

Societal Challenges in the Smart Society 225

HOW TO BE ON TIME WITH SECURITY PROTOCOL?

Sabina Szymoniak

Czestochowa University of Technology (Poland)

sabina.szymoniak@icis.pcz.pl

ABSTRACT

The paper discusses a very important problem which is the verification of security protocols.
Security protocols are used to secure users’ communication living in the Smart Cities. Users in
the cyber world could be exposed to dishonest users' actions. These users are called Intruders.
Also, they could fall victim to cybercrime. Due to continuous technological development, the
security of protocols should be regularly verified to confirm their correctness. Also, in the case
of security protocols, time plays a significant role. It may turn out that a few seconds will allow
an Intruder to acquire the appropriate knowledge to execute an attack and stole confidential
data. Therefore, it is right to verify security protocols also in terms of the influence of time on
their security. For this purpose, we propose a new method for security protocols verification
including timed parameters and their influence on security. Our method includes analysis of
encryption and decryption times, composing the message time, delays in the network and
lifetime, using the specially implemented tool. Thanks to this, we can calculate the correct time
protocol execution, indicate time dependencies and check the possibility of Intruder’s attack.
Our experimental results we present on well-known Needham Schroeder protocol example.

KEYWORDS: timed analysis, security protocols, cybersecurity, verification.

1. INTRODUCTION

The concept of smart cities primarily uses information and communication technologies to
increase the interactivity of city infrastructure. The development of technology entails the
improvement of everyone's quality of life. In turn, the use of modern IT technologies is
associated with the problem of security of users and the entire urban society.

Ensuring security at the appropriate level is based on the security protocol (SP). The security
protocol is a sequence of several steps during which authentication information is exchanged
between computer network users. Unfortunately, SP's are exposed to attacks and activities of
dishonest users, so-called Intruders. An intruder can eavesdrop on the communications of
honest users, intercept their messages, and also use the knowledge thus acquired to conduct
attacks. The activities of the Intruder entail the need to regularly check the operation and
security of protocols.

Over the years, several methods have been developed for verifying security protocols and tools
implementing these methods ((Dolev et al., 1983), (Burrows et al., 1989), (Lowe, 1996), (Paulson,
1999), (Armando A., et. al., 2005), (Nigam et al., 2016), (Blanchet B., 2016), (Steingartner et al.,
2017), (Chadha et al., 2017), (Basin et al., 2018), (Siedlecka-Lamch O., et al., 2019)). These

mailto:sabina.szymoniak@icis.pcz.pl

5. Management of Cybercrime: Where to From Here?

226 Mario Arias-Oliva, Jorge Pelegrín-Borondo, Kiyoshi Murata, Ana María Lara Palma (Eds.)

methods and tools did not take into account time parameters and their impact on the security
of security protocols.

Attempts to demonstrate the influence of time on safety appeared in the works of Jakubowska
and Penczka (Jakubowska et al., 2006), (Jakubowska et al., 2007). Unfortunately, this work was
not continued. In turn, the model of implementation of security protocols presented in
(Kurkowski, 2013) enables the generation of various versions of security protocols. We have
extended this model with the mentioned time parameters. Thanks to this, we can check the
duration of the session and check how time parameters have an impact on performance
security. Also, we check whether the Intruder can attack the protocol for the set time
parameters. In our considerations, we took into account constant and random values of time
parameters.

The rest of the article is organized as follows. At the second Section we present an example of
security protocol, which is Needham Schroeder Public Key protocol. We used this protocol to
show the results of our research. The next Section presents our methods and materials. At the
fourth Section we present our experimental results of our research. The last Section includes
conclusions and plans for the future.

2. NEEDHAM SCHROEDER PUBLIC KEY PROTOCOL

As an example we will use the well-known Needham Schroeder protocol, NSPK for short
(Needham et al., 1978). NSPK consists of three steps, during which two honest users (signed as
A and B) try to authenticate with each other. For this purpose they exchange messages with
timestamps (TA, TB), IDs (IA) encrypted by theirs public keys (KA, KB).

Figure 1. Scheme of NSPK protocol.

Source: self-elaboration based on (Needham et al., 1978)

The timed version of NSPK protocol in Alice-Bob notation is presented in Figure 1. In the first
step (α1) Alice generate she’s timestamp TA and send it with she’s ID to Bob. The message is
encrypted by Bob’s public key KB. In the next step (α1) Bob generate he’s timestamp TB and send
it with Alice’s timestamp to Alice. This message is encrypted by Alice’s public key KA. In the last
step (α3) Alice send to Bob his timestamp encrypted by Bob’s public key.

HOW TO BE ON TIME WITH SECURITY PROTOCOL?

Societal Challenges in the Smart Society 227

Figure 2. Scheme of attack on NSPK protocol.

Source: self-elaboration based on (Lowe G., 1996)

The Figure 2 presents a scheme of the attacker's intrusion on NSPK protocol. This attack was
described by Gavin Lowe in (Lowe G., 1996).

The Intruder (Trudy, T) must execute additional steps (signed by β), to acquire adequate
knowledge to complete the main execution (signed by α). Communication is as follows. First,
Alice begin a communication with Trudy (step α1). Therefore, she prepare message encrypted
by Trudy’s public key according to NSPK’s scheme. Trudy decrypt this message and encrypt it
again with Bob’s public key. This message is sent to Bob (step β1). Therefore, Trudy knows Alice’s
timestamp and Bob thinks that Alice try to communicate with him. Next, Bob generate his
timestamp and send it to Trudy, who impersonates Alice, with Alice’s timestamp. Message from
step β2 is encrypted by Alice’s public key. Trudy cannot decrypt this message because she does
not know Alice’s private key. So she send whole message to Alice in step α2. Alice decrypt it and
send to Trudy Bob’s timestamp in step α3. Because this message was encrypted by key KI,, Trudy
can decrypt it and send to Bob his timestamp.

The effect of such protocol execution is following. Alice and Bob think that they communicated
with each other, but in fact all their messages were read by Trudy. Trudy know Alice’s and Bob’s
timestamp.

3. METHODS AND MATERIALS

To perform the full specification of the security protocol, we have extended all model definitions
from (Kurkowski, 2013) by time parameters. The new model includes definitions of a set of time
conditions, a protocol step, as well as the entire protocol in a timed version. In turn, the
computational structure defines the current execution of the protocol and its interpretation. In
the executions of the protocol, we took into account the Intruder in four models: Dolev-Yao
(Dolev et al., 1983), restricted Dolev-Yao, lazy Intruder and restricted lazy Intruder.
Interpretation of the protocol makes it possible to generate a set of different protocol
executions. Also, the model takes into account changes in participants' knowledge during the
protocol.

Also, the computational structure defines a set of time dependencies that allow to calculate the
duration of a session and prepare appropriate time conditions. These dependencies are related

5. Management of Cybercrime: Where to From Here?

228 Mario Arias-Oliva, Jorge Pelegrín-Borondo, Kiyoshi Murata, Ana María Lara Palma (Eds.)

to message composition, step and session times, and lifetime. Dependencies include delays in
the network.

For the needs of our approach, we introduced the following delays in the network values for the
protocol’s step: minimum (Dmin), current (Ds) and maximum (Dmax). Such distinction determines
the range of tested values delays in the network. It is necessary to enable correct protocol
execution to honest users regardless of network conditions. Also, for step time and the session
time we consider similar distinction. The step time (minimal Ts

min, current Ts, maximal Ts
max) is

the sum of message composition’s time (Tc), encryption time by the sender (Te), delay in the
network and decryption of the message’s time by the recipient (Td). The session time (minimal
Tses

min, current Tses, maximal Tses
max) consists of all steps’ times. The values of step and session

times depend on used delays in the network values.

To check the influence of time parameter values on the protocol’s users and its security, lifetime
was established. Lifetime cannot be exceeded in any of the executed steps. If this value will be
exceeded, users should know that they are communicating with the Intruder. Therefore,
communication should be immediately terminated. We calculate lifetime value in one step as a
sum of maximal step times of this step and next steps.

For research, we created a tool which allows verifying the timed security protocols. In the
beginning, the tool loads the protocol’s specification from the file. Then all potential executions
of the tested protocol are combinatorically generated. In the next step, using the SAT-solver, we
checked whether the generated executions are possible in reality. It is possible that during one
execution the Intruder will not be able to acquire the appropriate knowledge to complete it.

Then we conducted two types of research on the loaded protocol. The first of these is the so-
called time analysis. This analysis enables the determination of limits for delays in the network
and lifetime for which the protocol remains secure. The second type of research is simulations.
In this case, we can simulate delays in the network values and encryption and decryption times
to provide a real representation of the computer network.

4. EXPERIMENTAL RESULTS

Our tests were carried out using a computer unit with the Linux Ubuntu operating system with
Intel Core i7 processor, and 16 GB RAM. Also, we used an abstract time unit ([tu]) to determine
the time.

The experimental results will be presented on the example of Needham Schroeder Public Key
protocol. According to NSPK protocol structure, we assumed that encryption and decryption
times were equal 5 time units ([tu]), time of composing the message for the first and second
step were equal 2 [tu], time of composing the message for the third step were equal 1 [tu]. Also,
we choose the range of delays in the network values from 1 to 10 [tu] and set constant value for
the current delay in the network D=1 [tu].

Next, we calculated lifetimes for steps:

− L1=59 [tu],

− L2=39 [tu],

− L3=19 [tu].

HOW TO BE ON TIME WITH SECURITY PROTOCOL?

Societal Challenges in the Smart Society 229

Also, we calculated minimal and maximal session time:

− Ts
min=32 [tu],

− Ts
max=65 [tu].

These values were necessary to enable and set time conditions.

Table 1. Summary of NSPK protocol’s executions.

No. Send. - Rec. Parameters No. Send. - Rec. Parameters

1 A→B 10 B→I(A) Ta, Ka

2 B→A 11 I→A Ti, Ki

3 I→B Ti, Ki 12 I→A Tb, Ki

4 I→B Ta, Ki 13 I(B)→A Ti, Kb

5 I(A)→B Ti, Ka 14 I(B)→A Tb, Kb

6 I(A)→B Ta, Ka 15 A→I Ti, Ki

7 B→I Ti, Ki 16 A→I Tb, Ki

8 B→I Ta, Ki 17 A→I(B) Ti, Kb

9 B→I(A) Ta, Ka 18 A→I(B) Tb, Kb
Source: self-elaboration

For the NSPK protocol, eighteen executions have been generated. A list of these executions was
presented in Table 1. Column Send. - Rec. relate to protocol’s participants: A, B is the honest
users, I, I(A), I(B) is the Intruder. I means Intruder who occur as a regular user, I(A) means
intruder who impersonates user A, and I(B) means Intruder who impersonates user B. Column
Parameters includes cryptographic objects, which are used by Intruder during execution.
Column No. contains an ordinal number which was assigned in order to simplify the reference
to execution. For example, execution no. 9 take place between honest user B and Intruder who
impersonates user A. In this case, the Intruder uses the timestamp of user A and also his public
key.

Table 2. Timed analysis of attacking execution in [tu].

α step β step Te Tc D Td Ts Tses Result

α1 4 2 1 4 11 11 ok

 β1 4 2 1 4 11 22 ok

 β2 4 2 1 0 7 29 ok

α2 0 2 1 4 (7)
25 36 ok

α3 4 1 1 4 10 46 ok

 β3 4 1 1 4 (10)
27 56 T3>L3

Source: self-elaboration

5. Management of Cybercrime: Where to From Here?

230 Mario Arias-Oliva, Jorge Pelegrín-Borondo, Kiyoshi Murata, Ana María Lara Palma (Eds.)

Let’s analyze the attacking execution. We analysed an interlacing of 7 (α-execution) and 11 (β-
execution) executions, which reflects attack included in Figure 2. The timed analysis was
presented in Table 2. This Table consist of nine columns. First of them is α-step which is related
to the steps of basic execution. The second column is called β-step. Here will be assigned steps
from additional execution. Next six columns are connected to time parameters. These are
encryption time (Te), composition time (Tc), delay in the network value (D), decryption time (Td),
current step time (Ts) and current session time (Tses). The last column is called Result. Here we
assign our comment about current step.

Therefore, each step consists of encryption time, composition time, delay in the network value
and decryption time. Because Intruder did not have enough knowledge to execute α2-step, he
must establish β-execution and execute additional step from it. Steps times from additional
steps were added to basic step time and also to the session time. Therefore, α2-step includes β1

and β2 times. Also, β3-step includes α2 and α3 times.

In the step α2 and β2 there were no included encryption time. The Intruder did not perform such
operations, because he has not appropriate knowledge to decrypt the message from β2,
therefore he sends whole this message to Bob in the step α2.

Please note that if Intruder will not end β-execution, the α-execution will be ended in the correct
time, including additional steps’ times and Intruder will know A’s and B’s timestamps. Therefore,
the attack on this protocol is possible for assumed values of the time parameters.

Next, we calculated how changes in the delay in the network range would affect protocol
security. We increased the maximum delay value in the network by 1 [tu] and checked how long
the duration of the second step would be. Thanks to this, we will be able to determine what
limit should be set for this step.

Figure 3. Changes in the delay in the network range.

Source: self-elaboration

Our results were shown in Figure 3. The setting the upper limit of delay in the network values to
4 [tu] protects the protocol. In such a situation, a lifetime set in the second step will end the
communication and the attack on NSPK protocol is not possible.

HOW TO BE ON TIME WITH SECURITY PROTOCOL?

Societal Challenges in the Smart Society 231

In the next step, we performed simulations of Needham Schroeder Public Key protocol’s
executions. We used the randomly generated the current delay in the network values. We used
normal, uniform, Cauchy’s, Poisson’s and exponential probability distributions to generate these
values. The tool also allows random selection of values out of the accepted range to model the
real work of a computer network.

We made the following assumptions:

− encryption and decryption times were equal 2 [tu],

− time of composing the message for all steps was equal 1 [tu],

− the range of delays in the network values from 1 to 10 [tu].

Next, we calculated new lifetimes for steps, minimal and maximal session times:

− L1=44 [tu],

− L2=29 [tu],

− L3=14 [tu],

− Ts
min=17 [tu],

− Ts
max=44 [tu].

Table 3. NSPK executions ended in the correct session time.

No.
Session time [tu] Average delay in the

network [tu] min avg max
 1 18.4 30.98 43.3 5.67
 2 19.1 30.83 43 5.61

 3 17.4 29.24 41.8 5.41

 4 40.7 42.62 43.9 3.04

 7 18 29.73 41.3 5.58

 8 39.6 42.31 43.6 3.1

 11 17 29.72 42.2 5.57

 12 39.8 42.14 43.8 3.1

 15 17.4 29.77 41.7 5.71

 16 38.3 41.92 43.8 2.89

Source: self-elaboration

We carried out 18,000 test series for each probability distribution. In Table 3, we presented
minimal, average and maximal values of session time for several executions of Needham
Schroeder Public Key protocol including delay in the network values generated according to the
uniform probability distribution. Also, we presented the average delay in the network values.
These sessions ended in the correct session time.

5. Management of Cybercrime: Where to From Here?

232 Mario Arias-Oliva, Jorge Pelegrín-Borondo, Kiyoshi Murata, Ana María Lara Palma (Eds.)

Also, we assumed two specific situations. First of them was when the current session time was
lower then minimal session time (Ts

min). This means that Intruder may send cryptograms which
were in his knowledge set. The Intruder did not encrypt or decrypt messages and also he did not
generate any object, so these times were not added to session time. Session time (Ts) was lower
then minimal session time (Ts

min).

Table 4. NSPK executions ended below the minimal session time.

No.
Session time [tu] Average delay in the

network [tu] min avg max
 3 16.01 16.31 16.98 1.1
 7 16.02 16.3 16.97 1.2

 10 16.03 16.49 16.49 1.09
 11 16.04 16.3 16.99 1.1
 15 16.02 16.31 16.98 1.1
 18 16.03 16.51 16.99 1.09

Source: self-elaboration

In Table 4, we presented minimal, average and maximal values of session time for several
executions of Needham Schroeder Public Key protocol including delay in the network values
generated according to the exponential probability distribution. Also, we presented the average
delay in the network values in each execution. These sessions ended in below the minimal
session time. In these exeutions Intruder used his cryptographic objects and also resent whole
ciphertext received from honest users. Please note that, the average delay in the network values
were between 1.09 [tu] and 1.2 [tu].

The second specific situation was when the current session time was upper then maximal
session time. This means that Intruder must execute additional steps to get knowledge.
Additional steps’ times affect the current step and session time. In this case, the execution ended
incorrectly (exceeding the maximum session time), while the time conditions imposed on each
step have been preserved.

Table 5. NSPK executions ended upper then the maximal session time.

No.
Session time [tu] Average delay in the

network [tu] min avg max
1 44.02 50.40 76.81 12.98
2 44.01 51.81 77.61 12.74
3 44.02 51.75 70.47 17.84
4 48.08 75.26 105.99 8.81
7 44.05 52.15 71.12 21.66
8 46.05 68.58 90.61 7.19

11 44.03 52.19 75.57 13.06
12 47.81 73.72 110.78 8.37
15 44.16 52.38 72.02 13.13
16 46.48 66.0 95.99 7.1

Source: self-elaboration

HOW TO BE ON TIME WITH SECURITY PROTOCOL?

Societal Challenges in the Smart Society 233

In Table 5, we presented minimal, average and maximal values of session time for several
executions of Needham Schroeder Public Key protocol including delay in the network values
generated according to the normal probability distribution. Also, we presented the average
delay in the network values in each execution. These sessions ended in below the maximal
session time. Please note that, the average delay in the network values were greater then in
case of exponential probability distributions. Also, we observed values out of adopted range.

To present summary of our research we included following designations on the charts:

− correct, which is designated to the session ended between minimal session time (Ts
min)

and maximal session time (Ts
max),

− <min, which is designated the session that were ended lower then minimal session time
(Ts

min),

− >max, which is designated to the session that were ended upper then maximal session
time (Ts

max),

− error, which is designated the session that were ended because one of the time
conditions was not met.

We presented the percentage summary of the number of NSPK protocol executions ended with
assumed statuses. Please note that there was no situation in which session ended upper then
maximal session time (Ts

max).

On Figure 4, we presented a summary of the results for the Needham Schroeder Public Key
protocol using a normal probability distribution.

Figure 4. Summary of the results for the NSPK protocol using normal probability distribution.

Source: self-elaboration

On Figure 5, we presented a summary of the results for the Needham Schroeder Public Key
protocol using a uniform probability distribution. Please note that there was no situation in
which session ended upper then minimal session time (Ts

min).

5. Management of Cybercrime: Where to From Here?

234 Mario Arias-Oliva, Jorge Pelegrín-Borondo, Kiyoshi Murata, Ana María Lara Palma (Eds.)

Figure 5. Summary of the results for the NSPK protocol using uniform probability distribution.

Source: self-elaboration

On the Figure 6, we presented summary of the results for the Needham Schroeder Public Key
protocol using Poisson’s probability distribution. Please note that there were no situation in
which session ended lower then minimal session time (Ts

min). and there were a lot of error
situations.

Figure 6. Summary of the results for the NSPK using Poisson’s probability distribution.

Source: self-elaboration

On Figure 7, we presented a summary of the results for the Needham Schroeder Public Key
protocol using Poisson’s probability distribution. Please note that there was no situation in
which session ended lower then minimal session time (Ts

min) and there were a lot of error
situations.

On Figure 8, we presented a summary of the results for the Needham Schroeder Public Key
protocol using an exponential probability distribution. Please note that there was no situation
in which session ended upper then maximal session time.

HOW TO BE ON TIME WITH SECURITY PROTOCOL?

Societal Challenges in the Smart Society 235

Figure 7. Summary of the results for the NSPK using Cauchy’s probability distribution.

Source: self-elaboration

Figure 8. Summary of the results for the NSPK using exponential probability distribution.

Source: self-elaboration

The obtained results showed various aspects of computer network operation. We observed that
usage of uniform probability distribution shows the natural operation of the network. The usage
of normal probability distribution reflects the real operation of the network. The usage of
Cauchy and Poisson probability distributions suggest a busy network that very often has
problems. The analyze of the results obtained for the exponential probability distribution it
should be stated that this distribution illustrates the fast network.

Also, we try to check what is the influence of encryption algorithms’ speed and computing
power. For this purpose, we perform simulations Needham Schroeder Public Key protocol’s
executions using randomly generated values of encryption and decryption time, according to a
uniform probability distribution.

Again, we carried out 18,000 test series. We observed that for encryption and decryption times
close to 1 [tu], the attacking execution ended correctly. This means that if Intruder has great
computing power, his encryption and decryption times could be short and he can successfully
perform an attack on the protocol.

5. Management of Cybercrime: Where to From Here?

236 Mario Arias-Oliva, Jorge Pelegrín-Borondo, Kiyoshi Murata, Ana María Lara Palma (Eds.)

5. CONCLUSION

This paper discussed the problem of security protocols' verification. SPs are widely used in smart
cities to secure users communication. For this reason, security protocols verification is important
to check if they provide an appropriate level of security.

We presented a new approach to this issue. In our research, we take into account the following
time parameters: encryption and decryption times, composing the message time, delays in the
network and lifetime. These parameters were used to calculate the correct protocol's execution
time and designate time dependencies. The imposed dependencies should protect prevent loss
of confidential information. We researched by timed analysis and simulation of delays in the
network and simulations of encryption and decryption times.

We observed that time has a huge impact on protocols' security. Badly selected time
dependencies could allow Intruder to perform additional actions to steal the data and threaten
the security of the smart city. During our research, we analyzed how delays in the network range
affect Intruder's capabilities. We took into account constant and random values of time
parameters. Observed results showed that if delays in the network range will be to extensive, it
will not be secure for honest users because Intruder could have enough time to compromise the
protocol.

Also, we observed how the selected probability distributions illustrated the operation of a
computer network. Our next research will be focused on further parameters, which may have
an impact on communication security in smart cities.

ACKNOWLEDGEMENTS

The project financed under the program of the Polish Minister of Science and Higher Education
under the name "Regional Initiative of Excellence" in the years 2019 - 2022 project number
020/RID/2018/19, the amount of financing 12,000,000.00 PLN.

REFERENCES

Armando A., et. al. (2005). The AVISPA tool for the automated validation of internet security
protocols and applications, In: Proc. of 17th Int. Conf. on Computer Aided Verification
(CAV’05), vol. 3576 of LNCS, pp. 281–285, Springer

Basin D., Cremers C., Meadows C. (2018). Model Checking Security Protocols, in Handbook of
Model Checking, Springer International Publishing

Blanchet B. (2016). Modeling and Verifying Security Protocols with the Applied Pi Calculus and
ProVerif, Foundations and Trends in Privacy and Security, vol. 1(1-2) pp.1–135

Burrows M., Abadi M., Needham R. (1989). A Logic of Authentication, In: Proceedings of the
Royal Society of London A, vol. 426

Chadha R., Sistla P, Viswanathan M. (2017). Verification of randomized security protocols, Logic
in Computer Science

Dolev D., Yao A. (1983). On the security of public key protocols. In: IEEE Transactions on
Information Theory, 29(2)

HOW TO BE ON TIME WITH SECURITY PROTOCOL?

Societal Challenges in the Smart Society 237

Jakubowska G., Penczek W. (2006). Modeling and Checking Timed Authentication Security
Protocols, Proc. of the Int. Workshop on Concurrency, Specification and Programming
(CS&P’06), Informatik-Berichte 206(2)

Jakubowska G., Penczek W. (2007). Is your security protocol on time?, In Proc. Of FSEN’07,
volume 4767 of LNCS, Springer-Verlag

Kurkowski M. (2013). Formalne metody weryfikacji wlasności protokolow zabezpieczajacych w
sieciach komputerowych, in polish, Exit, Warsaw

Lowe G. (1996). Breaking and fixing the needham-schroeder public-key protocol using fdr. In
Proceedings of the Second International Workshop on Tools and Algorithms for Construction
and Analysis of Systems, TACAS ’96, pages 147–166, London, UK, 1996. Springer-Verlag.

Needham R. M., Schroeder M. D. (1978). Using encryption for authentication in large networks
of computers. Commun. ACM, 21(12)

Nigam V., et. al (2016). Towards the Automated Verification of Cyber-Physical Security Protocols:
Bounding the Number of Timed Intruders, Computer Security – ESORICS 2016”, Springer International
Publishing

Paulson L. (1999). Inductive Analysis of the Internet Protocol TLS, ACM Transactions on
Information and System Security (TISSEC), vol 2 (3)

Siedlecka-Lamch O., et. al (2019) A fast method for security protocols verification, Computer
Information Systems and Industrial Management, Springer

Steingartner W., Novitzka V. (2017). Coalgebras for modelling observable behaviour of
programs, In: Journal of applied mathematics and computational mechanics. 16(2)

