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ABSTRACT 

The paper discusses a very important problem which is the verification of security protocols. 
Security protocols are used to secure users’ communication living in the Smart Cities. Users in 
the cyber world could be exposed to dishonest users' actions. These users are called Intruders. 
Also, they could fall victim to cybercrime. Due to continuous technological development, the 
security of protocols should be regularly verified to confirm their correctness. Also, in the case 
of security protocols, time plays a significant role. It may turn out that a few seconds will allow 
an Intruder to acquire the appropriate knowledge to execute an attack and stole confidential 
data. Therefore, it is right to verify security protocols also in terms of the influence of time on 
their security. For this purpose, we propose a new method for security protocols verification 
including timed parameters and their influence on security. Our method includes analysis of 
encryption and decryption times, composing the message time, delays in the network and 
lifetime, using the specially implemented tool. Thanks to this, we can calculate the correct time 
protocol execution, indicate time dependencies and check the possibility of Intruder’s attack. 
Our experimental results we present on well-known Needham Schroeder protocol example. 
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1. INTRODUCTION 

The concept of smart cities primarily uses information and communication technologies to 
increase the interactivity of city infrastructure. The development of technology entails the 
improvement of everyone's quality of life. In turn, the use of modern IT technologies is 
associated with the problem of security of users and the entire urban society. 

Ensuring security at the appropriate level is based on the security protocol (SP). The security 
protocol is a sequence of several steps during which authentication information is exchanged 
between computer network users. Unfortunately, SP's are exposed to attacks and activities of 
dishonest users, so-called Intruders. An intruder can eavesdrop on the communications of 
honest users, intercept their messages, and also use the knowledge thus acquired to conduct 
attacks. The activities of the Intruder entail the need to regularly check the operation and 
security of protocols. 

Over the years, several methods have been developed for verifying security protocols and tools 
implementing these methods ((Dolev et al., 1983), (Burrows et al., 1989), (Lowe, 1996), (Paulson, 
1999), (Armando A., et. al., 2005), (Nigam et al., 2016), (Blanchet B., 2016), (Steingartner et al., 
2017), (Chadha et al., 2017), (Basin et al., 2018), (Siedlecka-Lamch O., et al., 2019)). These 
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methods and tools did not take into account time parameters and their impact on the security 
of security protocols. 

Attempts to demonstrate the influence of time on safety appeared in the works of Jakubowska 
and Penczka (Jakubowska et al., 2006), (Jakubowska et al., 2007). Unfortunately, this work was 
not continued. In turn, the model of implementation of security protocols presented in 
(Kurkowski, 2013) enables the generation of various versions of security protocols. We have 
extended this model with the mentioned time parameters. Thanks to this, we can check the 
duration of the session and check how time parameters have an impact on performance 
security. Also, we check whether the Intruder can attack the protocol for the set time 
parameters. In our considerations, we took into account constant and random values of time 
parameters. 

The rest of the article is organized as follows. At the second Section we present an example of 
security protocol, which is Needham Schroeder Public Key protocol. We used this protocol to 
show the results of our research. The next Section presents our methods and materials. At the 
fourth Section we present our experimental results of our research. The last Section includes 
conclusions and plans for the future. 

  

2. NEEDHAM SCHROEDER PUBLIC KEY PROTOCOL 

As an example we will use the well-known Needham Schroeder protocol, NSPK for short 
(Needham et al., 1978). NSPK consists of three steps, during which two honest users (signed as 
A and B) try to authenticate with each other. For this purpose they exchange messages with 
timestamps (TA, TB), IDs (IA) encrypted by theirs public keys (KA, KB). 

 

Figure 1. Scheme of NSPK protocol. 

 
Source: self-elaboration based on (Needham et al., 1978) 

 

The timed version of NSPK protocol in Alice-Bob notation is presented in Figure 1. In the first 
step (α1) Alice generate she’s timestamp TA and send it with she’s ID to Bob. The message is 
encrypted by Bob’s public key KB. In the next step (α1) Bob generate he’s timestamp TB and send 
it with Alice’s timestamp to Alice. This message is encrypted by Alice’s public key KA. In the last 
step (α3) Alice send to Bob his timestamp encrypted by Bob’s public key. 
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Figure 2. Scheme of attack on NSPK protocol. 

 
Source: self-elaboration based on (Lowe G., 1996) 

 

The Figure 2 presents a scheme of the attacker's intrusion on NSPK protocol. This attack was 
described by Gavin Lowe in (Lowe G., 1996). 

The Intruder (Trudy, T) must execute additional steps (signed by β), to acquire adequate 
knowledge to complete the main execution (signed by α). Communication is as follows. First, 
Alice begin a communication with Trudy (step α1). Therefore, she prepare message encrypted 
by Trudy’s public key according to NSPK’s scheme. Trudy decrypt this message and encrypt it 
again with Bob’s public key. This message is sent to Bob (step β1). Therefore, Trudy knows Alice’s 
timestamp and Bob thinks that Alice try to communicate with him. Next, Bob generate his 
timestamp and send it to Trudy, who impersonates Alice, with Alice’s timestamp. Message from 
step β2 is encrypted by Alice’s public key. Trudy cannot decrypt this message because she does 
not know Alice’s private key. So she send whole message to Alice in step α2. Alice decrypt it and 
send to Trudy Bob’s timestamp in step α3. Because this message was encrypted by key KI,, Trudy 
can decrypt it and send to Bob his timestamp. 

The effect of such protocol execution is following. Alice and Bob think that they communicated 
with each other, but in fact all their messages were read by Trudy. Trudy know Alice’s and Bob’s 
timestamp. 

 

3. METHODS AND MATERIALS 

To perform the full specification of the security protocol, we have extended all model definitions 
from (Kurkowski, 2013) by time parameters. The new model includes definitions of a set of time 
conditions, a protocol step, as well as the entire protocol in a timed version. In turn, the 
computational structure defines the current execution of the protocol and its interpretation. In 
the executions of the protocol, we took into account the Intruder in four models: Dolev-Yao 
(Dolev et al., 1983), restricted Dolev-Yao, lazy Intruder and restricted lazy Intruder. 
Interpretation of the protocol makes it possible to generate a set of different protocol 
executions. Also, the model takes into account changes in participants' knowledge during the 
protocol. 

Also, the computational structure defines a set of time dependencies that allow to calculate the 
duration of a session and prepare appropriate time conditions. These dependencies are related 
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to message composition, step and session times, and lifetime. Dependencies include delays in 
the network. 

For the needs of our approach, we introduced the following delays in the network values for the 
protocol’s step: minimum (Dmin), current (Ds) and maximum (Dmax). Such distinction determines 
the range of tested values delays in the network. It is necessary to enable correct protocol 
execution to honest users regardless of network conditions. Also, for step time and the session 
time we consider similar distinction. The step time (minimal Ts

min, current Ts, maximal Ts
max) is 

the sum of message composition’s time (Tc), encryption time by the sender (Te), delay in the 
network and decryption of the message’s time by the recipient (Td). The session time (minimal 
Tses

min, current Tses, maximal Tses
max) consists of all steps’ times. The values of step and session 

times depend on used delays in the network values. 

To check the influence of time parameter values on the protocol’s users and its security, lifetime 
was established. Lifetime cannot be exceeded in any of the executed steps. If this value will be 
exceeded, users should know that they are communicating with the Intruder. Therefore, 
communication should be immediately terminated. We calculate lifetime value in one step as a 
sum of maximal step times of this step and next steps. 

For research, we created a tool which allows verifying the timed security protocols. In the 
beginning, the tool loads the protocol’s specification from the file. Then all potential executions 
of the tested protocol are combinatorically generated. In the next step, using the SAT-solver, we 
checked whether the generated executions are possible in reality. It is possible that during one 
execution the Intruder will not be able to acquire the appropriate knowledge to complete it. 

Then we conducted two types of research on the loaded protocol. The first of these is the so-
called time analysis. This analysis enables the determination of limits for delays in the network 
and lifetime for which the protocol remains secure. The second type of research is simulations. 
In this case, we can simulate delays in the network values and encryption and decryption times 
to provide a real representation of the computer network. 

 

4. EXPERIMENTAL RESULTS 

Our tests were carried out using a computer unit with the Linux Ubuntu operating system with 
Intel Core i7 processor, and 16 GB RAM. Also, we used an abstract time unit ([tu]) to determine 
the time. 

The experimental results will be presented on the example of Needham Schroeder Public Key 
protocol. According to NSPK protocol structure, we assumed that encryption and decryption 
times were equal 5 time units ([tu]), time of composing the message for the first and second 
step were equal 2 [tu], time of composing the message for the third step were equal 1 [tu]. Also, 
we choose the range of delays in the network values from 1 to 10 [tu] and set constant value for 
the current delay in the network D=1 [tu]. 

Next, we calculated lifetimes for steps: 

− L1=59 [tu], 

− L2=39 [tu], 

− L3=19 [tu]. 
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Also, we calculated minimal and maximal session time: 

− Ts
min=32 [tu], 

− Ts
max=65 [tu]. 

 

These values were necessary to enable and set time conditions. 

 

Table 1. Summary of NSPK protocol’s executions. 

No. Send. - Rec. Parameters No. Send. - Rec. Parameters 

1 A→B  10 B→I(A) Ta, Ka 

2 B→A  11 I→A Ti, Ki 

3 I→B Ti, Ki 12 I→A Tb, Ki 

4 I→B Ta, Ki 13 I(B)→A Ti, Kb 

5 I(A)→B Ti, Ka 14 I(B)→A Tb, Kb 

6 I(A)→B Ta, Ka 15 A→I Ti, Ki 

7 B→I Ti, Ki 16 A→I Tb, Ki 

8 B→I Ta, Ki 17 A→I(B) Ti, Kb 

9 B→I(A) Ta, Ka 18 A→I(B) Tb, Kb 
Source: self-elaboration 

 

For the NSPK protocol, eighteen executions have been generated. A list of these executions was 
presented in Table 1. Column Send. - Rec. relate to protocol’s participants: A, B is the honest 
users, I, I(A), I(B) is the Intruder. I means Intruder who occur as a regular user, I(A) means 
intruder who impersonates user A, and I(B) means Intruder who impersonates user B. Column 
Parameters includes cryptographic objects, which are used by Intruder during execution. 
Column No. contains an ordinal number which was assigned in order to simplify the reference 
to execution. For example, execution no. 9 take place between honest user B and Intruder who 
impersonates user A. In this case, the Intruder uses the timestamp of user A and also his public 
key. 

 

Table 2. Timed analysis of attacking execution in [tu]. 

α step β step Te Tc D Td Ts Tses Result 

α1  4 2 1 4 11 11 ok 

 β1 4 2 1 4 11 22 ok 

 β2 4 2 1 0 7 29 ok 

α2  0 2 1 4 (7) 
25 36 ok 

α3  4 1 1 4 10 46 ok 

 β3 4 1 1 4 (10) 
27 56 T3>L3 

Source: self-elaboration 



5. Management of Cybercrime: Where to From Here? 

230 Mario Arias-Oliva, Jorge Pelegrín-Borondo, Kiyoshi Murata, Ana María Lara Palma (Eds.) 

Let’s analyze the attacking execution. We analysed an interlacing of 7 (α-execution) and 11 (β-
execution) executions, which reflects attack included in Figure 2. The timed analysis was 
presented in Table 2. This Table consist of nine columns. First of them is α-step which is related 
to the steps of basic execution. The second column is called β-step. Here will be assigned steps 
from additional execution. Next six columns are connected to time parameters. These are 
encryption time (Te), composition time (Tc), delay in the network value (D), decryption time (Td), 
current step time (Ts) and current session time (Tses). The last column is called Result. Here we 
assign our comment about current step. 

Therefore, each step consists of encryption time, composition time, delay in the network value 
and decryption time. Because Intruder did not have enough knowledge to execute α2-step, he 
must establish β-execution and execute additional step from it. Steps times from additional 
steps were added to basic step time and also to the session time. Therefore, α2-step includes β1 

and β2 times. Also, β3-step includes α2 and α3 times. 

In the step α2 and β2 there were no included encryption time. The Intruder did not perform such 
operations, because he has not appropriate knowledge to decrypt the message from β2, 
therefore he sends whole this message to Bob in the step α2. 

Please note that if Intruder will not end β-execution, the α-execution will be ended in the correct 
time, including additional steps’ times and Intruder will know A’s and B’s timestamps. Therefore, 
the attack on this protocol is possible for assumed values of the time parameters. 

Next, we calculated how changes in the delay in the network range would affect protocol 
security. We increased the maximum delay value in the network by 1 [tu] and checked how long 
the duration of the second step would be. Thanks to this, we will be able to determine what 
limit should be set for this step. 

 

Figure 3. Changes in the delay in the network range. 

 
Source: self-elaboration 

 

Our results were shown in Figure 3. The setting the upper limit of delay in the network values to 
4 [tu] protects the protocol. In such a situation, a lifetime set in the second step will end the 
communication and the attack on NSPK protocol is not possible. 
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In the next step, we performed simulations of Needham Schroeder Public Key protocol’s 
executions. We used the randomly generated the current delay in the network values. We used 
normal, uniform, Cauchy’s, Poisson’s and exponential probability distributions to generate these 
values. The tool also allows random selection of values out of the accepted range to model the 
real work of a computer network. 

We made the following assumptions: 

− encryption and decryption times were equal 2 [tu], 

− time of composing the message for all steps was equal 1 [tu], 

− the range of delays in the network values from 1 to 10 [tu]. 

 

Next, we calculated new lifetimes for steps, minimal and maximal session times: 

− L1=44 [tu], 

− L2=29 [tu], 

− L3=14 [tu], 

− Ts
min=17 [tu], 

− Ts
max=44 [tu]. 

 

Table 3. NSPK executions ended in the correct session time. 

No. 
Session time [tu] Average delay in the 

network [tu] min avg max 
 1 18.4 30.98 43.3 5.67 
 2 19.1 30.83 43 5.61 

 3 17.4 29.24 41.8 5.41 

 4 40.7 42.62 43.9 3.04 

 7 18 29.73 41.3 5.58 

 8 39.6 42.31 43.6 3.1 

 11 17 29.72 42.2 5.57 

 12 39.8 42.14 43.8 3.1 

 15 17.4 29.77 41.7 5.71 

 16 38.3 41.92 43.8 2.89 

Source: self-elaboration 

 

We carried out 18,000 test series for each probability distribution. In Table 3, we presented 
minimal, average and maximal values of session time for several executions of Needham 
Schroeder Public Key protocol including delay in the network values generated according to the 
uniform probability distribution. Also, we presented the average delay in the network values. 
These sessions ended in the correct session time. 
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Also, we assumed two specific situations. First of them was when the current session time was 
lower then minimal session time (Ts

min). This means that Intruder may send cryptograms which 
were in his knowledge set. The Intruder did not encrypt or decrypt messages and also he did not 
generate any object, so these times were not added to session time. Session time (Ts ) was lower 
then minimal session time (Ts

min). 

 

Table 4. NSPK executions ended below the minimal session time. 

No. 
Session time [tu] Average delay in the 

network [tu] min avg max 
 3 16.01 16.31 16.98 1.1 
 7 16.02 16.3 16.97 1.2 

 10 16.03 16.49 16.49 1.09 
 11 16.04 16.3 16.99 1.1 
 15 16.02 16.31 16.98 1.1 
 18 16.03 16.51 16.99 1.09 

Source: self-elaboration 

 

In Table 4, we presented minimal, average and maximal values of session time for several 
executions of Needham Schroeder Public Key protocol including delay in the network values 
generated according to the exponential probability distribution. Also, we presented the average 
delay in the network values in each execution. These sessions ended in below the minimal 
session time. In these exeutions Intruder used his cryptographic objects and also resent whole 
ciphertext received from honest users. Please note that, the average delay in the network values 
were between 1.09 [tu] and 1.2 [tu]. 

The second specific situation was when the current session time was upper then maximal 
session time. This means that Intruder must execute additional steps to get knowledge. 
Additional steps’ times affect the current step and session time. In this case, the execution ended 
incorrectly (exceeding the maximum session time), while the time conditions imposed on each 
step have been preserved. 

 

Table 5. NSPK executions ended upper then the maximal session time. 

No. 
Session time [tu] Average delay in the 

network [tu] min avg max 
1 44.02 50.40 76.81 12.98 
2 44.01 51.81 77.61 12.74 
3 44.02 51.75 70.47 17.84 
4 48.08 75.26 105.99 8.81 
7 44.05 52.15 71.12 21.66 
8 46.05 68.58 90.61 7.19 

11 44.03 52.19 75.57 13.06 
12 47.81 73.72 110.78 8.37 
15 44.16 52.38 72.02 13.13 
16 46.48 66.0 95.99 7.1 

Source: self-elaboration 
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In Table 5, we presented minimal, average and maximal values of session time for several 
executions of Needham Schroeder Public Key protocol including delay in the network values 
generated according to the normal probability distribution. Also, we presented the average 
delay in the network values in each execution. These sessions ended in below the maximal 
session time. Please note that, the average delay in the network values were greater then in 
case of exponential probability distributions. Also, we observed values out of adopted range. 

To present summary of our research we included following designations on the charts: 

− correct, which is designated to the session ended between minimal session time (Ts
min) 

and maximal session time (Ts
max), 

− <min, which is designated the session that were ended lower then minimal session time 
(Ts

min), 

− >max, which is designated to the session that were ended upper then maximal session 
time (Ts

max), 

− error, which is designated the session that were ended because one of the time 
conditions was not met. 

 

We presented the percentage summary of the number of NSPK protocol executions ended with 
assumed statuses. Please note that there was no situation in which session ended upper then 
maximal session time (Ts

max). 

On Figure 4, we presented a summary of the results for the Needham Schroeder Public Key 
protocol using a normal probability distribution. 

 

Figure 4. Summary of the results for the NSPK protocol using normal probability distribution. 

 
Source: self-elaboration 

 

On Figure 5, we presented a summary of the results for the Needham Schroeder Public Key 
protocol using a uniform probability distribution. Please note that there was no situation in 
which session ended upper then minimal session time (Ts

min). 
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Figure 5. Summary of the results for the NSPK protocol using uniform probability distribution.

 
Source: self-elaboration 

 

On the Figure 6, we presented summary of the results for the Needham Schroeder Public Key 
protocol using Poisson’s probability distribution. Please note that there were no situation in 
which session ended lower then minimal session time (Ts

min). and there were a lot of error 
situations. 

 

Figure 6. Summary of the results for the NSPK using Poisson’s probability distribution. 

 
Source: self-elaboration 

 

On Figure 7, we presented a summary of the results for the Needham Schroeder Public Key 
protocol using Poisson’s probability distribution. Please note that there was no situation in 
which session ended lower then minimal session time (Ts

min) and there were a lot of error 
situations. 

On Figure 8, we presented a summary of the results for the Needham Schroeder Public Key 
protocol using an exponential probability distribution. Please note that there was no situation 
in which session ended upper then maximal session time. 
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Figure 7. Summary of the results for the NSPK using Cauchy’s probability distribution. 

 
Source: self-elaboration 

 

Figure 8. Summary of the results for the NSPK using exponential probability distribution. 

 
Source: self-elaboration 

 

The obtained results showed various aspects of computer network operation. We observed that 
usage of uniform probability distribution shows the natural operation of the network. The usage 
of normal probability distribution reflects the real operation of the network. The usage of 
Cauchy and Poisson probability distributions suggest a busy network that very often has 
problems. The analyze of the results obtained for the exponential probability distribution it 
should be stated that this distribution illustrates the fast network. 

Also, we try to check what is the influence of encryption algorithms’ speed and computing 
power. For this purpose, we perform simulations Needham Schroeder Public Key protocol’s 
executions using randomly generated values of encryption and decryption time, according to a 
uniform probability distribution. 

Again, we carried out 18,000 test series. We observed that for encryption and decryption times 
close to 1 [tu], the attacking execution ended correctly. This means that if Intruder has great 
computing power, his encryption and decryption times could be short and he can successfully 
perform an attack on the protocol. 
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5. CONCLUSION 

This paper discussed the problem of security protocols' verification. SPs are widely used in smart 
cities to secure users communication. For this reason, security protocols verification is important 
to check if they provide an appropriate level of security. 

We presented a new approach to this issue. In our research, we take into account the following 
time parameters: encryption and decryption times, composing the message time, delays in the 
network and lifetime. These parameters were used to calculate the correct protocol's execution 
time and designate time dependencies. The imposed dependencies should protect prevent loss 
of confidential information. We researched by timed analysis and simulation of delays in the 
network and simulations of encryption and decryption times. 

We observed that time has a huge impact on protocols' security. Badly selected time 
dependencies could allow Intruder to perform additional actions to steal the data and threaten 
the security of the smart city. During our research, we analyzed how delays in the network range 
affect Intruder's capabilities. We took into account constant and random values of time 
parameters. Observed results showed that if delays in the network range will be to extensive, it 
will not be secure for honest users because Intruder could have enough time to compromise the 
protocol. 

Also, we observed how the selected probability distributions illustrated the operation of a 
computer network. Our next research will be focused on further parameters, which may have 
an impact on communication security in smart cities. 
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