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Abstract 
This research work focuses on the theoretical investigation of the upper critical magnetic field of 

superconductorCeRhIn5. By using the well known Ginzburg-Landau (GL) phenomenological equation, we found the 

direct relationship between the GL coherence length (ξGL) and penetration depth (λGL) with temperature. From the GL 

equations and the results obtained for the GL coherence length, the expression for the upper critical magnetic field 

(HC2) is obtained for the superconductorCeRhIn5. The result is plotted as a function of temperature. The phase diagram 

shows the linear dependence of upper critical magnetic field (HC2) with temperature (T). The current finding is in 

agreement with experimental observations.  

  

Keywords: Ginzburg-Landau Equation, upper critical magnetic field, CeRhIn5.  

 

Resumen 
Este trabajo de investigación se centra en la investigación teórica del campo magnético crítico superior del 

superconductor CeRhIn5. Utilizando la conocida ecuación fenomenológica de Ginzburg-Landau (GL), encontramos la 

relación directa entre la longitud de coherencia GL (ξGL) y la profundidad de penetración (λGL) con la temperatura. A 

partir de las ecuaciones GL y los resultados obtenidos para la longitud de coherencia GL, se obtiene la expresión para el 

campo magnético crítico superior (HC2) para el superconductorCeRhIn5. El resultado se representa en función de la 

temperatura. El diagrama de fase muestra la dependencia lineal del campo magnético crítico superior (HC2) con la 

temperatura (T). El hallazgo actual está de acuerdo con las observaciones experimentales. 

  

Palabras clave: Palabras clave: Ecuación de Ginzburg-Landau, campo magnético crítico superior, CeRhIn5. 

 

 

 

I. INTRODUCTION  

 
Superconductivity (SC) is a phenomenon of zero resistance. 

It was discovered by Heike Kamerlingh Onnes in 1911 [1]. 

The phenomenon was discovered when Onnes observed an 

enormous drop in the DC resistance of pure mercury metal 

at TC = 4.2 K. The transition of a normal metal into the 

superconducting state is revealed by the total disappearance 

of the electrical resistance at low temperature. Indeed, the 

current in a closed superconducting circuit can circulate for 

a long period of time without attenuation. Magnetic field 

plays an important role in the field of superconductivity. 

Based on the way superconductors behave or withstand to 

an applied magnetic field, they can be classified as type I 

(soft) or type II (hard)superconductors. The application of 

strong magnetic field can destroy the superconducting state 

of a material. For a type I superconductor [2], there is one 

small critical applied magnetic field above which the 

superconductor becomes a normal metal. They expel the 

applied magnetic field if it is less than the critical field. 

Hence type I superconductors exhibit complete Meissner 

effect (perfect diamagnetism) for H<HC. This is the 

characteristic of many pure elemental superconductors. The 

critical temperature, TC in the materials decreases with 

increasing of applied magnetic field and the magnitude of 

the critical magnetic field varies with temperature according 

to the expression [3]. 

 

𝐻𝐶(𝑇) = 𝐻𝐶(0)[1 − (
𝑇

𝑇𝑐
)2].                    (1) 

 

Where HC (0) is the maximum value of the applied magnetic 

field above which superconductivity is destroyed.  

On the other hand, type II superconductors are 

characterized by two critical magnetic fields, designated by 

𝐻𝐶1 and 𝐻𝐶2. If the applied magnetic field is less than the 

lower critical field 𝐻𝐶1 , the superconductor behaves as type 

I and there will be perfect diamagnetism. When the applied 

magnetic field is between the two critical fields 

(𝐻𝐶1<H<𝐻𝐶2), the materials superconduct but there will be 

flux penetration and results in a mixed (vortex) state. Hence, 

Meissner effect (perfect diamagnetism) is not complete. If 

the applied magnetic field exceeds the upper critical field, 

they will be in a normal state. 
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In type II superconductors, 𝐻𝐶2can be expressed in terms 

of HC as, 

𝐻𝐶2 =
𝐻𝐶

2

𝐻𝐶1
,                                  (2)

 

 

 

where 𝐻𝐶 = 𝐻𝐶[1 − (
𝑇

𝑇𝐶
)2]. 

Heavy Fermions are probably the first and best 

documented cases that evidence a strong relationship 

between the appearance of magnetic quantum criticality and 

superconductivity [4, 5]. Amongst the heavy fermion 

superconductors, the 115 family (CeMIn5, M being a 

transition metal), is of paramount importance which is often 

presented as bridging the gap between the low TC heavy 

fermions and the high-TC cup rates, owing to its 2D 

character, d-wave superconducting states, and pronounced 

“non Fermi-liquid” features [6, 7, 8]. 

CeRhIn5 is an antiferromagnet at ambient pressure 

(TN≈3.8 K) which evolves toa superconducting state for 

P>PC≈16 kbar and TC≈2 K and reaches 2.4 K at a pressure 

of 2.3 GPa [9]. CeRhIn5 is a member of the CemMnIn3m+2n 

family. (M: transition metals). CePt2In7 is also a member of 

the same family and possesses two-dimensional tetragonal 

crystal structure and cylindrical Fermi surfaces elongated 

along c-axis [10]. In such compounds with 2D crystal 

structure with long lattice parameter along the c-axis, 𝐻𝐶2 is 

usually anisotropic, namely, 𝐻𝐶2  along the magnetic field 

Hǁǁ c-axis is smaller than that along H ⊥c-axis due to orbital 

limiting and the anisotropy of the effective mass of the 

conduction electron. 

Amongst the CemMnIn3m+2n families, CeCoIn5 and 

CeIrIn5 show such anisotropy in 𝐻𝐶2  with quasi-two 

dimensional Fermi surfaces [11, 12, 13, 14]. On the other 

hand, pressure induced superconductor CeRhIn5 shows 

opposite behavior in spite of the similar topology of the 

Fermi surfaces except the volume of the Fermi surfaces. 

Namely, 𝐻𝐶2 (0) = 16.9 T along H ǁǁ[001] (c-axis) is larger 

than 𝐻𝐶2 (0) = 9.7 T along H ǁǁ[100] at PC = 2.45GPa [15]. 

In CeRhIn5, antiferromagnetic state is induced by magnetic 

field just above PC, where the antiferromagnetic state 

disappears by pressure at zero magnetic field. Pauli 

paramagnetic pair-breaking effect seems to be anisotropic in 

the field-induced antiferromagnetic state in CeRhIn5, while 

isotropic in CeCoIn5 [15].  

 

 

 

II. MATHEMATICAL FORMULATIONS TO 

FIND THE UPPER CRITICAL MAGNETIC 

FIELD OF SUPERCONDUCTOR CeRhIn5 

 

 

A. The Basic Ginzburg-Landau Theory 

 

Ginzburg-Landau (GL) theory is a mathematical theory used 

to describe superconductivity. It deals with Type-I and 

Type-II superconductors and enables compute 𝐻𝐶1 and 𝐻𝐶2 

[16]. The Ginzburg-Landau theory was derived based on the 

BCS microscopic theory by Lev Gorkov. 

The basic postulate of the GL is that if ψ is small and 

varies slowly in space, the free-energy density (Fs (r)) can 

be expanded in a series of the form, 

 

𝐹𝑠 = 𝐹𝑛 + 𝛼|𝜓|2 +
𝛽

2
|𝜓|4 + 

1

2𝑚∗ |(−𝑖ℏ𝛻 −
𝑒∗

𝑐
𝐴) 𝜓|

2

+
|𝐻|2

8𝜋
.   (3) 

 

Where α and β are phenomenological parameters (β >0 and 

the sign of α is temperature dependent), m* = 2m is an 

effective mass, e* = q* = 2e is the charge of an electron, A 

is the magnetic vector potential and B = 𝛻XA [16, 17]. 

If ψ = 0, equation (3) reduces to the free energy of the 

normal state and becomes,𝐹𝑠 = 𝐹𝑛 +
|𝐻|2

8𝜋
. 

Now, by minimizing the free energy with respect to 

fluctuations in the order parameter and the vector potential, 

one arrives at the Ginzburg-Landau equations given by, 

 

𝛼𝜓 + 𝛽|𝜓|2𝜓 +
1

2𝑚∗ (−𝑖ℏ𝛻 −
𝑒∗

𝑐
𝐴)

2

𝜓 = 0.        (4) 

 

The current density from the Hamilton’s energy of particles 

is given by 𝐻 =
1

2
𝑚∗𝑣𝑑

2 =
1

2𝑚∗ [𝑝 −
𝑒∗

𝑐
𝐴]

2

. From which we 

get, 𝑣𝑑 =
1

𝑚∗ [𝑝 −
𝑒∗

𝑐
𝐴]. But 𝑝 = −𝑖ℏ𝛻. Thus, we get 

 

𝑣𝑑 =
1

𝑚∗
[−𝑖ℏ𝛻 −

𝑒∗

𝑐
𝐴]

  

But, 𝐽𝑠 = 𝑒∗𝑛𝑠𝑣𝑑 , where 𝐽𝑠  is the supercurrent density and 

𝑛𝑠 = 𝜓(𝑟)∗𝜓(𝑟) 

Thus, we obtain, 

 

𝐽𝑠 =
𝑒∗

𝑚∗ [−𝑖ℏ𝛻 −
𝑒∗

𝑐
𝐴] 𝜓(𝑟)∗𝜓(𝑟), 

 

𝐽𝑠 =
𝑒∗

𝑚∗ [𝜓∗ (−𝑖ℏ𝛻 −
𝑒∗

𝑐
𝐴) 𝜓 + 𝜓 (−𝑖ℏ𝛻 −

𝑒∗

𝑐
𝐴) 𝜓∗],       

(5) 

 

or 

 

𝐽𝑠 =
𝑒∗

𝑚∗ [𝜓∗ (
ℏ

𝑖
𝛻 −

𝑒∗

𝑐
𝐴) 𝜓 + 𝜓 (

ℏ

𝑖
𝛻 −

𝑒∗

𝑐
𝐴) 𝜓∗].        (6) 

 

Equation (4) determines the order parameter ψ based on the 

applied magnetic field and equation (6) yields the 

superconducting current density. The Ginzburg-Landau 

equation provides a complete information about the 

superconducting state ψ (r) that gives the spatial distribution 

of the Cooper pair density taking into account a possible 

variation in their concentration, whereas A(r ) describes the 

local distribution of the magnetic field in the 

superconductor. 

In the absence of external magnetic field (at free 

surface), there will not be superconducting current and the 

equation for ψ becomes, 

 

𝐹𝑠 − 𝐹𝑛 = 𝛼𝜓 + 𝛽|𝜓|2𝜓.                         (7) 
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This equation has a trivial solution, ψ = 0 and it corresponds 

to the normal state of 𝑇 > 𝑇𝐶 . Below the superconducting 

transition temperature (𝑇𝐶), equation (7) is expected to have 

a non-trivial solution (i.e. ψ ≠ 0) and the equation can be 

rearranged as,  

 

|𝜓|2 = −
𝛼

𝛽
 .                                   (8) 

 

If the second part of equation (4) is positive, then there is a 

non zero solution for ψ and this can be achieved by 

assuming the temperature dependence of α such that 𝛼(𝑇) =

𝛼𝑜(𝑇 − 𝑇𝐶) with 
𝛼𝑜

𝛽
> 0 and 𝑛𝑠 ∝ (𝑇𝑐 − 𝑇). 

For 𝑇 > 𝑇𝐶, the expression
𝛼(𝑇)

𝛽
 is positive and the second 

part of equation (4) is negative and only ψ = 0 solves the 

Ginzburg-Landau Equation. For 𝑇 < 𝑇𝐶, the second part of 

equation (4) is positive and there is a non-trivial solution for 

ψ. Thus equation (8) can be expressed as, 

 

|𝜓| = (
𝛼𝑜(𝑇𝑐−𝑇)

𝛽
)

1

2
 .                           (9) 

 

Equation (9) yields the Ginzburg Landau order parameter 

[17, 18]. 

 

 

B. Calculation of Ginzburg-Landau Coherence Length 

 

The Ginzbrug-Landau coherence length (ξGL) is a measure 

of the distance in the superconducting electron 

concentration that cannot change drastically in a spatially-

varying magnetic field. The Ginzbrug-Landau coherence 

length (ξGL) is a temperature-dependent as well as a material 

dependent quantity. In the case of the absence of the 

magnetic vector potential, equation (4) reduces to, 

 

𝛼𝜓 + 𝛽|𝜓|3 +
1

2𝑚∗
(−𝑖ℏ𝛻)2𝜓 = 0.                (10) 

 

Now, if we consider a wave function that varies only in the 

z-direction with zero applied magnetic field, then the first 

GL equation becomes one dimensional. That is,  

 

𝛼𝜓 + 𝛽|𝜓|3 −
ℏ

2

2𝑚∗

𝑑2𝜓

𝑑𝑥2 = 0.                  (11) 

 

Assuming ψ is real and neglecting the term 𝛽|𝜓|3  in 

comparison with α, equation (11) becomes,  
 

𝛼𝜓 =
ℏ

2

2𝑚∗

𝑑2𝜓

𝑑𝑥2  .                             (12) 

 

For the plane wave function, the solution of equation (12) is 

in the form of, 

 

𝜓(𝑥) = 𝑒
(

𝑖𝑥

𝜉𝐺𝐿
)

= 𝑒𝑥𝑝 (
𝑖𝑥

𝜉𝐺𝐿
).                     (13) 

 

Substituting the value of plane wave function into equation 

(12) (in terms of (ψ (x))), we get, 

 

𝛼 [𝑒𝑥𝑝 (
𝑖𝑥

𝜉𝐺𝐿
)] =

ℏ
2

2𝑚∗ (
𝑖

𝜉𝐺𝐿
)

2

𝑒𝑥𝑝 (
𝑖𝑥

𝜉𝐺𝐿
).

 
 

From which we get, 

 

−
ℏ

2

2𝑚∗ (
1

𝜉𝐺𝐿
2 (𝑇)

) = 𝛼.                             (14) 

 

Solving for ξGL at superconducting state, that is, when α is 

negative yields, 

 

𝜉𝐺𝐿(𝑇) = −√
ℏ

2

2𝑚∗|𝛼|
= √

ℏ
2

2𝑚∗|𝛼𝑜(𝑇𝑐−𝑇)|
 ,         (15) 

 

where 𝛼 = 𝛼𝑜(𝑇 − 𝑇𝐶), ⇒ −𝛼 = 𝛼𝑜(𝑇𝐶 − 𝑇) and 𝜉𝐺𝐿(0) =

√
ℏ

2

2𝑚∗|𝛼𝑜|𝑇𝐶
 and is the zero temperature GL coherence length. 

Equation (15) yields the expression for the GL 

coherence length [19]. Since α depends on temperature, as α 

∝ (𝑇 − 𝑇𝐶), then wecan conclude that, the GL coherence 

length is temperature dependent. 

Now let us consider cases: 

 

CaseI. For the superconducting state (T <TC), we have, 

 

𝜉𝐺𝐿(𝑇) = 𝜉𝐺𝐿(0) (1 −
𝑇

𝑇𝑐
)

−
1

2
,              (16) 

and 

 

CaseII. For the normal state (T >TC), we have, 

 

𝜉𝐺𝐿(𝑇) = 𝜉𝐺𝐿(0) (
𝑇

𝑇𝐶
− 1)

−
1

2
.              (17) 

 

Case III. At T= TC, the GL theory becomes invalid. 

 

 

C. Calculation of Ginzburg-Landau Penetration Depth 

 

The surface current flows in a very thin layer of thickness 

(λGL) which is called the Ginzburg-Landau penetration depth 

[19]. The temperature and magnetic field dependence of the 

penetration depth appear quite naturally in Ginzburg-Landau 

(GL) theory. Like the London model, the GL model is 

independent of the underlying mechanism for 

superconductivity. Ginzburg-Landau theory is strictly valid 

only in superconducting phase boundary and is thus not 

generally applicable at low temperatures [19]. In the 

Ginzburg-Landau theory, a complex order parameter(ψ) is a 

function of temperature, magnetic field and the spatial 

coordinates [16, 17]. The total free energy per unit volume 

of the superconducting state in the presence of a magnetic 

field is minimizing this expression with respect to the first 
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GL equation and with respect to the current density 

equation. 

 

𝐹𝐺𝐿 =
1

2𝑚∗ |−𝑖ℏ𝛻 −
𝑒∗

𝑐
𝐴|

2

𝜓 + 𝛼𝜓 + 𝛽|𝜓|2𝜓 = 0,     (18) 

 

where 𝑚∗ = 2𝑚 and 𝑒∗ = 2𝑒. 

 

|𝜓| = |𝜓𝑜| = √
−𝛼

𝛽
 .                          (19) 

 

Using equation (18), we get the expression for current 

density as follows, 

 

𝐽𝑠 = −
𝑒∗ℏ𝑖

𝑚∗
[𝜓∗𝛻𝜓 + 𝜓𝛻𝜓∗] −

𝑒∗2

𝑚∗𝑐
𝐴|𝜓|2.         (20) 

 

Neglecting  𝛻𝜓and 𝛻𝜓∗ equation (20), becomes 

 

𝐽𝑠 = −
𝑒∗2

𝑚∗𝑐
|𝜓|2𝐴.                            (21) 

 

Using Maxwell's equation: 

 

𝛻𝑋�⃗⃗� =
4𝜋

𝑐
𝐽𝑠.                                 (22) 

 

Taking the curl on both sides of equation (22), we get, 

 

𝛻𝑋𝛻𝑋�⃗⃗� =
4𝜋

𝑐
(𝛻𝑋𝐽𝑠).                        (23) 

 

𝛻(𝛻. �⃗⃗�) − 𝛻2�⃗⃗� =
4𝜋

𝑐
(𝛻𝑋𝐽𝑠).                  (24) 

 

where𝛻. �⃗⃗� = 0, 𝛻𝑋𝐽𝑠 = −
𝑒∗2

𝑚∗𝑐
|𝜓|2𝛻𝑋𝐴 and  �⃗⃗� = 𝛻𝑋𝐴. 

From equations (22) and (24), we get, 

 

𝛻𝑋𝐽𝑠 = −
𝑒∗2

𝑚∗𝑐
|𝜓|2𝛻𝑋𝐴 = −

4𝑒2

𝑚∗𝑐
|𝜓|2�⃗⃗�  (25)𝛻2�⃗⃗� = 

 

−
4𝜋

𝑐
(𝛻𝑋𝐽𝑠) = −

16𝜋𝑒2

𝑚∗𝑐
𝑛𝑠�⃗⃗� .               (26) 

 

Since  |𝜓|2 = 𝑛𝑠 =
−𝛼

𝛽
  and  𝜆𝐺𝐿

2 (𝑇) =
𝑚∗𝑐2

16𝜋𝑒2𝑛𝑠
, we get, 

 

𝛻2�⃗⃗� = −
4𝜋

𝑐
(𝛻𝑋𝐽𝑠) =

�⃗⃗�

𝜆𝐺𝐿
2 (𝑇)

.              (27) 

 

Hence, we get, 

 

𝜆𝐺𝐿
2 (𝑇) =

𝑚∗𝑐2𝛽

16𝜋𝑒2𝛼
 .                        (28) 

 

𝜆𝐺𝐿(𝑇) = √
𝑚∗𝑐2𝛽

16𝜋𝑒2|𝛼|
= √

𝑚∗𝑐2

16𝜋𝑒2𝑛𝑠
= √

𝑚𝑐2

8𝜋𝑒2𝑛𝑠
 ,      (29) 

 

where 𝑚∗ = 2𝑚  and 𝑛𝑠 = −
𝛼

𝛽
=

𝛼𝑜(𝑇𝐶−𝑇)

𝛽
. Therefore, we 

obtain, 

 

𝜆𝐺𝐿(𝑇) = √
𝑚𝑐2𝛽

8𝜋𝑒2𝛼𝑜(𝑇𝐶−𝑇)
.                  (30) 

Assuming that, 

 

𝜆𝐿(0) = √
𝑚𝑐2𝛽

8𝜋𝑒2𝛼𝑜𝑇𝐶
 .                          (31) 

 

The Ginzburg-Landau penetration depth (λGL(T)) varies as a 

function of temperature as,  

 

𝜆𝐺𝐿(𝑇) ∝ [1 − (
𝑇

𝑇𝐶
)]

−
1

2
 .                    (32) 

 

From which we obtain,  

 

𝜆𝐺𝐿(𝑇) = 𝜆𝐿(0) [1 − (
𝑇

𝑇𝐶
)

4

]
−

1

2
,              (33) 

 

where𝜆𝐿(0) is the London penetration depth at absolute zero 

temperature [20]. 

 

 

D. Calculation of the Upper Critical Magnetic Field 

Using Ginzburg-Landau Theory 

 

The upper critical magnetic field (UCMF) is the magnetic 

field which completely suppresses superconductivity in 

type-II superconductors. More properly, the UCMF is a 

function of temperature (and pressure). Superconducting 

region nucleates spontaneously within anormal conductor 

when the applied magnetic field is decreased below a value 

denoted by 𝐻𝐶2 [21]. At the onset of superconductivity, ψ is 

small and we linearize the GL equations and becomes, 

 

𝐻𝜓 =
1

2𝑚∗ (−𝑖ℏ𝛻 −
𝑒∗

𝑐
𝐴)

2

𝜓 = −𝛼𝜓 = 𝐸𝜓.       (34) 

 

Since 𝑚∗ = 2𝑚, 𝑒∗ = 2𝑒, 𝛻 =
𝜕

𝜕𝑥
�̂� +

𝜕

𝜕𝑦
�̂� +

𝜕

𝜕𝑧
�̂� and 𝐸 =

𝐸𝑥 + 𝐸𝑦 + 𝐸𝑧. 

The upper critical magnetic field (𝐻𝐶2) can be calculated 

by linearizing equation (34) and substituting the value of 

𝛻 as, 

 
1

2𝑚∗ [−𝑖ℏ (
𝜕

𝜕𝑥
�̂� +

𝜕

𝜕𝑦
�̂� +

𝜕

𝜕𝑧
�̂�) −

𝑒∗

𝑐
𝐴]

2

𝜓 = −𝛼𝜓.        (35) 

 

The magnetic field in a superconducting region at the onset 

of superconductivity is just the applied field, so that A = 

B(0, x,0) = Bx and equation (35) becomes,  
 

1

2𝑚∗ [−𝑖ℏ (
𝜕

𝜕𝑥
�̂� +

𝜕

𝜕𝑦
�̂� +

𝜕

𝜕𝑧
�̂�) −

𝑒∗

𝑐
𝐵𝑥]

2

𝜓 = −𝛼𝜓,     (36) 

 

where the eigen value of the crystal momentum is ℏ𝑘. 
Hence, we have, 

 
1

2𝑚∗ [−𝑖ℏ (
𝜕

𝜕𝑥
+ 𝑘𝑦 + 𝑘𝑧) −

𝑒∗

𝑐
𝐵𝑥]

2

𝜓 = −𝛼𝜓.      (37) 
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Since the expression of the Hamiltonian’s energy given in 

equation (37) does not depend on coordinates (y and z) the 

corresponding momentum components ( 𝑘𝑦 , 𝑘𝑧 ) are 

conserved. 

 

𝐸𝑥𝜓 = −𝛼𝜓 −
ℏ

2

2𝑚∗ (𝑘𝑦
2 + 𝑘𝑧

2)𝜓,                (38) 

 

𝐸𝑥𝜓 = − [
1

2𝑚∗ [−𝑖ℏ (
𝜕

𝜕𝑥
+

𝜕

𝜕𝑦
+

𝜕

𝜕𝑧
) −

𝑒∗

𝑐
𝐵𝑥]

2

𝜓] −

ℏ
2

2𝑚∗ (𝑘𝑦
2 + 𝑘𝑧

2)𝜓.  

 

From which we get, 

 

𝐸𝑥𝜓 =
ℏ

2

2𝑚∗ (
𝜕2

𝜕𝑥2) 𝜓 +
𝑚∗

2
(

𝑒∗𝐵𝑥

𝑚∗𝑐
)

2

𝜓.                (39) 

 

The largest value of the magnetic field (B) for which the 

solution of equation (39) of the lowest eigenvalue is given 

by, 

 

𝐸𝑛 = (𝑛 +
1

2
) ℏ𝜔𝑐 = (𝑛 +

1

2
)
ℏ𝑒∗𝐵𝑚𝑎𝑥

𝑚∗𝑐
ℏ

2𝑘𝑧
2

2𝑚∗

.             (40) 

 

Let us take the smallest eigenvalues n = 0 and Kz= 0 

corresponding to the highest field in which 

superconductivity can nucleate in the interior of a bulk 

sample which occurs with the upper critical magnetic field 

in the coefficients change of sign.  

From equation (40), we have, 

 
1

2
ℏ𝜔𝑐 =

ℏ𝑒∗𝐵𝑚𝑎𝑥

2𝑚∗𝑐
 ,                          (41) 

 

where 𝜔𝑐 is the cyclotron frequency and is given by, 

 

𝜔𝑐 =
𝑒∗𝐵𝑚𝑎𝑥

𝑚∗𝑐
2𝛼

ℏ

.                               (42) 

 

Since 𝐵𝐶2𝑚𝑎𝑥 , solving for 𝐻𝐶2, we get, 

 

𝐻𝐶2 = −
2𝑚∗𝑐

ℏ𝑒∗
|𝛼| .                         (43) 

 

From the relation 𝛼 = 𝛼𝑜(𝑇 − 𝑇𝐶)
, 

we get, 

 

−𝛼 = 𝛼𝑜(𝑇𝐶 − 𝑇) =
ℏ2

2𝑚∗ (
1

𝜉𝐺𝐿
2 (𝑇)

), 

 

                                       𝜉𝐺𝐿(𝑇) = 𝜉𝐺𝐿(0) [(1 −
𝑇

𝑇𝐶
)]

−
1

2
,

  

and 

𝜉𝐺𝐿
2 (𝑇) =

𝜉𝐺𝐿
2 (0)

(1 −
𝑇
𝑇𝐶

)
. 

 

Thus, we obtain the expression for the temperature 

dependent upper critical magnetic field (𝐻𝐶2) as, 

 

𝐻𝐶2 = (
2𝑚∗𝑐

ℏ𝑒∗
) (

ℏ
2

2𝑚∗𝜉𝐺𝐿
2 (0)

) [(1 −
𝑇

𝑇𝐶2
)] 

 

 

              ⇒ 𝐻𝐶2 =
ℏ𝑐

𝑒∗𝜉𝐺𝐿
2 (0)

(1 −
𝑇

𝑇𝐶
).

 
Hence, we obtain, 

 

𝐻𝐶2 =
𝜑𝑜

2𝜋𝜉𝐺𝐿
2 (𝑇)

=
𝜑𝑜

2𝜋𝜉𝐺𝐿
2 (0)

(1 −
𝑇

𝑇𝐶
),               (44) 

 

where 𝜑𝑜 =
2𝜋ℏ𝑐

𝑒∗ . 

 

 

E. Anisotropic Mass Tensor Model 

 

Now, let us consider anisotropy in mass, by introducing the 

effective mass tensor to the kinetic energy term of equation 

(4), where m* is an effective mass tensor which is given by, 

 

𝑚∗ = [

𝑚𝑥 0 0
0 𝑚𝑦 0

0 0 𝑚𝑧

]. 

 

Since the coherence length 𝜉𝐺𝐿(0) depends on the effective 

mass as 𝜉𝐺𝐿(𝑇) ∝
1

√𝑚∗ , the resulting equation is formally 

identical with the Schrödinger equation of a particle with 

charge e*, an isotropic mass tensor m*in a uniform magnetic 

field H and the energy levels that have the harmonic 

oscillator are given by, 

 

−𝛼 = (𝑛 +
1

2
) ℏ𝜔𝐶(𝜃) .                    (45) 

 

Let us consider Newton’s law of motion under the influence 

of Lorentz force (FL), i.e. 

 

𝐹𝐿 = 𝑚∗. 𝑣
.

=
𝑒∗

𝑐
𝑣𝑋𝐻,                         (46) 

 

where 𝑣 is the velocity. 

The upper critical magnetic field can be expressed by 

using cyclotron frequency with the lowest free energy given 

by, 

 

−𝛼 =
1

2
ℏ𝜔𝑐(𝜃). 

 

The solution of upper critical magnetic field by applying 

elliptical orbits traversed with cyclotron frequency is given 

by, 

 

𝜔𝑐(𝜃) =
|𝑒∗|𝐵𝑚𝑎𝑥

𝑐(
𝑠𝑖𝑛2 𝜃

𝑚𝑥𝑚𝑧
+

𝑐𝑜𝑠2 𝜃

𝑚𝑥
)

1
2

 .                        (47) 
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The solution of the lowest free energy corresponds to n = 0 

and by using equation (47), we get 

 

1

2
ℏ𝜔𝐶(𝜃) = −𝛼 =

1

2
ℏ [

|𝑒∗|𝐵𝑚𝑎𝑥

𝑐(
𝑠𝑖𝑛2 𝜃

𝑚𝑥𝑚𝑧
+

𝑐𝑜𝑠2 𝜃

𝑚𝑥
)

1
2

[]]. 

 

Where θ is the angle the magnetic field makes with the z-

axis. 

 

−𝛼 = −𝛼𝑜(𝑇 − 𝑇𝐶) = 𝛼𝑜(𝑇𝐶 − 𝑇) 
 

𝐻𝐶2 =
2𝑐𝛼𝑜(𝑇𝐶−𝑇)

ℏ𝑒∗[
𝑠𝑖𝑛2 𝜃

𝑚𝑥𝑚𝑧
+

𝑐𝑜𝑠2 𝜃

𝑚𝑥
]

1
2

.                     (48) 

 

Using the general expression of coherence length and 

equation (44) we have, 

 

𝜉𝑥 = [
ℏ

2

2𝑚𝑥𝛼𝑜(𝑇𝑐−𝑇)
]

1

2
,                         (49) 

 

and 

 

𝜉𝑧 = [
ℏ

2

2𝑚𝑧𝛼𝑜(𝑇𝑐−𝑇)
]

1

2
.                         (50) 

 

Using the expression for the flux quantization,𝜑𝑜 =
ℎ𝑐

|𝑒∗|
 and 

equation (44), 𝐻𝐶2 can be expressed as, 

 

𝐻𝐶2 =
𝜑𝑜

2𝜋[
𝑠𝑖𝑛2 𝜃

𝜉𝑥
2𝜉𝑧

2 +
𝑐𝑜𝑠2 𝜃

𝜉𝑥
4 ]

1
2

 .                    (51) 

 

For fields parallel and perpendicular to the symmetry plane 

we can write Equation (51) as: 

 

𝐻𝐶2 ‖ = 
𝜑𝑜

2𝜋𝜉𝑧
2 ,                        (52) 

 

and 

 

𝐻𝐶2 ⊥ = 
𝜑𝑜

2𝜋𝜉𝑥
2 .                          (53) 

 

Equations (52) and (53) are the mathematical expressions of 

the upper critical magnetic field (𝐻𝐶2) for fields parallel and 

perpendicular to the symmetry axis [22]. 

 

 

 

III. RESULTS AND DISCUSSION 

 
From equation (16) and using plausible experimental values 

of coherence length for parallel and perpendicular to the 

symmetry axis of superconducting CeRhIn5 [15], we 

obtained the phase diagram which demonstrates the 

relationship between the GL coherence length and 

temperature (T) as indicated in Fig. 1. As can be seen from 

the figure, the GL coherence length increases with 

temperature and diverges as 𝑇 → 𝑇𝐶 . 𝜉𝐺𝐿(0) has the same 

value as that of the conventional BCS coherence length, 𝜉𝑜 

[19]. Furthermore, equation (33) yields the expression for 

the GL penetration depth and the relationship it has with 

temperature(T) as shown in Fig. 2. From the figure, we 

observe the increase of the GL penetration depth with 

temperature (T) and generally, we see that, the penetration 

depth rises asymptotically as the temperature approaches 𝑇𝐶. 

Thus, the penetrationof the magnetic field increases as the 

temperature approaches 𝑇𝐶. 

Finally, we have determined the expression for the upper 

critical magnetic field for superconducting CeRhIn5 using 

the GL equation and by considering some experimental data 

for upper critical magnetic fields for parallel and 

perpendicular and plotted the upper critical magnetic fields 

for parallel and perpendicular to the symmetry axis as 

shown in Fig. 3 [9, 15, 23]. From the figure, we can see that, 

the upper critical magnetic field decreases as temperature 

increases and reaches to zero at the critical temperature of 

superconducting CeRhIn5, which agrees with the 

experimental observations [15]. We also observe that, the 

upper critical magnetic field ( 𝐻𝐶2 ) parallel and 

perpendicular to the symmetry axis of superconducting 

CeRhIn5 is inversely proportional to the GL coherence 

length.  

 

 

 

FIGURE 1. GL coherence length versus temperature (T). 
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FIGURE 2. GL penetration depth versus temperature (T). 

 

 

FIGURE 3. Upper critical magnetic field parallel and 

perpendicular to the symmetry axis versus temperature (T). 

 

 

 

IV. CONCLUSION 
 

The main purpose of this research work is to determine the 

upper critical magnetic field of superconducting CeRhIn5 by 

using the Ginzburg-Landau approach. From the calculations, 

the effect of coherence length, penetration depth and 

anisotropy in mass tensor on upper critical field are 

considered in our model. Finally phase diagrams are plotted 

by using MATLAB scripts. From the phase diagrams 

plotted, it can be concluded that the upper critical magnetic 

field of superconducting CeRhIn5 is inversely related to 

temperature which is in agreement with experimental 

observations [15]. 
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