
ABSTRACT

Multiplication is an arithmetic operation that has a meaningful impact on the performance of sev-
eral real-life applications, such as digital signal and image processing. Analysis and comparison of 
different types of fixed-point multipliers such as Wallace tree, array, and Booth-2 with truncated and 
non-truncated versions were included in this design. Fixed-point multipliers were used to design 
floating-point multipliers through a hardware description language. As a result, area and speed values 
were analyzed. Booth-2 fixed multiplier with truncation and RCA adders present both the longest 
delay and the largest area consumption. Wallace tree floating-point multiplier required the smallest 
area and the shortest delay. The 8-bit versions of fixed-point multipliers were physically synthesized, 
using the Alliance tools, to obtain the layout of the circuits. The integrated circuits were successfully 
fabricated in a 0.5-μm CMOS technology.
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RESUMEN

La multiplicación es una operación aritmética que tiene un impacto significativo en el rendimiento 
de varias aplicaciones de la vida real, como el procesamiento de imágenes y señales digitales. En este 
trabajo se analizan  y comparan de diferentes tipos de multiplicadores de punto fijo, como árbol de 
Wallace, Arreglo y Booth-2 con versiones truncadas y sin truncar. Los multiplicadores de punto fijo 
se utilizaron para diseñar multiplicadores de punto flotante a través de un lenguaje de descripción 
de hardware. Como resultado, se analizaron los valores de área y retardo. El multiplicador de punto 
fijo Booth-2 con truncamiento y sumadores RCA presentó tanto el mayor retardo como el mayor 
consumo de área. El multiplicador de punto flotante del árbol de Wallace requería el área más peque-
ña y el retraso más corto. Las versiones de 8 bits de los multiplicadores de punto fijo se sintetizaron 
físicamente para obtener el layout. Los circuitos integrados se fabricaron con éxito en una tecnología 
CMOS de 0.5 μm.

PALABRAS CLAVE: Circuito integrado VLSI; VHDL; Booth-2; árbol de Wallace; punto flotante.
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I. INTRODUCTION

Multiplier is an essential component in every digital 
signal processing, image processing, and computer vi-
sion applications [1]. The need for greater functional-
ity and real-time applications demands revolutionary 
changes in the design process of a Very Large-Scale In-
tegration (VLSI) Integrated Circuit (IC). Therefore, the 
development of high-speed computational hardware, 
such as multipliers, is a major concern in the current 
scenario [2]–[3]. The most important design criteria of 
these kinds of components are speed, power, and area 
consumption. Various research efforts have been car-
ried out in literature to obtain efficient multiplier and 
adder architectures [2]–[5]. 

The state of the art of VLSI designs had focused mainly 
on the reduction of the area, but in the last decade the 
focus changed mainly to speed and power consump-
tion. A high-speed requirement causes increased cir-
cuit complexity, increasing both the number of tran-
sistors of the circuit and the power consumption [5]. 
However, it is possible to improve the performance of 
multipliers through design techniques and logic archi-
tectures [6]–[9].

FLOATING-POINT NOTATION

Floating-point numbers are formally defined by the 
IEEE 754:2008 standard [10], where three types of bina-
ry numbers are specified 32-, 64-, and 128-bit.

The format of a 32-bit binary number is shown in Figure 
1 and it is demonstrated that a floating-point number 
can be represented in single or double precision under 
this standard. In this work, we will focus only on sim-
ple precision. Nevertheless, the concepts and schemes 
could be extended to greater precisions.

Figure 1. Number of 32 bits defined by IEEE-754:2008, a) single 
precision, b) double precision.

For a number n in floating-point, a bit is added to the 
fraction to form mantissa (or significand). The normal-
ized number can be represented by

n = (–1)s∙1∙m∙2(exp–BIAS) (1)

where s is the sign bit, m is the mantissa and exp is a 
positive integer power with BIAS = 127.

In addition to the normal format, there are special for-
mats for exp and m, such as zero, denormalized, infinite, 
and no number. Further details about the rules of bina-
ry numbers can be found in [11].

Truncation method

In a product without truncation all partial products are 
obtained and added. Therefore, there is no truncation 
error; except for the intrinsic error when the data is 
truncated in the floating-point representation. 

When truncation is considered, an error is generated, 
losing accuracy in the result. However, it allows the re-
duction of components in the hardware architecture. A 
truncated product omits the calculation of the partial 
products of least significant bits (LSB). In the truncated 
versions of multipliers, n–1 bits are truncated. This is 
because the extra bit permits the result to be shifted one 
position to the left in the normalization of m, if neces-
sary. In this work, round-to-zero truncation is used, in 
which n LSB are neglected [12].

In this paper, we demonstrate the successful design 
and comparative analysis of three different designs 
of fixed-point multipliers (Array, Wallace Tree, and 
Booth-2), which were used to design simple precision 
floating-point multipliers. The details of this work are 
presented in the following sections.

II. METHODOLOGY

Floating-point multiplier architecture

As shown in Figure 2, in the design of a floating-point 
multiplier, 24-bit fixed-point (FP) multiplier, and mod-
ules to normalize m, handle exponents and verification 
of exceptions (overflow and underflow) are required. 
The proposed architecture is able to determine excep-
tions in the result and represents the data in the IEEE-
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754: 2008 standard. However, it requires the normaliza-
tion of the numbers first.

Normalization, exponents, and exceptions

Initially, the 32-bit input numbers are separated into 
signals to distinguish the sign s, mantissa m and expo-
nents exp as shown in Figure 2. Then, the new sign bit 
is calculated with an XOR. The mantissas are multiplied 
with the 24-bit FP multiplier. Then the exponents are 
verified to detect a zero or error condition. After that, 
the 25 most significant -s (MSB) of the FP multiplica-
tion result (with or without truncation) are taken and, 
m is normalized if necessary. Finally, with the normal-
ized numbers and according to Table I, m is determined. 
Accordingly, the bits for the new m will depend on the 
value of the MSB.

Figure 2. Architecture for floating-point multipliers.

TABLE I
Normalization of Mantissa

Obtained Required Action
10.000… 1.0000… Displace m to the right
01.000… No change No change

For the exponents, corresponding to the multiplier and 
multiplicand are added. Then the BIAS value is sub-
tracted to the result as shown in Figure 2. There is the 
possibility of adding a unit in the input carry of the ad-
der, as a result of the normalization of m.

The resulting value of exp is verified by overflow or un-
derflow conditions. Overflow occurs when the calcula-
tion generates a transition from a value ≤254 to a value 
≤255, 0 or greater. Underflow occurs when the calcula-
tion generates a transition from a value 1≥ to a value 0, 

255 or less. The flowchart to determine these exceptions 
is shown in Figure 3.

Figure 3. Flowchart for verification of exceptions.

Types of multipliers designed

To compare the performance of different floating-point 
multiplier architectures, three architectures were used 
to implement FP multipliers. The first is a typical array 
multiplier [13]. The second uses the Wallace tree tech-
nique [14] and the third is the Booth-2 [15]–[16]. Each FP 
multiplier was designed in 8-, 16-, 24-, and 32-bit, with 
Ripple Carry Adder (RCA) and Carry Look-Ahead 
(CLA) adders, as well as versions with and without 
truncation. However, it is important to mention that 
only 24-bit versions are used floating-point multipliers. 
Table II shows all the FP multipliers designed.

TABLE II
Types of FP Multipliers Designed

Multiplier Number of Bits Truncated Adders type
Array 8, 16, 24, and 32 No RCA/CLA

Yes RCA/CLA
Wallace tree 8, 16, 24, and 32 No RCA/CLA

Yes RCA/CLA
Booth-2 8, 16, 24, and 32 No RCA/CLA

Yes RCA/CLA

Array multiplier

Array multiplier performs multiplication of two num-
bers based on the shift and adds method as shown in 
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Figure 4. Even though it has a very regular and system-
atic structure, its delay becomes very large for a large 
word length [13]. First, all partial products with AND 
gates are obtained. The set of partial products (xi ∙y) 
with even position (0, 2, 4, ..., n) will have a zero weight 
in its greatest weight position. Meanwhile, partial prod-
ucts (xi ∙y) with odd position (1, 3, 5, ..., m) will have a 
zero in the least weight position.

Figure 4. Array FP multiplier of 8 bits (non-truncated). 

Then, the sums of the partial products are carried out 
as shown in Figure 5. The sets of partial products are 
added together with a shift to the right in the even sets 
and to the left in the odd ones. The number of zeroes 
added is equal to 2phase. This procedure continues un-
til obtain two values of 2n bits, where n is the initial 
number of bits. Finally, the sum is done with CLA or 
RCA circuits.

Figure 5. Addition of partial products for an array FP multiplier 
of 8 bits.

Wallace tree multiplier

The Wallace tree is an algorithm to implement fast mul-
tipliers. In this method the sum of partial products is 
carried out with an interconnection arrangement of ad-
ders to eliminate the problem of carry propagation.

In this method the multiplicand y is multiplied by the 
multiplier x, to generate the partial products. Then, they 
are added following the interconnection arrangement 
of carry-save adders (CSA) [17] to produce two rows of 
partial products. Finally, they are added with any high-
speed adder. The Wallace tree requires compressors and 
full adders [3], [14].

Figure 6 shows the Wallace tree of an 8-bit multiplier 
without truncation. First, the partial products of mul-
tiplication are obtained. Then, as shown in Figure 6, 
the partial products are reduced to 2 rows through full 
adders and compressors. After that, the reduced partial 
products are grouped, which can be added with CLA or 
RCA circuits. For truncated multipliers, only the par-
tial products of the n+1 bits of greater weight are gen-
erated. Then, the same algorithm of the Wallace tree is 
applied.

Figure 6. Wallace Tree FP multiplier of 8 bits (non-truncated).

Booth-2 multiplier

Booth’s method multiplies two signed binary numbers 
in two’s complement notation. The Booth algorithm is 
used to calculate the multiplication of signed integers. 
However, this method does not calculate partial prod-
ucts. It only uses displacement and adder circuits. It is 
based on the Booth-r coding [15]–[16].

4

http://dx.doi.org/10.20983/culcyt.2021.1.2.4


DOI: 10.20983/culcyt.2021.1.2.4 ISSN (e): 2007-0411

A. Jiménez-Pérez et al. VLSI Design and Comparative Analysis of 
Several Types of Fixed and Simple Precision Floating Point Multipliers
RESEARCH ARTICLE

Cultura Científica y Tecnológica • Vol. 18, Issue 1
Pages 1-9 • January-April 2021 5

Booth-r coding has a signed binary value in another 
format that can be interpreted as an equivalent of the 
original number. A signed binary value can be repre-
sented by

an–12n–1 + an–22n–2 + ...  + a0 (2)

where an–1 ∈ {–1,0} and ai ∈ {0,1}. Booth-r coding of a 
signed number a represented by (2) and n = r∙m bits, is 
obtained by

b0 = –ar–12r–1 + ar–22r–2 + ...  + a12 + a0 (3)

bi = –ai∙r+r–12r–1 + ai∙r+r–22r–2 + ...
+ ai∙r+12 + ai∙r + ai∙r–1 

(4)

where i ∈ {1, 2, ..., m–1}, a is the original binary signed 
value, b is the number encoded in Booth-r, n is the num-
ber of bits, r the degree of Booth and m the number of 
operands for an encoded element. The result (bm–1, bm–2, 
..., b0) will have components bi in the range of [–2r–1, 
2r–1].

In this method, the adjacent pairs of bits of x, the mul-
tiplier, are examined. All the bits xi and xi–1 are com-
pared, with i increasing from 0 to n–1. Then based on 
the comparisons result, an action is performed on a reg-
ister called product that will contain the result of the 
multiplication.

When xi and xi–1 are the same, the product is not altered.

When xi = 0 and xi–1 = 1, the multiplicand multiplied by 
2i is added to the product.

When xi = 1 and xi–1 = 0, the multiplicand multiplied by 
2i is subtracted from the product.

Booth-r coding increases its complexity and the re-
quired hardware as its degree increases, but the number 
of operations to obtain a product is reduced.

In Booth-2, the relation 2m = n is established in Eq. (3) 
and (4). Therefore, the half of the elements is required 
to encode a number if it is compared to the number of 
bits of the binary number. The Booth-2 method has a 
small difference. Now three bits are compared (see Ta-
ble III). Thus, the possible actions on the multiplier and 
the displacements to the right are increased to 2. 

TABLE III
Possible Actions in Booth-2 Algorithm

Case Action
000 No action
001 Add multiplicand × 1
010 Add multiplicand × 1
011 Add multiplicand × 2
100 Subtract multiplicand × 2
101 Subtract multiplicand × 1
110 Subtract multiplicand × 1
111 No action

Figure 7. Booth-2 FP truncated multiplier of 8 bits.

It is important to mention that the sign bit in a float-
ing-point multiplication under the IEEE-754:2008 stan-
dard is not necessary for the calculation of m. However, 
the Booth-2 multiplier requires it. On this case two bits 
are used to keep the product unchanged by the dis-
placement of the multiplicand.

In Figure 7 the architecture without truncation of the 
Booth-2 multiplier is shown. In this multiplier, the mul-
tiplicand must be presented with a positive and negative 
sign and multiplied by 2 in both cases.

Hardware implementation

The multipliers were designed in VHDL, VHSIC (Very 
High-Speed Integrated Circuit), and HDL (Hardware 
Description Language) [10]. Then a synthesis process 
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was carried out with the Alliance EDA (Electronic De-
sign Automation) tools to obtain the hardware designs 
[18]. Finally, the designs were fabricated with the On 
Semiconductor C5 CMOS technology, which is charac-
terized by a minimum channel length of 0.5 μm. This 
technology was sponsored by the MOSIS Inc. Educa-
tional Program.

Logical and physical synthesis of the system

The logical and physical synthesis process was carried out 
through the flowcharts of Figures 8 and 9. The synthesis 
was implemented using the Alliance EDA tools, which is 
a set of VLSI design tools and standard cell libraries that 
were developed in the Pierre et Marie Curie laboratory 
in Paris, France [18]. With these tools, a behavioral de-
scription is translated into a structural description. And 
finally, a transistor level layout is obtained.

The beginning of a design is the behavioral description 
of each module of the system in VHDL. Then the tools 
of the flowchart, shown in Figure 8a, are used to imple-
ment a logical synthesis. Subsequently, the physical syn-
thesis is performed as shown in Figure 8b, which begins 
with a structural description. Then, as shown in Figure 
9, the place and route process are carried out, placing 
the standard cells and interconnecting them. Likewise, 
the declaration of pads is made for the external signals, 
thus forming the complete IC layout.

First VASY (see Figure 8a) is used to verify the syntax 
and convert the high-level instructions to an under-
standable language by Alliance. After that, the behav-
ior is simulated with ASIMUT through a pattern file 
that sets the input values. Next, BOOM is executed, 
which optimizes and converts VASY instructions into 
simple Boolean equations. Then, BOOG analyzes the 
equations to obtain the equivalent function, using the 
standard cells provided by the SXLIB library. Also, this 
tool generates the schematic system and could be sim-
ulated with ASIMUT. The structural modules, to form 
the complete system, are connected using GENLIB (see 
Figure 8b). Subsequently, LOON is used to optimize 
the critical path by introducing buffers and reducing 
capacitance. Once the interconnected structural system 
is obtained, OCP is used to place the standard cells and 
establish the physical inputs and outputs (see Figure 9). 
After that, the transistors of each cell are interconnected 
with NERO. Finally, the layout of the circuit is obtained. 
LVX generates a list of nodes to compare the layout with 

the structural file using COUGAR. The obtained layout 
has generic dimension units (λ), which can be scaled, 
allowing the designs to be fabricated with different 
VLSI CMOS technologies.

Figure 8. Flowchart for a) logic and b) physical synthesis, using 
Alliance EDA tools.

Figure 9. Flow chart for place and route and layout generation, 
using Alliance EDA tools.
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III. RESULTS AND DISCUSSION

The results presented here, were obtained during the 
synthesis process depicted on Figures 8 and 9. The 
comparison of the area consumption (in generic units 
of λ2) required by the FP multipliers is shown in Fig-
ure 10. The lowest area consumption is obtained with 
Wallace tree multipliers with truncation and RCA ad-
ders. Meanwhile, array multipliers without truncation 
and RCA adders consume more area. Table IV shows 
the transistors quantity obtained by COUGAR tool, of 
non-truncated/CLA versions of multipliers. These re-
sults agree with area consumption of Figure 10.

Figure 10. Area consumption in FP multipliers.

The processing time (or delay) of the FP multipliers 
designed are compared in Figure 11. As can be seen 
the Wallace tree multiplier truncated with CLA adders 
spent the least of times. The critical path delay of Wal-
lace tree multipliers is proportional to the logarithm of 
the number of bits [3], [14]. The Wallace tree multipli-
er can be implemented only in signed integers and it 
is avoided in low power applications because its wiring 
excess increases the power consumption. On the oth-
er hand, the Booth-2 multiplier truncated with RCA 
adders presented the longest delay. It is not possible to 
determine which algorithm is more efficient in terms of 
speed. However, it can be seen that the higher the area 
consumption, the higher the operating speed.

TABLE IV
Quantity of Transistors for Non-Truncated / CLA 

Multipliers

Number of bits Wallace tree Booth-2 Array
8 2404 2980 8610
16 10572 12152 35558
24 22868 26198 96118
32 40178 43548 190290

Figure 11. Processing time in FP multipliers.

As shown in Figure 12, the floating-point multiplier 
with a Wallace tree architecture required less area for 
its fabrication, while the array multiplier required the 
largest area. Also, the processing time of floating-point 
multipliers is shown in Figure 12. The Wallace tree ar-
chitecture presented the shortest delay and Booth-2 ar-
chitecture the longest. These results are important be-
cause as can be seen the critical part in a floating-point 
multiplier design is the FP portion.

Figure 12. Area consumption and delay in floating-point multi-
pliers.
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In the design of floating-point multipliers, we can see 
that if the area consumption is high, the system speed 
will be as well. However, this statement is not fulfilled in 
all cases. The Wallace tree floating-point multiplier pre-
sented both the lowest area consumption and the least 
delay. However, it is known that the power consump-
tion is high [3], [14].

In this work, parameter m was truncated to reduce the 
area consumption, introducing a precision error in the 
multiplication result. One solution is to use Booth-2 
floating-point multipliers with truncation. They exhibit 
a null truncation error since the lower weight bits are 
calculated and they influence those of higher weight but 
are subsequently discarded. Also, as can be seen in Fig-
ure 12 its parameters are placed in the limits of area and 
processing time.

Therefore, they can be used in applications that require 
more precision, over speed or area consumption. In ad-
dition, Booth-2 multiplier reduces its area consumption 
compared to the other truncated architectures that in-
troduce a precision error. Two ICs corresponding to the 
Both-2 and Wallace tree FP multipliers were successfully 
fabricated with a 0.5-μm CMOS technology. In Figure 13a 
is shown the final layout of a Wallace tree FP multiplier of 
8 bits. The printed circuit board (PCB) for the testing of 
ICs is shown in Figure 13b. The physical dimensions of 
the design, without considering the pads, were 510 × 528.6 
μm for the Wallace tree multiplier, and 690 × 670 μm for 
the Both-2 multiplier. The physical dimensions obtained 
validate the results previously discussed in Figure 10.

Figure 13a. Integrated circuit of 8 bits Wallace tree FP multiplier. 
Final layout.

Figure 13b. Integrated circuit of 8 bits Wallace tree FP multiplier. 
Testing PCB.

IV. CONCLUSIONS

Three different fixed-point multipliers (Wallace Tree, 
Array and Booth-2) were successfully designed in 
VHDL. The multipliers were compared and analyzed 
based on area and delay parameters. The lowest area 
consumption is obtained with Wallace tree multipli-
ers with truncation and RCA adders. Meanwhile, array 
multipliers without truncation and RCA adders con-
sume more area. Wallace tree fixed-point multiplier 
with truncation and CLA adders presented the least de-
lay. Meanwhile, the Booth-2 fixed-point multiplier with 
truncation and RCA adders presented the longest delay. 
In floating-point versions, the Booth-2 multiplier cal-
culated the mantissa without truncation error and the 
required area was reduced. By using free EDA tools, it 
was possible to design and fabricate two integrated cir-
cuits in a 0.5-μm CMOS technology successfully. These 
integrated circuits correspond to the Wallace tree and 
Both-2 fixed-point multipliers of 8 bits, which were 
tested to corroborate their correct operation.
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