2), a unique solution is
generated (binary or mixed encoding) which improves
throughout the iterations. In the end, the best solution
is also obtained.

4. The final best solution found in the search process is
evaluated with the test database.

Experiments and results
This section presents a set of experiments where the PM
(population-based metaheuristics) versions and SM (single-
point-based metaheuristics) are used as the search engines
to solve the FMS problem and find a suitable pipeline for
time-series databases.

The experimentation is presented in five subsections: (1) a
comparison of the final statistical results of each metaheuristic,
(2) a convergence plot analysis, (3) a diversity analysis of the
PM versions, (4) an analysis of the final obtained models,
and (5) a frequency analysis of the methods’ usage. Each
metaheuristic was evaluated in the ten time-series databases
described in Table 1. Considering the high computation
time required by the approaches, five independent runs
for each metaheuristic were carried out. The termination
condition was 3 000 evaluations. The configuration used by
each involved metaheuristics is described in Table 4, based
on (Viveros-Jiménez et al. 2012, Escalante et al. 2009).

Final Statistical Results
Table 5 shows the final numerical results of CVER obtained
by the six metaheuristics versions. The reported values
correspond to the average of five trials evaluated in the
testing set of each database.

Due to the fact that the samples have a non-normal dis-
tribution, and multiple comparisons are needed, the non-
parametric Friedman test was used (García, Fernández, Lu-
engo, and Herrera 2010). The related samples are the perfor-
mances of the metaheuristics measured across the same data

8 of 17 INGENIERÍA E INVESTIGACIÓN VOL. 41 NO. 3, DECEMBER - 2021



PÉREZ-CASTRO, ACOSTA-MESA, MEZURA-MONTES, AND CRUZ-RAMÍREZ

sets. The Friedman tests evaluates the following null hypoth-
esis: all methods obtain similar results with non-significant
differences.

Table 4. Experimental settings for each metaheuristic approach

Metaheuristic
approach

Algorithm Setting

PM µ-DE versions I = 500, NP = 6, CR = 0.1, F =
0:9, N = 2, R = 10

SM LS versions I = 500, Nk =6

Note: Acronyms: PM (Population-based Metaheuristic); SM
(Single-point-based Metaheuristics); µ-DE (micro Differential Evolution);
LS (Local Search); I (Iterations); NP (Population Size); CR (Crossover
Rate); F (Scaled Factor); N (Number of restart solutions); R
(Replacement generation); Nk (Number of neighbors)
Source: Authors

In the Friedman test, numerical results are converted to
ranks. Thus, it ranks the metaheuristics for each problem
separately. The best performing metaheuristic should have
rank 1, the second best, rank 2, etc., as shown in Table
5. When there are ties, average ranks are computed. With
six compared metaheuristics and ten databases, the p-value
computed by the Friedman test was 0,183, which means that
the null hypothesis is accepted. Thus, there are no significant
differences found among the compared metaheuristics.

However, according to the average rank shown in Table
5, the S-LSMS1 (SM with binary representation) was the
highest rank in most of the databases. It was followed by
the P-DEMS1 (PM based on µ-DE, where the base vector is
randomly chosen, and a binomial crossover is used).

To enhance statistical validation, the Tukey post-hoc test
based on the Friedman results was applied by using the
best and median values obtained over the five runs for each
metaheuristic over the whole databases. Figures 6 and 7
show the results of this test, where the x-axis exhibits the
confidence interval of mean ranks (given by the Friedman
test) and the y-axis shows the name of each metaheuristic
compared. Using the best and median values, the test yielded
a p-value = 0,005 and a p-value = 0,250, respectively. In the
case of Figure 6, there was a significant difference between
S-LSMS1 and P-DEMS4.

Meanwhile, in Figure 7, there are no significant differences
between the metaheuristics. Finally, a pairwise comparison
was conducted to determine which of the metaheuristics
exhibit a different performance against a selected control
metaheuristic, namely S-MSLS1 because it was the best
ranked.

The non-parametric 95% confidence Wilcoxon rank sum test
was applied to the numerical results of the six metaheuristics
for each database. Table 4 shows the numerical results
of the pairwise comparison. The metaheuristics are sorted
according to the average rank provided by the Friedman test.

The results in Table 6 show that the S-LSMS1 technique
was able to provide the most competitive results among

2 2.,5 3 3.,5 4 4.,5 5 5.,5

S-LSMS2

S-LSMS1

P-DEMS4

P-DEMS3

P-DEMS2

P-DEMS1

Figure 6. Tukey post-hoc test using the best values over the whole set
of databases
Source: Authors

1.,5 2 2.,5 3 3.,5 4 4.,5 5

S-LSMS2

S-LSMS1

P-DEMS4

P-DEMS3

P-DEMS2

P-DEMS1

Figure 7. Tukey post-hoc test using the median values over the whole
set of databases.
Source: Authors

the compared metaheuristics. S-LSMS1 outperformed P-
DEMS1 in two (out of ten) databases Lightning-7 and Trace,
while P-DEMS1 outperformed S-LSMS1 in Coffee and Gun-
Point. S-LSMS1 outperformed P-DEMS2 in four databases
(Beef, ECG200, Lightning-7, and Trace), while P-DEMS2
outperformed S-LSMS1 in just the Coffee database.

S-LSMS1 outperformed S-LSMS2 in Beef and Lightning-7, and
was beaten in the Coffee database. S-LSMS1 outperformed
P-DEMS4 in four databases (Beef, ECG200, Lightning-7, and
Trace) and was outperformed in just one (Coffee). In sum-
mary, S-LSMS1 was able to obtain the best numerical values
at least in eight of ten databases (Beef, CBF, ECG200, Face-
Four, Lightning-2, Lightning-7, OliveOil, and Trace). Finally,
P-DEMS3 was outperformed by S-LSMS1 in three databases
(ECG200, Lightning-7, and Trace) and outperformed in just
one (Coffee).

Analysis of convergence plots
To further understand the behavior of each compared meta-
heuristic, the convergence plots of a set of representative
databases are analyzed.

INGENIERÍA E INVESTIGACIÓN VOL. 41 NO. 3, DECEMBER - 2021 9 of 17



Full Model Selection Problem and Pipelines for Time-Series Databases: Contrasting Population-Based and Single-Point Search Metaheuristics

Table 5. Comparison of averaging performance among the six metaheuristics for each database

Database P-DEMS1 P-DEMS2 P-DEMS3 P-DEMS4 S-LSMS1 S-LSMS2
Beef 0,053±0,102 (3) 0,087±0,038 (4) ∗0,000±0,000 (1,5) 0,160±0,060 (5) ∗0,000±0,000 (1,5) 0,367±0,227 (6)
CBF ∗0,000±0,000 (3) ∗0,000±0,000 (3) ∗0,000±0,000 (3) ∗0,000±0,000 (3) ∗0,000±0,000 (3) 0,030±0,027 (6)
Coffee ∗0,000±0,000 (3) ∗0,000±0,000 (3) ∗0,000±0,000 (3) ∗0,000±0,000 (3) 0,268±0,157 (6) 0,000+0,000 (3)
ECG200 ∗0,000±0,000 (2) 0,800±0,447 (4) 1,000±0,000 (5,5) 1,000±0,000 (5,5) ∗0,000±0,000 (2) ∗0,000±0,000 (2)
FaceFour ∗0,000±0,000 (3,5) ∗0,000±0,000 (3,5) ∗0,000±0,000 (3,5) ∗0,000±0,000 (3,5) ∗0,000±0,000 (3,5) ∗0,000±0,000 (3,5)
Gun_Point ∗0,000±0,000 (1) 0,395±0,221 (4) 0,493±0,000 (5,5) 0,493±0,000 (5,5) 0,388±0,217 (3) 0,212±0,253 (2)
Lightning-2 ∗0,000±0,000 (3) ∗0,000±0,000 (3) ∗0,000±0,000 (3) ∗0,000±0,000 (3) ∗0,000±0,000 (3) 0,069±0,154 (6)
Lightning-7 0,766±0,035 (5) 0,762±0,028 (4) 0,786±0,019 (6) 0,761±0,012 (3) ∗0,019±0,019 (1) 0,082±0,046 (2)
OliveOil 0,013±0,030 (2,5) 0,033±0,047 (5) 0,027±0,043 (4) 0,013±0,018 (2,5) ∗0,000±0,000 (1) 0,133±0,122 (6)
Trace 0,800±0,447 (3,5) 0,800±0,447 (3,5) 1,000±0,000 (5,5) 1,000±0,000 (5,5) ∗0,000±0,000 (1,5) ∗0,000±0,000 (1,5)
Average rank 2,950 3,700 4,050 3,950 ∗2,550 3,800

Note: Acronyms: P-DEMS1 (Population-Differential Evolution Model Selection 1 with rand/1/bin); P-DEMS2 (Population-Differential Evolution Model
Selection 2 with rand/1/exp); P-DEMS3 (Population-Differential Evolution Model Selection 3 with best/1/bin), and P-DEMS4 (Population-Differential
Evolution Model Selection 4 with best/1/exp); S-LSMS1 (Single-Local Search Model Selection with binary encoding); S-LSMS2 (Single-Local Search
Model Selection with mixed encoding). Values to the right of ± represent the standard deviation, the values in parentheses represent the ranks
computed by the Friedman test, and values in parentheses to the left mean the lowest values found or the best ranking.
Source: Authors

Table 6. Comparison between the control metaheuristic S-LSMS1 and the rest of metaheuristics

Database S-LSMS1 1◦ (Control) P-DEMS1 2◦ P-DEMS2 3◦ S-LSMS2 4◦ P-DEMS4 5◦ P-DEMS3 6◦

Beef ∗0,000±0,000 0,053±0,102 (=) 0,087±0,038 (-) 0,367±0,227 (-) 0,160±0,060 (-) ∗0,000±0,000 (=)
CBF ∗0,000±0,000 ∗0,000±0,000 (=) ∗0,000±0,000 (=) 0,030±0,027 (=) ∗0,000±0,000 (=) 0,000±0,000 (=)
Coffee 0,268±0,157 ∗0,000±0,000 (+) ∗0,000±0,000 (+) ∗0,000±0,000 (+) ∗0,000±0,000 (+) ∗0,000±0,000 (+)
ECG200 ∗0,000±0,000 ∗0,000±0,000 (=) 0,800±0,447 (-) ∗0,000±0,000 (=) 1,000±0,000 (-) 1,000±0,000 (-)
FaceFour ∗0,000±0,000 ∗0,000±0,000 (=) ∗0,000±0,000 (=) ∗0,000±0,000 (=) ∗0,000±0,000 (=) ∗0,000±0,000 (=)
GunPoint 0,388±0,217 0,000±0,000 (+) 0,395±0,221 (=) 0,212±0,253 (=) 0,493±0,000 (=) 0,493±0,000 (=)
Lightning-2 ∗0,000±0,000 ∗0,000±0,000 (=) ∗0,000±0,000 (=) 0,069±0,154 (=) ∗0,000±0,000 (=) ∗0,000±0,000 (=)
Lightning-7 ∗0,019±0,019 0,766±0,035 (-) 0,762±0,028 (-) 0,082±0,046 (-) 0,761±0,012 (-) 0,786±0,019 (-)
OliveOil ∗0,000±0,000 0,013±0,030 (=) 0,033±0,047 (=) 0,133±0,122 (=) 0,013±0,018 (=) 0,027±0,043 (=)
Trace ∗0,000±0,000 0,800±0,447 (-) 0,800±0,447 (-) ∗0,000±0,000 (=) 1,000±0,000 (-) 1,000±0,000 (-)
Number of (-) 2 4 2 4 3
Number of (+) 2 1 1 1 1
Number of (=) 6 5 7 5 6

Note: Acronyms: P-DEMS1 (Population-Differential Evolution Model Selection 1 with rand/1/bin); P-DEMS2 (Population-Differential Evolution Model
Selection 2 with rand/1/exp); P-DEMS3 (Population-Differential Evolution Model Selection 3 with best/1/bin), and P-DEMS4 (Population-Differential
Evolution Model Selection 4 with best/1/exp); S-LSMS1 (Single-Local Search Model Selection with binary encoding); S-LSMS2 (Single-Local Search
Model Selection with mixed encoding). (-) means that there was a significant difference favoring the control metaheuristic. (+) implies that there was
a significant difference favoring the compared metaheuristic. (=) means that no significant difference was observed between the compared
metaheuristics. Values in parentheses to the left mean the best values found.
Source: Authors

The average of five independent runs for each database is
plotted. From Figures 8 to 13, convergence plots for Beef,
CBF, Gun Point, Lightning-2, OliveOil, and Trace are shown.
The x-axis represents the number of performing iterations
for each metaheuristic, and the y-axis represents the fitness
function value obtained for each iteration.

The x-axis was plotted in the logarithmic scale for a better
display of the results. The results suggest that, in the case of
the µ-DE, to obtain a fast and competitive solution, the best
option is P-DEMS1, which uses a random base vector and
binomial crossover.

However, in cases such as in the Trace database, PDEMS1
was trapped in local optima. Regarding SMs, S-LSMS2 (mixed
representation) achieves fast convergence with respect to

S-LSM1 (binary representation), but the first is usually caught
in local optima, e.g., Beef, CBF, Lightning-2, or OliveOil,
while S-LSM2 finds better values.

Finally, an important finding is that P-DEMS1 had a faster
fitness improvement in early iterations, i.e., before 100 iter-
ations in most databases. However, S-LSMS1 was capable
of finding competitive final results at the end of the search
process.

Diversity analysis of population-based metaheuristics
According to Yang, Li, Cai, and Guan (2015), the population
diversity has a strong influence on the performance of evolu-
tionary algorithms. Therefore, a brief analysis of population
diversity in PM versions is presented. The diversity measure

10 of 17 INGENIERÍA E INVESTIGACIÓN VOL. 41 NO. 3, DECEMBER - 2021



PÉREZ-CASTRO, ACOSTA-MESA, MEZURA-MONTES, AND CRUZ-RAMÍREZ

,

,

,

Figure 8. Convergence plots comparison for the Beef database
Source: Authors

,

Figure 9. Convergence plots comparison for the CBF database.
Source: Authors

,

,

,

Figure 10. Convergence plots comparison for the Gun-Point database.
Source: Authors

is based on the distance between vectors in the variable
space. For each iteration, a centroid is computed in the
current population.

Then, the Euclidean distance is calculated between each
vector of the population and the centroid vector. With the
aim of measuring the individuals’ dispersion, the standard
deviation over the whole distances at the current population
is computed. The diversity measure was computed for each

,

,

,

Figure 11. Convergence plots comparison for the Lightning-2 database.
Source: Authors

,

,

,

Figure 12. Convergence plots comparison for the OliveOil database
Source: Authors

,

Figure 13. Convergence plots comparison for the Trace database.
Source: Authors

PM over the five independent runs per each database.

Figure 14 shows the averaging diversity measure of each
PM over the ten databases. A high diversity in P-DEMS 1
is observed against the other µ-DE versions. It can be said
that the use of a random base vector instead of the best one,
as well as the binomial instead of the exponential crossover,
favors a better diversity maintenance.

INGENIERÍA E INVESTIGACIÓN VOL. 41 NO. 3, DECEMBER - 2021 11 of 17



Full Model Selection Problem and Pipelines for Time-Series Databases: Contrasting Population-Based and Single-Point Search Metaheuristics

Iterations

0 100 200 300 400 500

D
iv

e
r
s
it
y

0

50

100

150

200
P-DEMS1

P-DEMS2

P-DEMS3

P-DEMS4

Figure 14. Average diversity measure in population-based
metaheuristics.
Source: Authors

Analysis of final pipeline-models
Table 7 shows the best pipelines suggested by each com-
pared approach for each database. The third column details
the pipeline models. Despite the fact that differences were
observed in the solution models, there are interesting simi-
larities.

Regarding the smoothing task, Moving Average was the most
preferred. PAA was the most commonly used and suggested
method for time series representation, while INSIGHT was
the most popular numerosity reduction technique.

As for the classification task, the decision tree and the Ad-
aBoost (with decision trees as the weak learners) appeared as
the most suitable. From the resulting final models, it can be
seen that there were some evaluated databases with different
models with similar performance values.

Databases such as Beef, Gun-Point, and Lightning-7 were
detected as possible multimodal problems. They reported
more diversification in the selected methods and their related
hyperparameters.

Runtime varies considerably due to the different features of
the temporal databases and the selected methods for carrying
out a specific sub-task. Overall, P-DEMS3 reported the lowest
runtime computational cost, while S-LSMS1 was the most
expensive approach.

However, S-LSMS1 reported the best performance during
training and competitive results in the testing phase. Figure
15 shows a graphical example of the suggested pipeline
that was applied to the CBF database. It can be seen that
the average behavior of the original CBF database remains
after the processing originated by the applied pipeline. A
significant dimensionality reduction was observed.

Frequency analysis of considered method by meta-
heuristics
In order to enhance the analysis of the preferred solutions, a
selection frequency analysis of the methods considered by
the approaches for the FMS problem in time-series databases
was made. Figure 16 shows the average frequency, for
each recognized method, computed from five trials over all
databases for each metaheuristic.

The frequency results for population-baed meteheuristics
were based on 601 200 evaluated pipeline-models, while
single-point search metaheuristics were based on 300 600
models. Regarding the smoothing options, Moving Aver-
age method, was the most solicited by population-based
meteheuristics, while the Savitzky-Golay filter was the most
preferred by single-point search metaheuristics.

For time-series representation, the PAA method was the
most preferred for both population-based and single-based
metaheuristics. INSIGHT was the most selected numerosity
reduction method. Regarding the classifiers, it can be con-
firmed that Adaboost was the most suitable classifier, while
KNN1 was the less preferred.

Conclusions and future work
In this paper, a comparison study between two metaheuristic
approaches to deal with FMS and pipelines building for time-
series databases was presented. The first approach was based
on the micro-version of a differential evolution algorithm,
named as µ-DEMS in this work, from which four variants
were tested based on rand/1/bin (P-DEMS1), rand/1/exp (P-
DEMS2), best/1/bin (P-DEMS3), and best/1/exp (PDEMS4).

The second approach focused on evaluating local search be-
havior S-LSMS, the most straightforward single-point search
metaheuristics. Two versions were assessed, one of them
with binary encoding and the second one with mixed encod-
ing.

Six complete pipeline-model search options were evaluated,
out of which four are P-DEMS variants and two are S-LSMS
variants. Each of the variants was evaluated in ten different
time-series databases.

The set of experiments was divided into five parts: the
statistical analysis of the numerical results, the analysis of
the convergence graphs, a diversity analysis focused only
on the population variants, the analysis of the final pipeline
models, and the study of the selection frequency of the
methods involved. From these experiments, some important
conclusions and findings are listed below:

Statistical analysis suggests that S-LSMS1 (binary encoding
version) is the best option when working with time-series
databases that have high dimensionality, are noisy, and whose
number of classes is higher than two, such as Lightning-2,
Lightning-7, and OliveOil. S-LSMS1 has the advantage of
being simple in its structure, and only requires two parameters
to be set. However, it has the disadvantage of having a high
computational cost.

12 of 17 INGENIERÍA E INVESTIGACIÓN VOL. 41 NO. 3, DECEMBER - 2021



PÉREZ-CASTRO, ACOSTA-MESA, MEZURA-MONTES, AND CRUZ-RAMÍREZ

Table 7. Best final pipelines obtained by each approach for all databases

Database Approach Pipeline

Beef

P-DEMS 1
P-DEMS 2
P-DEMS 3
P-DEMS 4
S-LSMS 1
S-LSMS 2

(↑g) SG, PAA, MCI, AB
(•r) MA, PAA,MCI, AB
(•g) MA, SAX, INSIGTH, AB
(•b) MA, PAA, MCI, AB
(•g) LRe, PAA, MCI, AB
(↑r) SG, PCA, INSIGTH, AB

CBF

P-DEMS 1
P-DEMS 2
P-DEMS 3
P-DEMS 4
S-LSMS 1
S-LSMS 2

(•g) LRe, PCA, MCI, TREE
(•g) MA, PAA, MCI, AB
(•g) MA, PAA, MCI, TREE
(•g) MA, PAA, MCI, AB
(•g) LRw, PAA, INSIGTH, AB
(•g) SG, SAX, INSIGTH, TREE

Coffee

P-DEMS 1
P-DEMS 2
P-DEMS 3
P-DEMS 4
S-LSMS 1
S-LSMS 2

(•g) SG, SAX, INSIGTH, TREE
(•g) MA, PAA, INSIGTH, TREE
(↓g) MA, PAA, INSIGTH, TREE
(↓g) MA, PAA, INSIGTH, TREE
(↓r) LRw, PCA, MC1, KNN-LBDTW
(↓g) SG, PAA, INSIGTH, TREE

ECG200

P-DEMS 1
P-DEMS 2
P-DEMS 3
P-DEMS 4
S-LSMS 1
S-LSMS 2

(↑g)SG, SAX, INSIGTH, TREE
(↓g) MA, PAA, INSIGTH, TREE
(↓b) MA, PAA, INSIGTH, NB
(↓b) MA, PAA, INSIGTH, NB
(↑g)LRw, PAA, MC1, TREE
(•g)SG, SAX, INSIGTH, TREE

FaceFour

P-DEMS 1
P-DEMS 2
P-DEMS 3
P-DEMS 4
S-LSMS 1
S-LSMS 2

(↑g) SG, PAA, INSIGTH, AB
(•g) LRe, PAA, INSIGTH, AB
(↓g) LRe, PAA, INSIGTH, AB
(↓g) LRe, PAA, INSIGTH, AB
(•g) LRe, PAA, MC1, AB
(•g) LRe, SAX, INSIGTH, AB

Gun Point

P-DEMS 1
P-DEMS 2
P-DEMS 3
P-DEMS 4
S-LSMS 1
S-LSMS 2

(•g) SG, SAX, INSIGTH, TREE
(↓g) LRe, SAX, INSIGTH, TREE
(↓b) SG, PCA, MC1, AB
(↓b) SG, PCA, MC1, AB
(↑g) LRw, PCA, INSIGTH, TREE
(↑g) SG, PCA, MC1, TREE

Lightnigng-2

P-DEMS 1
P-DEMS 2
P-DEMS 3
P-DEMS 4
S-LSMS 1
S-LSMS 2

(↑g) LRw, PCA, INSIGTH, TREE
(↑g) LRw, PCA, INSIGTH, TREE
(↑g) LRw, PCA, INSIGTH, TREE
(↑g) LRw, PCA, INSIGTH, TREE
(↑g) MA, SAX, INSIGTH, TREE
(↑g) SG, PCA, INSIGTH, TREE

Light-nigng-7

P-DEMS 1
P-DEMS 2
P-DEMS 3
P-DEMS 4
S-LSMS 1
S-LSMS 2

(↓b) MA, SAX, MCI, NB
(↓b) LRw, PCA, INSIGTH, SVM
(↓b) LRw, PCA, INSIGTH, SVM
(↓b) LRw, PCA, INSIGTH, SVM
(↑g) SG, PCA, INSIGTH, AB
(↑g) MA, SAX, INSIGTH, TREE

OliveOil

P-DEMS 1
P-DEMS 2
P-DEMS 3
P-DEMS 4
S-LSMS 1
S-LSMS 2

(↑g) MA, PCA, MCI, AB
(•g) MA, PAA, MCI, AB
(•g) MA, PAA, MCI, AB
(•g) MA, PAA, MCI, AB
(↑g) LRw, PCA, INSIGTH, AB
(↑g) SG, SAX, INSIGTH, AB

Trace

P-DEMS 1
P-DEMS 2
P-DEMS 3
P-DEMS 4
S-LSMS 1
S-LSMS 2

(↓g) LRw, SAX, INSIGTH, AB
(↓g) MA, PAA, INSIGTH, AB
(↓b) MA, PAA, INSIGTH, NB
(↓b) MA, PAA, INSIGTH, NB
(↑g) MA, PAA, INSIGTH, AB
(↑g)SG, SAX, INSIGTH, TREE

Note: Acronyms: S (Smoothing); R (Representation); NR (Numerosity Reduction); C (Classification); TLS (Time-series length); SG (Savitzky-Golay
Filter); MA (Moving Average); LRw (Local Regression-lowess); LRe (Local Regression-loess); SAX(Aggregate approXimation); PAA (Piecewise Aggregate
Approximation); PCA (Principal Component Analysis); INSIGHT (Instance Selection based on Graph-coverage and Hubness for Time-series); MC1
(Monte Carlo 1); KNN-ED (K-Nearest Neighbor-Euclidean Distance); KNN-LBDTW (K-Nearest Neighbor-Lower Bounding Dynamic Time Warping);
NB (Naive Bayes); DT (Decision Tree); AB (AdaBoost); SVM (Support Vector Machine); P-DEMS1 (Population-Differential Evolution Model Selection 1
with rand/1/bin); P-DEMS2 (Population-Differential Evolution Model Selection 2 with rand/1/exp); P-DEMS3 (Population-Differential Evolution Model
Selection 3 with best/1/bin), and P-DEMS4 (Population-Differential Evolution Model Selection 4 with best/1/exp); S-LSMS1 (Single-Local Search Model
Selection with binary encoding); S-LSMS2 (Single-Local Search Model Selection with mixed encoding). Symbols in parentheses mean the spent
runtime during training and the subscripts represent the performance of the pipeline in terms of classification error. (↑) means high runtime > 933
minutes, (•) means medium runtime > 272 and < 873 minutes, (↓) means low runtime < 272 minutes. Subscripts next to symbols: g means good, r
means regular, and b means bad performance.
Source: Authors

INGENIERÍA E INVESTIGACIÓN VOL. 41 NO. 3, DECEMBER - 2021 13 of 17



Full Model Selection Problem and Pipelines for Time-Series Databases: Contrasting Population-Based and Single-Point Search Metaheuristics

SG MA LRw LRe SAX PAA PCA INSIGHT MC1 KNN1 KNN2 NB DT AB SVM

0

10

20

30

40

50

60

70

P-Metaheurist ics

S-Metaheurist ics

F
re
c
u
e
n
c
y

Note: Acronyms: P-Metaheuristics (Population-based Metaheuristics); S-Metaheuristics (Single point search Metaheuristics); SG (Savitzky-Golay
Filter); MA (Moving Average); LRw (Local Regression-lowess); LRe (Local Regression-loess); SAX(Aggregate approXimation); PAA (Piecewise Aggregate
Approximation); PCA (Principal Component Analysis); INSIGHT (Instance Selection based on Graph-coverage and Hubness for Time-series); MC1
(Monte Carlo 1); KNN1 (K-Nearest Neighbor-Euclidean Distance); KNN2 (K-Nearest Neighbor-Lower Bounding Dynamic Time Warping); NB (Naive
Bayes); DT (Decision Tree); AB (AdaBoost); SVM (Support Vector Machine).

Figure 15. Frequency analysis of included into pipeline task by metaheuristics.
Source: Authors

Time-series length

0 20 40 60 80 100 120 140

V
a
lu

e
s

-1.,5

-1

-0.,5

0

0.,5

1
(1)

Original data

Smoothed data

Time-series length

0 20 40 60 80 100 120 140

V
a
lu

e
s

-1.,5

-1

-0.,5

0

0.,5

1
(2)

Smoothed data

Time-series length

0 5 10 15 20 25 30 35 40 45 50

V
a
lu

e
s

-1

-0.,5

0

0.,5

1
(3)

Reduced data

Note: (1) The average behavior of the original testing database is plotted that is compared to the average smoothed testing test. (2) The averaged
smoothed testing database is plotted before the time-series representation process. (3) The averaged smoothed testing database is plotted after the
time-series representation and numerosity reduction processes were applied.

Figure 16. Example of pipeline-model applied to CBF database. Model: S:MA{span=67}, R:PAA{nseg=21}. R:MC1{%ins=0.81403,nitera=400},
C:AB{n=436}.
Source: Authors

14 of 17 INGENIERÍA E INVESTIGACIÓN VOL. 41 NO. 3, DECEMBER - 2021



PÉREZ-CASTRO, ACOSTA-MESA, MEZURA-MONTES, AND CRUZ-RAMÍREZ

On the other hand, if the database is dichotomous, the
noise is moderate, and its dimensionality length is below
an approximate value of 350. Therefore, population-based
metaheuristics P-DEMS1, which uses rand/1/bin, turns out to
be the best option. Besides, it achieved competitive results
around the first 100 iterations.

Regarding the exploration capacity, it was observed that the
population-based metaheuristic P-DEMS1 with the rand/1/bin
variant provides a better diversity of pipeline models.

With respect to the final pipeline-models, it can be seen
that, for most of the databases, a complete model was found
which contained the most straightforward methods for the
tasks of smoothing, dimensionality reduction, and number
reduction. These methods are Moving Average, PAA, and
INSIGHT, respectively. On the side of the classification task,
AdaBoost was the most common method.

An important finding was discovering different complete
pipeline model configurations with similar performance for
the same database. Therefore, some temporary databases
can be seen as a multi modal problem.

As part of future work, a complexity measure could be con-
sidered as a fitness function to then tackle the FMS problem
as a multi-objective problem. Additionally, a mechanism
to build more flexible pipelines where the length and order
can incorporated, in addition to searching for a way to fairly
compare it against other state-of-the-art approaches.

Acknowledgements
The authors would like to acknowledge support from the
Mexican National Council for Science and Technology (CONA-
CyT) through scholarship number 259655 and project No.
220522.

References
Al-Jowder, O., Kemsley, E., and Wilson, R. H. (2002). Detection

of adulteration in cooked meat products by mid-infrared
spectroscopy. Journal of Agricultural and Food Chemistry,
50(6), 1325-1329. 10.1021/jf0108967

Ali, M., Alqahtani, A., Jones, M. W., and Xie, X. (2019). Clustering
and classification for time series data in visual analytics:
A survey. IEEE Access, 7, 181314-181338. 10.1109/AC-
CESS.2019.2958551

Aly, A., Guadagni, G., and Dugan, J. B. (2019). Derivative-free
optimization of neural networks using local search. In IEEE
(Eds.) 2019 IEEE 10th Annual Ubiquitous Computing, Elec-
tronics Mobile Communication Conference (UEMCON)
(pp. 0293-0299). New York, NY: IEEE. 10.1109/UEM-
CON47517.2019.8993007

Bagnall, A., Davis, L., Hills, J., and Lines, J. (2012). Transfor-
mation based ensembles for time series classification.
In SIAM (Eds.) Proceedings of the 2012 SIAM interna-
tional conference on data mining (pp. 307-318). Philadel-
phia, PA: Society for Industrial and Applied Mathematics.
10.1137/1.9781611972825.27

Baijal, S., Singh, S., Rani, A., and Agarwal, S. (2016). Performance
evaluation of S-Golay and MA filter on the basis of white
and flicker noise. In Proceedings of Second International
Symposium on Signal Processing and Intelligent Recogni-
tion Systems (SIRS-2015) (pp. 245-255). New York, NY:
Springer. 10.1007/978-3-319-28658-7_21

Bergstra, J. and Bengio, Y. (2012). Random search for hyper-
parameter optimization. The Journal of Machine Learning
Research, 13(2), 281-305. https://www.jmlr.org/papers/
volume13/bergstra12a/ber\gstra12a

Bischl, B., Lang, M., Kotthoff, L., Schiffner, J., Richter, J., Studerus,
E., Casalicchio, G., and Jones, Z. M. (2016). mlr: Machine
learning in R. The Journal of Machine Learning Research,
17(170), 1-5. http://jmlr.org/papers/v17/15-066.html

Bishop, C. M. (2006). Pattern recognition and machine learning.
New York, NY: Springer.

Boullé, N., Dallas, V., Nakatsukasa, Y., and Samaddar, D.
(2020). Classification of chaotic time series with deep
learning. Physica D: Nonlinear Phenomena, 403, 132261.
10.1016/j.physd.2019.132261

Buza, K., Nanopoulos, A., and Schmidt-Thieme, L. (2011). Insight:
Efficient and effective instance selection for time-series
classification. In Huang, J. Z., Cao, L., and Srivastava, J.
(Eds.) Pacific-Asia Conference on Knowledge Discovery and
Data Mining (pp. 149-160). Heidelberg/Berlin, Germany:
Springer.

Caraffini, F., Neri, F., and Poikolainen, I. (2013). Micro-differential
evolution with extra moves along the axes. In IEEE (Eds.)
2013 IEEE Symposium on Differential Evolution (SDE) (pp.
46-53). New York, NY: IEEE. 10.1109/SDE.2013.6601441

Cleveland, W. S. and Loader, C. (1996). Smoothing by local
regression: Principles and methods. In Hardle, W., and
Scmiek, M. G. (Eds.) Statistical Theory and Computational
Aspects of Smoothing (pp. 10-49). Heidelberg, Germany:
Physica-Verlag HD. 10.1007/978-3-642-48425-4_2

de Sá, A. G. C., Pinto, W. J. G. S., Oliveira, L. O. V. B., and
Pappa, G. L. (2017). RECIPE: A grammar-based frame-
work for automatically evolving classification pipelines. In
McDermott, J., Castelli, M., Sekanina, L., Haasdijk, E., and
García-Sánchez, P. (Eds.) European Conference on Ge-
netic Programming (pp. 246-261), Springer International
Publishing, Cham. 10.1007/978-3-319-55696-3_16

Díaz-Pacheco, A., Gonzalez-Bernal, J. A., Reyes-García, C. A.,
and Escalante-Balderas, H. J. (2018). Full model selec-
tion in big data. In Castro, F., Miranda-Jiménez, S., and
González-Mendoza, M. (Eds.) Advances in Soft Computing
(pp. 279-289). Springer International Publishing, Cham.
10.1007/978-3-030-02837-4_23

Eads, D. R., Hill, D., Davis, S., Perkins, S. J., Ma, J., Porter,
R. B., and Theiler, J. P. (2002). Genetic algorithms and
support vector machines for time series classification. In
Bosacchi, B., Fogel, D. B., and Bezdek, J. C. (Eds.) Appli-
cations and Science of Neural Networks, Fuzzy Systems,
and Evolutionary Computation V (vol. 4787, pp. 74-85).
Bellingham, WA: International Society for Optics and
Photonics. 10.1117/12.453526

INGENIERÍA E INVESTIGACIÓN VOL. 41 NO. 3, DECEMBER - 2021 15 of 17

https://doi.org/10.1021/jf0108967
https://doi.org/10.1109/ACCESS.2019.2958551
https://doi.org/10.1109/ACCESS.2019.2958551
https://doi.org/10.1109/UEMCON47517.2019.8993007
https://doi.org/10.1109/UEMCON47517.2019.8993007
https://doi.org/10.1137/1.9781611972825.27
https://doi.org/10.1007/978-3-319-28658-7_21
https://www.jmlr.org/papers/volume13/bergstra12a/ber\gstra12a
https://www.jmlr.org/papers/volume13/bergstra12a/ber\gstra12a
http://jmlr.org/papers/v17/15-066.html
https://doi.org/10.1016/j.physd.2019.132261
https://doi.org/10.1109/SDE.2013.6601441
https://doi.org/10.1007/978-3-642-48425-4_2
https://doi.org/10.1007/978-3-319-55696-3_16
https://doi.org/10.1007/978-3-030-02837-4_23
https://doi.org/10.1117/12.453526


Full Model Selection Problem and Pipelines for Time-Series Databases: Contrasting Population-Based and Single-Point Search Metaheuristics

Escalante, H. J., Montes, M., and Sucar, E. (2010). Ensemble par-
ticle swarm model selection. In IEEE (Eds.)The 2010 Inter-
national Joint Conference on Neural Networks (IJCNN) (pp.
1-8). New York, NY: IEEE. 10.1109/IJCNN.2010.5596915

Escalante, H. J., Montes, M., and Sucar, L. E. (2009). Particle
swarm model selection. Journal of Machine Learning Re-
search, 10(2), 405-440. http://jmlr.org/papers/v10/escala
nte09a.html

Esling, P. and Agon, C. (2012). Time-series data min-
ing. ACM Computing Surveys (CSUR), 45(1), 1-12.
10.1145/2379776.2379788

Fu, T.-c. (2011). A review on time series data mining. Engineer-
ing Applications of Artificial Intelligence, 24(1), 164-181.
10.1016/j.engappai.2010.09.007

Gantza, J. and Reisel, D. (2012). The digital universe in 2020: Big
data, bigger digital shadows, and biggest growth in the
far east. IDC iView: IDC Analyze the Future, 2007(2012),
1-16. https://www.speicherguide.de/download/dokus/ID
C-Digital-Universe-Studie-iView-11.12.pdf

Garcia, S., Derrac, J., Cano, J., and Herrera, F. (2012). Proto-
type selection for nearest neighbor classification: Tax-
onomy and empirical study. IEEE transactions on pat-
tern analysis and machine intelligence, 34(3), 417-435.
10.1109/TPAMI.2011.142

García, S., Fernández, A., Luengo, J., and Herrera, F. (2010).
Advanced nonparametric tests for multiple compar-
isons in the design of experiments in computational
intelligence and data mining: Experimental analysis
of power. Information Sciences, 180(10), 2044-2064.
10.1016/j.ins.2009.12.010

Giron-Sierra, J. (2018). Digital Signal Processing with Matlab
Examples, Volume 3: Model-Based Actions and Sparse
Representation. Singapore: Springer Singapore.

Gong, Z., Chen, H., Yuan, B., and Yao, X. (2019). Multiobjective
learning in the model space for time series classifica-
tion. IEEE Transactions on Cybernetics, 49(3), 918-932.
10.1109/TCYB.2018.2789422

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P.,
and Witten, I. H. (2009). The weka data mining software:
An update. ACM SIGKDD Explorations Newsletter, 11(1),
10-18. 10.1145/1656274.1656278

Hutter, F., Kotthoff, L., and Vanschoren, J. (2019). Automated
Machine Learning: Methods, Systems, Challenges. New
York, NY: Springer. 10.1007/978-3-030-05318-5

Jastrzebska, A. (2019). Time series classification through
visual pattern recognition. Journal of King Saud
University - Computer and Information Sciences.
10.1016/j.jksuci.2019.12.012

Keogh, E., Chakrabarti, K., Pazzani, M., and Mehrotra, S. (2001).
Dimensionality reduction for fast similarity search in
large time series databases. Knowledge and Information
Systems, 3(3), 263-286. 10.1007/PL00011669

Keogh, E., Zhu, Q., Hu, B., Hao, Y., Xi, X., Wei, L., and Ratanama-
hatana, C. A. (2011). The UCR Time Series Classifica-
tion/Clustering Homepage. https://www.cs.ucr.edu/∼e
amonn/time_series_data/

Lin, J., Keogh, E., Wei, L., and Lonardi, S. (2007). Experienc-
ing sax: a novel symbolic representation of time series.
Data Mining and Knowledge Discovery, 15(2), 107-144.
10.1007/s10618-007-0064-z

Olguín-Carbajal, M., Herrera-Lozada, J. C., Sandoval-Gutierrez, J.,
Vasquez-Gomez, J. I., Serrano-Talamantes, J. F., Chavez-
Estrada, F. A., Rivera-Zarate, I., and Hernandez-Boláos,
M. (2019). A micro-differential evolution algorithm for
continuous complex functions. IEEE Access, 7, 172783-
172795. 10.1109/ACCESS.2019.2954296

Olson, R. S., Urbanowicz, R. J., Andrews, P. C., Lavender, N. A.,
Kidd, L. C., and Moore, J. H. (2016). Automating biomedi-
cal data science through tree-based pipeline optimization.
In Squillero, G., and Burelli, P. (Eds.) European Confer-
ence on the Applications of Evolutionary Computation
(pp. 123-137). Cham, Germany: Springer. 10.1007/978-
3-319-31204-0_9

Olszewski, R. T. (2001). Generalized feature extraction for
structural pattern recognition in time-series data (Doctoral
thesis, Carnegie Mellon University, Pittsburgh, PA). https:
//apps.dtic.mil/sti/pdfs/ADA457624.pdf

Page, R. M., Lischeid, G., Epting, J., and Huggenberger, P.
(2012). Principal component analysis of time series for
identifying indicator variables for riverine groundwater
extraction management. Journal of Hydrology, 432, 137-
144. 10.1016/j.jhydrol.2012.02.025

Parsopoulos, K. E. (2009). Cooperative micro-differential evolu-
tion for high-dimensional problems. In ACM (Eds.)GECCO
’09: Proceedings of the 11th Annual Conference on Ge-
netic and Evolutionary Computation (pp. 531-538). New
York, NY: ACM. 10.1145/1569901.1569975

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R.,
Dubourg, V., Vanderplas, J., Passos, A., and Cournapeau,
D. (2011). Scikit-learn: Machine learning in python. The
Journal of Machine Learning Research, 12, 2825-2830.

Pérez-Castro, N., Acosta-Mesa, H., Mezura-Montes, E., and
Cruz-Ramírez, N. (2015). Towards the full model selec-
tion in temporal databases by using micro-differential
evolution. an empirical study. In IEEE (Eds.) 2015 IEEE
International Autumn Meeting on Power, Electronics and
Computing (ROPEC) (pp. 1-6). New York, NY: IEEE.
10.1109/ROPEC.2015.7395161

Rashid, A. and Hossain, M. A. (2012) Challenging issues of
spatio-temporal data mining. Computer Engineering and
Intelligent Systems, 3(4), 55-63. https://www.iiste.org/Jo
urnals/index.php/CEIS/article/view/1484

Ratanamahatana, C. A. and Keogh, E. (2005). Three myths
about dynamic time warping data mining. In SIAM
(Eds.) Proceedings of the 2005 SIAM International Con-
ference on Data Mining (pp. 506-510). Philadelphia,
PA: Society for Industrial and Applied Mathematics.
10.1137/1.9781611972757.50

16 of 17 INGENIERÍA E INVESTIGACIÓN VOL. 41 NO. 3, DECEMBER - 2021

https://doi.org/10.1109/IJCNN.2010.5596915
http://jmlr.org/papers/v10/escalante09a.html
http://jmlr.org/papers/v10/escalante09a.html
https://doi.org/10.1145/2379776.2379788
https://doi.org/10.1016/j.engappai.2010.09.007
https://www.speicherguide.de/download/dokus/IDC-Digital-Universe-Studie-iView-11.12.pdf
https://www.speicherguide.de/download/dokus/IDC-Digital-Universe-Studie-iView-11.12.pdf
https://doi.org/10.1109/TPAMI.2011.142
https://doi.org/10.1016/j.ins.2009.12.010
https://doi.org/10.1109/TCYB.2018.2789422
https://doi.org/10.1145/1656274.1656278
https://doi.org/10.1007/978-3-030-05318-5
https://doi.org/10.1016/j.jksuci.2019.12.012
https://doi.org/10.1007/PL00011669
https://www.cs.ucr.edu/~eamonn/time_series_data/
https://www.cs.ucr.edu/~eamonn/time_series_data/
https://doi.org/10.1007/s10618-007-0064-z
https://doi.org/10.1109/ACCESS.2019.2954296
https://doi.org/10.1007/978-3-319-31204-0_9
https://doi.org/10.1007/978-3-319-31204-0_9
https://apps.dtic.mil/sti/pdfs/ADA457624.pdf
https://apps.dtic.mil/sti/pdfs/ADA457624.pdf
https://doi.org/10.1016/j.jhydrol.2012.02.025
https://doi.org/10.1145/1569901.1569975
https://doi.org/10.1109/ROPEC.2015.7395161
https://www.iiste.org/Journals/index.php/CEIS/article/view/1484
https://www.iiste.org/Journals/index.php/CEIS/article/view/1484
https://doi.org/10.1137/1.9781611972757.50


PÉREZ-CASTRO, ACOSTA-MESA, MEZURA-MONTES, AND CRUZ-RAMÍREZ

Rice, J. R. (1976). The algorithm selection problem. In Rubi-
noff, M. and Yovits, M. C. (Eds.) Advances in computers
(vol. 15, pp. 65-118). Amsterdam, Netherlands: Elsevier.
10.1016/S0065-2458(08)60520-3

Rosales-Pérez, A., Escalante, H. J., Gonzalez, J. A., Reyes-Garcia,
C. A., and Coello-Coello, C. A. (2013). Bias and variance
multi-objective optimization for support vector machines
model selection. In Sanches, J. A. M., Micó, L., and Car-
doso, J. S. (Eds.) Iberian Conference on Pattern Recogni-
tion and Image Analysis (pp. 108-116). Berlin/Heidelberg,
Germany: Springer. 10.1007/978-3-642-38628-2_12

Rosales-Pérez, A., Gonzalez, J. A., Coello-Coello, C. A.,
Escalante, H. J., and Reyes-Garcia, C. A. (2015).
Surrogate-assisted multi-objective model selection for
support vector machines. Neurocomputing, 150, 163-
172. 10.1016/j.neucom.2014.08.075

Rosales-Pérez, A., Gonzalez, J. A., Coello-Coello, C. A., Es-
calante, H. J., and Reyes-Garcia, C. A. (2014). Multi-
objective model type selection. Neurocomputing, 146,
83-94. 10.1016/j.neucom.2014.05.077

Roverso, D. (2000). Multivariate temporal classification by win-
dowed wavelet decomposition and recurrent neural net-
works. In ANS (Eds.) 3rd ANS international topical meeting
on nuclear plant instrumentation, control and human-
machine interface (vol. 20, pp. 527-538). La Grange Park,
IL: American Nuclear Society.

Rydning, D. R.-J. G.-J. (2018). The digitization of the world from
edge to core. http://cloudcode.me/media/1014/idc.pdf

Saito, N. (2000). Local feature extraction and its applications
using a library of bases. In Coifman, R. (Ed.) Topics in
Analysis and Its Applications: Selected Theses (pp. 269-
451). 10.1142/9789812813305_0005

Salehinejad, H., Rahnamayan, S., and Tizhoosh, H. R. (2017).
Micro-differential evolution: Diversity enhancement and a
comparative study. Applied Soft Computing, 52, 812-833.
10.1016/j.asoc.2016.09.042

Savitzky, A. and Golay, M. J. E. (1964). Smoothing and differentia-
tion of data by simplified least squares procedures. Analyt-
ical Chemistry, 36(8), 1627-1639. 10.1021/ac60214a047

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and de Freitas,
N. (2016). Taking the human out of the loop: A review
of bayesian optimization. Proceedings of the IEEE, 104(1),
148-175. 10.1109/JPROC.2015.2494218

Sun, J., Yang, Y., Liu, Y., Chen, C., Rao, W., and Bai, Y.
(2019). Univariate time series classification using in-
formation geometry. Pattern Recognition, 95, 24-35.
10.1016/j.patcog.2019.05.0406

Sun, Q., Pfahringer, B., and Mayo, M. (2013). Towards a
framework for designing full model selection and op-
timization systems. In Zhou, Z.-H., Roli, F., and Kit-
tler, J. (Eds.) International Workshop on Multiple Classi-
fier Systems (pp. 259-270). Springer, Berlin, Heidelberg.
10.1016/j.patcog.2019.05.040

Talbi, E. (2009). Metaheuristics: From Design to Implementation.
John Wiley & Sons.

Viveros-Jiménez, F., Mezura-Montes, E., and Gelbukh, A. (2012).
Empirical analysis of a micro-evolutionary algorithm for
numerical optimization. International Journal of Physical
Sciences, 7(8), 1235-1258. 10.5897/IJPS11.303

Yang, M., Li, C., Cai, Z., and Guan, J. (2015). Differ-
ential evolution with auto-enhanced population diver-
sity. IEEE transactions on cybernetics, 45(2), 302-315.
10.1109/TCYB.2014.2339495

Yang, Y. (2017). Chapter 2 - temporal data mining. In Y. Yang
(Ed.) Temporal Data Mining Via Unsupervised Ensemble
Learning (pp. 9-18). Amsterdam, Netherlands: Elsevier.
10.1016/B978-0-12-811654-8.00002-6

Yu, T. and Zhu, H. (2020). Hyper-parameter optimization: A
review of algorithms and applications. https://arxiv.org/
pdf/2003.05689.pdf

INGENIERÍA E INVESTIGACIÓN VOL. 41 NO. 3, DECEMBER - 2021 17 of 17

https://doi.org/10.1016/S0065-2458(08)60520-3
https://doi.org/10.1007/978-3-642-38628-2_12
https://doi.org/10.1016/j.neucom.2014.08.075
https://doi.org/10.1016/j.neucom.2014.05.077
http://cloudcode.me/media/1014/idc.pdf
https://doi.org/10.1142/9789812813305_0005
https://doi.org/10.1016/j.asoc.2016.09.042
https://doi.org/10.1021/ac60214a047
https://doi.org/10.1109/JPROC.2015.2494218
https://doi.org/10.1016/j.patcog.2019.05.0406
https://doi.org/10.1016/j.patcog.2019.05.040
https://doi.org/10.5897/IJPS11.303
https://doi.org/10.1109/TCYB.2014.2339495
https://doi.org/10.1016/B978-0-12-811654-8.00002-6
https://arxiv.org/pdf/2003.05689.pdf
https://arxiv.org/pdf/2003.05689.pdf

	Introduction
	Related works
	Metaheuristics-based approaches

	FMS problem in time-series databases
	Methodology overview
	Materials
	Benchmark databases
	Pipeline tasks: available methods
	Encoding pipeline solutions
	Fitness function

	Methods: search engines
	Micro Differential Evolution (-DE)
	Local search (LS)

	Methodology architecture

	Experiments and results
	Final Statistical Results
	Analysis of convergence plots
	Diversity analysis of population-based metaheuristics
	Analysis of final pipeline-models
	Frequency analysis of considered method by metaheuristics

	Conclusions and future work
	Acknowledgements

