
ABSTRACT

Multiplication is an arithmetic operation that has a meaningful impact on the performance of sev-
eral real-life applications, such as digital signal and image processing. Analysis and comparison of
different types of fixed-point multipliers such as Wallace tree, array, and Booth-2 with truncated and
non-truncated versions were included in this design. Fixed-point multipliers were used to design
floating-point multipliers through a hardware description language. As a result, area and speed values
were analyzed. Booth-2 fixed multiplier with truncation and RCA adders present both the longest
delay and the largest area consumption. Wallace tree floating-point multiplier required the smallest
area and the shortest delay. The 8-bit versions of fixed-point multipliers were physically synthesized,
using the Alliance tools, to obtain the layout of the circuits. The integrated circuits were successfully
fabricated in a 0.5-μm CMOS technology.

KEYWORDS: VLSI integrated circuit; VHDL; Booth-2; Wallace tree; floating-point.

RESUMEN

La multiplicación es una operación aritmética que tiene un impacto significativo en el rendimiento
de varias aplicaciones de la vida real, como el procesamiento de imágenes y señales digitales. En este
trabajo se analizan y comparan de diferentes tipos de multiplicadores de punto fijo, como árbol de
Wallace, Arreglo y Booth-2 con versiones truncadas y sin truncar. Los multiplicadores de punto fijo
se utilizaron para diseñar multiplicadores de punto flotante a través de un lenguaje de descripción
de hardware. Como resultado, se analizaron los valores de área y retardo. El multiplicador de punto
fijo Booth-2 con truncamiento y sumadores RCA presentó tanto el mayor retardo como el mayor
consumo de área. El multiplicador de punto flotante del árbol de Wallace requería el área más peque-
ña y el retraso más corto. Las versiones de 8 bits de los multiplicadores de punto fijo se sintetizaron
físicamente para obtener el layout. Los circuitos integrados se fabricaron con éxito en una tecnología
CMOS de 0.5 μm.

PALABRAS CLAVE: Circuito integrado VLSI; VHDL; Booth-2; árbol de Wallace; punto flotante.

Corresponding author: Abimael Jiménez Pérez
Institution: Universidad Autónoma de Ciudad Juárez / Instituto
de Ingeniería y Tecnología
Address: Av. Del Charro núm. 450, col. Partido Romero, Ciudad
Juárez, Chihuahua, México, C. P. 32310
E-mail: abimael.jimenez@uacj.mx

Manuscript received: February 10, 2021; accepted: April 25,
2021. Date of publication: April 30, 2021.

DOI: 10.20983/culcyt.2021.1.2.4

VLSI Design and Comparative Analysis of Several Types
of Fixed and Simple Precision Floating Point Multipliers
Diseño VLSI y Análisis Comparativo de Varios Tipos de Multiplicadores
de Punto Fijo y Punto Flotante de Precisión Simple
Abimael Jiménez-Pérez1, Marco Antonio Gurrola-Navarro2, Víctor Manuel
Valenzuela-De la Cruz3, José Antonio Muñoz-Gómez2, Omar Aguilar-Loreto2

1 Universidad Autónoma de Ciudad Juárez
2 Universidad de Guadalajara
3 Intel Guadalajara

RE
SE

A
RC

H
 A

RT
IC

LE

P E E R
R E V I E W

CULTURA CIENTÍFICA Y TECNOLÓGICA
ISSN (electrónico) 2007-0411

Volume 18 · Issue 1
January-April 2021
Pages 1-9

Creative Commons License

http://dx.doi.org/10.20983/culcyt.2021.1.2.4

DOI: 10.20983/culcyt.2021.1.2.4 ISSN (e): 2007-0411

A. Jiménez-Pérez et al. VLSI Design and Comparative Analysis of
Several Types of Fixed and Simple Precision Floating Point Multipliers
RESEARCH ARTICLE

Cultura Científica y Tecnológica • Vol. 18, Issue 1
Pages 1-9 • January-April 2021 2

I. INTRODUCTION

Multiplier is an essential component in every digital
signal processing, image processing, and computer vi-
sion applications [1]. The need for greater functional-
ity and real-time applications demands revolutionary
changes in the design process of a Very Large-Scale In-
tegration (VLSI) Integrated Circuit (IC). Therefore, the
development of high-speed computational hardware,
such as multipliers, is a major concern in the current
scenario [2]–[3]. The most important design criteria of
these kinds of components are speed, power, and area
consumption. Various research efforts have been car-
ried out in literature to obtain efficient multiplier and
adder architectures [2]–[5].

The state of the art of VLSI designs had focused mainly
on the reduction of the area, but in the last decade the
focus changed mainly to speed and power consump-
tion. A high-speed requirement causes increased cir-
cuit complexity, increasing both the number of tran-
sistors of the circuit and the power consumption [5].
However, it is possible to improve the performance of
multipliers through design techniques and logic archi-
tectures [6]–[9].

FLOATING-POINT NOTATION

Floating-point numbers are formally defined by the
IEEE 754:2008 standard [10], where three types of bina-
ry numbers are specified 32-, 64-, and 128-bit.

The format of a 32-bit binary number is shown in Figure
1 and it is demonstrated that a floating-point number
can be represented in single or double precision under
this standard. In this work, we will focus only on sim-
ple precision. Nevertheless, the concepts and schemes
could be extended to greater precisions.

Figure 1. Number of 32 bits defined by IEEE-754:2008, a) single
precision, b) double precision.

For a number n in floating-point, a bit is added to the
fraction to form mantissa (or significand). The normal-
ized number can be represented by

n = (–1)s∙1∙m∙2(exp–BIAS) (1)

where s is the sign bit, m is the mantissa and exp is a
positive integer power with BIAS = 127.

In addition to the normal format, there are special for-
mats for exp and m, such as zero, denormalized, infinite,
and no number. Further details about the rules of bina-
ry numbers can be found in [11].

Truncation method

In a product without truncation all partial products are
obtained and added. Therefore, there is no truncation
error; except for the intrinsic error when the data is
truncated in the floating-point representation.

When truncation is considered, an error is generated,
losing accuracy in the result. However, it allows the re-
duction of components in the hardware architecture. A
truncated product omits the calculation of the partial
products of least significant bits (LSB). In the truncated
versions of multipliers, n–1 bits are truncated. This is
because the extra bit permits the result to be shifted one
position to the left in the normalization of m, if neces-
sary. In this work, round-to-zero truncation is used, in
which n LSB are neglected [12].

In this paper, we demonstrate the successful design
and comparative analysis of three different designs
of fixed-point multipliers (Array, Wallace Tree, and
Booth-2), which were used to design simple precision
floating-point multipliers. The details of this work are
presented in the following sections.

II. METHODOLOGY

Floating-point multiplier architecture

As shown in Figure 2, in the design of a floating-point
multiplier, 24-bit fixed-point (FP) multiplier, and mod-
ules to normalize m, handle exponents and verification
of exceptions (overflow and underflow) are required.
The proposed architecture is able to determine excep-
tions in the result and represents the data in the IEEE-

http://dx.doi.org/10.20983/culcyt.2021.1.2.4

DOI: 10.20983/culcyt.2021.1.2.4 ISSN (e): 2007-0411

A. Jiménez-Pérez et al. VLSI Design and Comparative Analysis of
Several Types of Fixed and Simple Precision Floating Point Multipliers
RESEARCH ARTICLE

Cultura Científica y Tecnológica • Vol. 18, Issue 1
Pages 1-9 • January-April 2021 3

754: 2008 standard. However, it requires the normaliza-
tion of the numbers first.

Normalization, exponents, and exceptions

Initially, the 32-bit input numbers are separated into
signals to distinguish the sign s, mantissa m and expo-
nents exp as shown in Figure 2. Then, the new sign bit
is calculated with an XOR. The mantissas are multiplied
with the 24-bit FP multiplier. Then the exponents are
verified to detect a zero or error condition. After that,
the 25 most significant -s (MSB) of the FP multiplica-
tion result (with or without truncation) are taken and,
m is normalized if necessary. Finally, with the normal-
ized numbers and according to Table I, m is determined.
Accordingly, the bits for the new m will depend on the
value of the MSB.

Figure 2. Architecture for floating-point multipliers.

TABLE I
Normalization of Mantissa

Obtained Required Action
10.000… 1.0000… Displace m to the right
01.000… No change No change

For the exponents, corresponding to the multiplier and
multiplicand are added. Then the BIAS value is sub-
tracted to the result as shown in Figure 2. There is the
possibility of adding a unit in the input carry of the ad-
der, as a result of the normalization of m.

The resulting value of exp is verified by overflow or un-
derflow conditions. Overflow occurs when the calcula-
tion generates a transition from a value ≤254 to a value
≤255, 0 or greater. Underflow occurs when the calcula-
tion generates a transition from a value 1≥ to a value 0,

255 or less. The flowchart to determine these exceptions
is shown in Figure 3.

Figure 3. Flowchart for verification of exceptions.

Types of multipliers designed

To compare the performance of different floating-point
multiplier architectures, three architectures were used
to implement FP multipliers. The first is a typical array
multiplier [13]. The second uses the Wallace tree tech-
nique [14] and the third is the Booth-2 [15]–[16]. Each FP
multiplier was designed in 8-, 16-, 24-, and 32-bit, with
Ripple Carry Adder (RCA) and Carry Look-Ahead
(CLA) adders, as well as versions with and without
truncation. However, it is important to mention that
only 24-bit versions are used floating-point multipliers.
Table II shows all the FP multipliers designed.

TABLE II
Types of FP Multipliers Designed

Multiplier Number of Bits Truncated Adders type
Array 8, 16, 24, and 32 No RCA/CLA

Yes RCA/CLA
Wallace tree 8, 16, 24, and 32 No RCA/CLA

Yes RCA/CLA
Booth-2 8, 16, 24, and 32 No RCA/CLA

Yes RCA/CLA

Array multiplier

Array multiplier performs multiplication of two num-
bers based on the shift and adds method as shown in

http://dx.doi.org/10.20983/culcyt.2021.1.2.4

DOI: 10.20983/culcyt.2021.1.2.4 ISSN (e): 2007-0411

A. Jiménez-Pérez et al. VLSI Design and Comparative Analysis of
Several Types of Fixed and Simple Precision Floating Point Multipliers
RESEARCH ARTICLE

Cultura Científica y Tecnológica • Vol. 18, Issue 1
Pages 1-9 • January-April 2021

Figure 4. Even though it has a very regular and system-
atic structure, its delay becomes very large for a large
word length [13]. First, all partial products with AND
gates are obtained. The set of partial products (xi ∙y)
with even position (0, 2, 4, ..., n) will have a zero weight
in its greatest weight position. Meanwhile, partial prod-
ucts (xi ∙y) with odd position (1, 3, 5, ..., m) will have a
zero in the least weight position.

Figure 4. Array FP multiplier of 8 bits (non-truncated).

Then, the sums of the partial products are carried out
as shown in Figure 5. The sets of partial products are
added together with a shift to the right in the even sets
and to the left in the odd ones. The number of zeroes
added is equal to 2phase. This procedure continues un-
til obtain two values of 2n bits, where n is the initial
number of bits. Finally, the sum is done with CLA or
RCA circuits.

Figure 5. Addition of partial products for an array FP multiplier
of 8 bits.

Wallace tree multiplier

The Wallace tree is an algorithm to implement fast mul-
tipliers. In this method the sum of partial products is
carried out with an interconnection arrangement of ad-
ders to eliminate the problem of carry propagation.

In this method the multiplicand y is multiplied by the
multiplier x, to generate the partial products. Then, they
are added following the interconnection arrangement
of carry-save adders (CSA) [17] to produce two rows of
partial products. Finally, they are added with any high-
speed adder. The Wallace tree requires compressors and
full adders [3], [14].

Figure 6 shows the Wallace tree of an 8-bit multiplier
without truncation. First, the partial products of mul-
tiplication are obtained. Then, as shown in Figure 6,
the partial products are reduced to 2 rows through full
adders and compressors. After that, the reduced partial
products are grouped, which can be added with CLA or
RCA circuits. For truncated multipliers, only the par-
tial products of the n+1 bits of greater weight are gen-
erated. Then, the same algorithm of the Wallace tree is
applied.

Figure 6. Wallace Tree FP multiplier of 8 bits (non-truncated).

Booth-2 multiplier

Booth’s method multiplies two signed binary numbers
in two’s complement notation. The Booth algorithm is
used to calculate the multiplication of signed integers.
However, this method does not calculate partial prod-
ucts. It only uses displacement and adder circuits. It is
based on the Booth-r coding [15]–[16].

4

http://dx.doi.org/10.20983/culcyt.2021.1.2.4

DOI: 10.20983/culcyt.2021.1.2.4 ISSN (e): 2007-0411

A. Jiménez-Pérez et al. VLSI Design and Comparative Analysis of
Several Types of Fixed and Simple Precision Floating Point Multipliers
RESEARCH ARTICLE

Cultura Científica y Tecnológica • Vol. 18, Issue 1
Pages 1-9 • January-April 2021 5

Booth-r coding has a signed binary value in another
format that can be interpreted as an equivalent of the
original number. A signed binary value can be repre-
sented by

an–12n–1 + an–22n–2 + ... + a0 (2)

where an–1 ∈ {–1,0} and ai ∈ {0,1}. Booth-r coding of a
signed number a represented by (2) and n = r∙m bits, is
obtained by

b0 = –ar–12r–1 + ar–22r–2 + ... + a12 + a0 (3)

bi = –ai∙r+r–12r–1 + ai∙r+r–22r–2 + ...
+ ai∙r+12 + ai∙r + ai∙r–1

(4)

where i ∈ {1, 2, ..., m–1}, a is the original binary signed
value, b is the number encoded in Booth-r, n is the num-
ber of bits, r the degree of Booth and m the number of
operands for an encoded element. The result (bm–1, bm–2,
..., b0) will have components bi in the range of [–2r–1,
2r–1].

In this method, the adjacent pairs of bits of x, the mul-
tiplier, are examined. All the bits xi and xi–1 are com-
pared, with i increasing from 0 to n–1. Then based on
the comparisons result, an action is performed on a reg-
ister called product that will contain the result of the
multiplication.

When xi and xi–1 are the same, the product is not altered.

When xi = 0 and xi–1 = 1, the multiplicand multiplied by
2i is added to the product.

When xi = 1 and xi–1 = 0, the multiplicand multiplied by
2i is subtracted from the product.

Booth-r coding increases its complexity and the re-
quired hardware as its degree increases, but the number
of operations to obtain a product is reduced.

In Booth-2, the relation 2m = n is established in Eq. (3)
and (4). Therefore, the half of the elements is required
to encode a number if it is compared to the number of
bits of the binary number. The Booth-2 method has a
small difference. Now three bits are compared (see Ta-
ble III). Thus, the possible actions on the multiplier and
the displacements to the right are increased to 2.

TABLE III
Possible Actions in Booth-2 Algorithm

Case Action
000 No action
001 Add multiplicand × 1
010 Add multiplicand × 1
011 Add multiplicand × 2
100 Subtract multiplicand × 2
101 Subtract multiplicand × 1
110 Subtract multiplicand × 1
111 No action

Figure 7. Booth-2 FP truncated multiplier of 8 bits.

It is important to mention that the sign bit in a float-
ing-point multiplication under the IEEE-754:2008 stan-
dard is not necessary for the calculation of m. However,
the Booth-2 multiplier requires it. On this case two bits
are used to keep the product unchanged by the dis-
placement of the multiplicand.

In Figure 7 the architecture without truncation of the
Booth-2 multiplier is shown. In this multiplier, the mul-
tiplicand must be presented with a positive and negative
sign and multiplied by 2 in both cases.

Hardware implementation

The multipliers were designed in VHDL, VHSIC (Very
High-Speed Integrated Circuit), and HDL (Hardware
Description Language) [10]. Then a synthesis process

http://dx.doi.org/10.20983/culcyt.2021.1.2.4

DOI: 10.20983/culcyt.2021.1.2.4 ISSN (e): 2007-0411

A. Jiménez-Pérez et al. VLSI Design and Comparative Analysis of
Several Types of Fixed and Simple Precision Floating Point Multipliers
RESEARCH ARTICLE

Cultura Científica y Tecnológica • Vol. 18, Issue 1
Pages 1-9 • January-April 2021

was carried out with the Alliance EDA (Electronic De-
sign Automation) tools to obtain the hardware designs
[18]. Finally, the designs were fabricated with the On
Semiconductor C5 CMOS technology, which is charac-
terized by a minimum channel length of 0.5 μm. This
technology was sponsored by the MOSIS Inc. Educa-
tional Program.

Logical and physical synthesis of the system

The logical and physical synthesis process was carried out
through the flowcharts of Figures 8 and 9. The synthesis
was implemented using the Alliance EDA tools, which is
a set of VLSI design tools and standard cell libraries that
were developed in the Pierre et Marie Curie laboratory
in Paris, France [18]. With these tools, a behavioral de-
scription is translated into a structural description. And
finally, a transistor level layout is obtained.

The beginning of a design is the behavioral description
of each module of the system in VHDL. Then the tools
of the flowchart, shown in Figure 8a, are used to imple-
ment a logical synthesis. Subsequently, the physical syn-
thesis is performed as shown in Figure 8b, which begins
with a structural description. Then, as shown in Figure
9, the place and route process are carried out, placing
the standard cells and interconnecting them. Likewise,
the declaration of pads is made for the external signals,
thus forming the complete IC layout.

First VASY (see Figure 8a) is used to verify the syntax
and convert the high-level instructions to an under-
standable language by Alliance. After that, the behav-
ior is simulated with ASIMUT through a pattern file
that sets the input values. Next, BOOM is executed,
which optimizes and converts VASY instructions into
simple Boolean equations. Then, BOOG analyzes the
equations to obtain the equivalent function, using the
standard cells provided by the SXLIB library. Also, this
tool generates the schematic system and could be sim-
ulated with ASIMUT. The structural modules, to form
the complete system, are connected using GENLIB (see
Figure 8b). Subsequently, LOON is used to optimize
the critical path by introducing buffers and reducing
capacitance. Once the interconnected structural system
is obtained, OCP is used to place the standard cells and
establish the physical inputs and outputs (see Figure 9).
After that, the transistors of each cell are interconnected
with NERO. Finally, the layout of the circuit is obtained.
LVX generates a list of nodes to compare the layout with

the structural file using COUGAR. The obtained layout
has generic dimension units (λ), which can be scaled,
allowing the designs to be fabricated with different
VLSI CMOS technologies.

Figure 8. Flowchart for a) logic and b) physical synthesis, using
Alliance EDA tools.

Figure 9. Flow chart for place and route and layout generation,
using Alliance EDA tools.

6

http://dx.doi.org/10.20983/culcyt.2021.1.2.4

DOI: 10.20983/culcyt.2021.1.2.4 ISSN (e): 2007-0411

A. Jiménez-Pérez et al. VLSI Design and Comparative Analysis of
Several Types of Fixed and Simple Precision Floating Point Multipliers
RESEARCH ARTICLE

7Cultura Científica y Tecnológica • Vol. 18, Issue 1
Pages 1-9 • January-April 2021

III. RESULTS AND DISCUSSION

The results presented here, were obtained during the
synthesis process depicted on Figures 8 and 9. The
comparison of the area consumption (in generic units
of λ2) required by the FP multipliers is shown in Fig-
ure 10. The lowest area consumption is obtained with
Wallace tree multipliers with truncation and RCA ad-
ders. Meanwhile, array multipliers without truncation
and RCA adders consume more area. Table IV shows
the transistors quantity obtained by COUGAR tool, of
non-truncated/CLA versions of multipliers. These re-
sults agree with area consumption of Figure 10.

Figure 10. Area consumption in FP multipliers.

The processing time (or delay) of the FP multipliers
designed are compared in Figure 11. As can be seen
the Wallace tree multiplier truncated with CLA adders
spent the least of times. The critical path delay of Wal-
lace tree multipliers is proportional to the logarithm of
the number of bits [3], [14]. The Wallace tree multipli-
er can be implemented only in signed integers and it
is avoided in low power applications because its wiring
excess increases the power consumption. On the oth-
er hand, the Booth-2 multiplier truncated with RCA
adders presented the longest delay. It is not possible to
determine which algorithm is more efficient in terms of
speed. However, it can be seen that the higher the area
consumption, the higher the operating speed.

TABLE IV
Quantity of Transistors for Non-Truncated / CLA

Multipliers

Number of bits Wallace tree Booth-2 Array
8 2404 2980 8610
16 10572 12152 35558
24 22868 26198 96118
32 40178 43548 190290

Figure 11. Processing time in FP multipliers.

As shown in Figure 12, the floating-point multiplier
with a Wallace tree architecture required less area for
its fabrication, while the array multiplier required the
largest area. Also, the processing time of floating-point
multipliers is shown in Figure 12. The Wallace tree ar-
chitecture presented the shortest delay and Booth-2 ar-
chitecture the longest. These results are important be-
cause as can be seen the critical part in a floating-point
multiplier design is the FP portion.

Figure 12. Area consumption and delay in floating-point multi-
pliers.

http://dx.doi.org/10.20983/culcyt.2021.1.2.4

DOI: 10.20983/culcyt.2021.1.2.4 ISSN (e): 2007-0411

A. Jiménez-Pérez et al. VLSI Design and Comparative Analysis of
Several Types of Fixed and Simple Precision Floating Point Multipliers
RESEARCH ARTICLE

8Cultura Científica y Tecnológica • Vol. 18, Issue 1
Pages 1-9 • January-April 2021

In the design of floating-point multipliers, we can see
that if the area consumption is high, the system speed
will be as well. However, this statement is not fulfilled in
all cases. The Wallace tree floating-point multiplier pre-
sented both the lowest area consumption and the least
delay. However, it is known that the power consump-
tion is high [3], [14].

In this work, parameter m was truncated to reduce the
area consumption, introducing a precision error in the
multiplication result. One solution is to use Booth-2
floating-point multipliers with truncation. They exhibit
a null truncation error since the lower weight bits are
calculated and they influence those of higher weight but
are subsequently discarded. Also, as can be seen in Fig-
ure 12 its parameters are placed in the limits of area and
processing time.

Therefore, they can be used in applications that require
more precision, over speed or area consumption. In ad-
dition, Booth-2 multiplier reduces its area consumption
compared to the other truncated architectures that in-
troduce a precision error. Two ICs corresponding to the
Both-2 and Wallace tree FP multipliers were successfully
fabricated with a 0.5-μm CMOS technology. In Figure 13a
is shown the final layout of a Wallace tree FP multiplier of
8 bits. The printed circuit board (PCB) for the testing of
ICs is shown in Figure 13b. The physical dimensions of
the design, without considering the pads, were 510 × 528.6
μm for the Wallace tree multiplier, and 690 × 670 μm for
the Both-2 multiplier. The physical dimensions obtained
validate the results previously discussed in Figure 10.

Figure 13a. Integrated circuit of 8 bits Wallace tree FP multiplier.
Final layout.

Figure 13b. Integrated circuit of 8 bits Wallace tree FP multiplier.
Testing PCB.

IV. CONCLUSIONS

Three different fixed-point multipliers (Wallace Tree,
Array and Booth-2) were successfully designed in
VHDL. The multipliers were compared and analyzed
based on area and delay parameters. The lowest area
consumption is obtained with Wallace tree multipli-
ers with truncation and RCA adders. Meanwhile, array
multipliers without truncation and RCA adders con-
sume more area. Wallace tree fixed-point multiplier
with truncation and CLA adders presented the least de-
lay. Meanwhile, the Booth-2 fixed-point multiplier with
truncation and RCA adders presented the longest delay.
In floating-point versions, the Booth-2 multiplier cal-
culated the mantissa without truncation error and the
required area was reduced. By using free EDA tools, it
was possible to design and fabricate two integrated cir-
cuits in a 0.5-μm CMOS technology successfully. These
integrated circuits correspond to the Wallace tree and
Both-2 fixed-point multipliers of 8 bits, which were
tested to corroborate their correct operation.

REFERENCES

[1]	 R. Shanmuganathan and K. Brindhadevi, “Comparative
analysis of various types of multipliers for effective low
power,” Microelectron. Eng., vol. 214, pp. 28-37, 2019,
doi: 10.1016/j.mee.2019.04.015.

[2]	 V. Leon, S. Xydis, D. Soudris, and K. Pekmestzi, “En-
ergy-efficient VLSI implementation of multipliers with
double LSB operands,” IET Circuits, Devices Syst., vol. 13,
no. 6, pp. 816-821, 2019, doi: 10.1049/iet-cds.2018.5039.

http://dx.doi.org/10.20983/culcyt.2021.1.2.4
https://doi.org/10.1016/j.mee.2019.04.015
https://doi.org/10.1049/iet-cds.2018.5039

DOI: 10.20983/culcyt.2021.1.2.4 ISSN (e): 2007-0411

A. Jiménez-Pérez et al. VLSI Design and Comparative Analysis of
Several Types of Fixed and Simple Precision Floating Point Multipliers
RESEARCH ARTICLE

9Cultura Científica y Tecnológica • Vol. 18, Issue 1
Pages 1-9 • January-April 2021

[3]	 I. Hussain and M. Kumar, “A Fast and Reduced Complex-
ity Wallace Tree Multiplier,” Journal of Active and Passive
Electronic Devices, vol. 12, no. 1-2, pp. 63-71, 2017.

[4]	 P. Lokesh, U. Somalatha, and S. Chandana, “VLSI Mod-
eling of high performance aging aware multiplier by us-
ing adaptive hold logic circuit,” International Journal of
Engineering Research and Applications, vol. 8, no. 2, pp.
7-12, 2018.

[5]	 M. Jhamb, Garima, and H. Lohani, “Design, imple-
mentation and performance comparison of multiplier
topologies in power-delay space,” Eng. Sci. Technol. an
Int. J., vol. 19, no. 1, pp. 355-363, 2016, doi: 10.1016/j.
jestch.2015.08.006.

[6]	 A. Kamaraj and P. Marichamy, “Design of integrated re-
versible fault-tolerant arithmetic and logic unit,” Micro-
process Microsyst, vol. 69, pp. 16-23, 2019, doi: 10.1016/j.
micpro.2019.05.009.

[7]	 M. Ito, D. Chinnery, and K. Keutzer, “Low power mul-
tiplication algorithm for switching activity reduction
through operand decomposition,” Proceedings 21st In-
ternational Conference on Computer Design, 2003, pp.
21-26, doi: 10.1109/ICCD.2003.1240868.

[8]	 Y. Jiang, A. Al-Sheraidah, Y. Wang, E. Sha, and J.-G.
Chung, “A novel multiplexer-based low-power full ad-
der,” in IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 51, no. 7, pp. 345-348, July 2004, doi:
10.1109/TCSII.2004.831429.

[9]	 N. H. E. Weste and D. M. Harris, CMOS VLSI Design: A
Circuits and Systems Perspective, Boston: Addison-Wes-
ley, 2011.

[10]	 1076-2008 - IEEE Standard VHDL Language Reference
Manual, IEEE Standards Association (IEEE SA), USA,
2009.

[11]	 754-2008 - IEEE Standard for Floating-Point Arithme-
tic, IEEE Standards Association (IEEE SA), New York,
2008.

[12]	 M. Gök, “A novel IEEE rounding algorithm for high-
speed floating-point multipliers,” Integration, vol. 40,
no. 4, pp. 549-560, 2007, doi: 10.1016/j.vlsi.2006.12.001.

[13]	 Z. Huang and M. D. Ercegovac, “High-performance
low-power left-to-right array multiplier design,” in IEEE
Transactions on Computers, vol. 54, no. 3, pp. 272-283,
March 2005, doi: 10.1109/TC.2005.51.

[14]	 C. S. Wallace, “A Suggestion for a Fast Multipli-
er,” in IEEE Transactions on Electronic Computers,
vol. EC-13, no. 1, pp. 14-17, Feb. 1964, doi: 10.1109/
PGEC.1964.263830.

[15]	 A. D. Booth, “A Signed Binary Multiplication Tech-
nique,” Q J Mech Appl Math, vol. 4, no. 2, pp. 236-240,
1951, doi: https://doi.org/10.1093/qjmam/4.2.236.

[16]	 T.-A. Chu, “Booth multiplier with low power high per-
formance input circuitry,” U.S. Patent 6,393,454 B1,
May. 21, 2002.

[17]	 J. G. Earle, “Latched carry save adder circuit for multi-
pliers,” U.S. Patent 3,340,388, Sept. 5, 1967.

[18] “Alliance/Coriolis VLSI CAD Tools.” Coriolis.lip6.fr.
http://coriolis.lip6.fr/ (accessed March, 15, 2021).

http://dx.doi.org/10.20983/culcyt.2021.1.2.4
https://doi.org/10.1016/j.jestch.2015.08.006
https://doi.org/10.1016/j.jestch.2015.08.006
https://doi.org/10.1016/j.micpro.2019.05.009
https://doi.org/10.1016/j.micpro.2019.05.009
https://doi.org/10.1109/ICCD.2003.1240868
https://doi.org/10.1109/TCSII.2004.831429
https://doi.org/10.1109/TCSII.2004.831429
https://doi.org/10.1016/j.vlsi.2006.12.001
https://doi.org/10.1109/TC.2005.51
https://doi.org/10.1109/PGEC.1964.263830
https://doi.org/10.1109/PGEC.1964.263830
https://doi.org/10.1093/qjmam/4.2.236

