
Revista Investigación e Innovación en Ingenierías, vol. 8, n°. 1, pp. 140-167, enero – junio 2020. DOI: https://doi.org/10.17081/invinno.8.1.3608

Open Access

Recibido:

9 de septiembre de 2019

Aceptado:
19 de noviembre de 2019

Publicado:
31 marzo de 2020

Correspondencia:
gsanchez@unimagdalena.edu.co

DOI:

https://doi.org/10.17081/invinno.8.1
.3608

© Copyright: Investigación e
Innovación en Ingenierías

Removing rain from images by means of an autoencoder

architecture
Remoción de lluvia en imágenes por medio de una arquitectura de

autoencoder

Alberto Ceballos-Arroyo , Sergio Robles-Serrano

German Sanchez-Torres
Universidad del Magdalena, Colombia

Abstract
Objective: To use computational techniques for removing rain from images. This is motivated
by the fact that for many computer vision systems, correctly capturing the scene is a key need,
and if such systems receive images degraded by rain as input, their performance may be
compromised. Methodology: We built a dataset comprised by 11000 synthetic rain images.
We resized and normalized all the images, then we employed 9000 of them for training the
autoencoder architecture. The autoencoder outputs a de-rained version of the image which is
then lighting corrected in order to produce the final, de-rained image. Results: We determined
the best autoencoder architecture was a 6-layer autoencoder. We evaluated it on the
remaining 2000 images, resulting in a Mean Squared Error of 0.61 and Structural Similarity
Index of 0.8493, which means a fair amount of information from the rain-degraded images
was recovered. Conclusions: The results we obtained were superior to proposals based in the
spatial / frequency domain reported in the literature. However, we determined that it is
possible to improve on the current results if we consider the frequency domain as part of the
architecture. Thus, options for future work include combining machine learning-based
approaches with frequency domain-based image processing.

Keywords: Image processing, noise removal, rain removal, autoencoder.

Resumen
Objetivo: Usar técnicas computacionales para eliminar lluvia en imágenes. La motivación
viene dada por el hecho de que, para muchos sistemas de visión por computadora, es clave
capturar correctamente la escena, y si estos sistemas reciben imágenes degradadas por lluvia
como entrada, su funcionamiento puede verse comprometido. Metodología: Se creó un
conjunto de datos compuesto por 11000 imágenes sintéticas de lluvia. Estas fueron
redimensionadas y normalizadas, para luego utilizar 9000 de ellas como conjunto de
entrenamiento en la arquitectura autoencoder. El autoencoder genera una versión sin lluvia
de la imagen, la cual es pasada a una etapa de corrección de iluminación para producir la
imagen final sin lluvia. Resultados: Se encontró que el mejor desempeño lo cumple el
autoencoder de 6 capas. Se evaluó con las 2000 imágenes restantes, lo que resultó en un error
cuadrático medio de 0,61 y un índice de similitud estructural de 0,8493. Esto significa que el
modelo fue capaz de recuperar una gran cantidad de información original de las imágenes
degradadas por la lluvia. Conclusiones: Los resultados obtenidos son superiores a aquellos de
la literatura que se basan en el dominio espacial / frecuencial. Se determinó, sin embargo, que
es posible obtener mejores resultados si se considera el dominio de la frecuencia como parte
de la arquitectura, debido a las propiedades de esta. Por lo tanto, se propone a futuro
combinar enfoques basados en el aprendizaje de máquina con el procesamiento de imágenes
basado en el dominio de la frecuencia

Palabras claves: Procesamiento de imágenes, eliminación de ruido, eliminación de lluvia,
autoencoder.

Como citar (IEEE): A. Ceballos-Arroyo, S. Robles-Serrano., y G. Sanchez-Torres, “Removing rain from images by means
of an autoencoder architecture”, Investigación e Innovación en Ingenierías, vol. 8, n°. 1, 2020. DOI:
https://doi.org/10.17081/invinno.8.1.3608

https://doi.org/10.17081/invinno.8.1.3608
https://doi.org/10.17081/invinno.8.1.3608
https://doi.org/10.17081/invinno.8.1.3608
https://doi.org/10.17081/invinno.8.1.3608
https://orcid.org/0000-0002-4883-5440
https://orcid.org/0000-0003-4512-0244
https://orcid.org/0000-0002-9069-0732

Removing rain from images by means of an autoencoder architecture

Revista Investigación e Innovación en Ingenierías, vol. 8, n°. 1, pp. 140-167, enero – junio 2020

DOI: https://doi.org/10.17081/invinno.8.1.3608

Introduction

Computer vision systems are prevalent in both industry and research, due
to many technological applications having a strong visual component [1,2].
Several kinds of climate conditions exist, both dynamic and static [3, 4].
Among dynamic climate conditions, we can find rain. Rain has a negative
impact on the performance of computer vision systems exposed to it [3,5],
as a result of rain droplets having particular features and occluding the scene
behind them. These elements and their streaks vary in size depending on
wind and image acquisition conditions, and almost always cover several
pixels [5]. Because of this, researchers treat single-image rain removal as a
denoising problem [6,7].

Denoising techniques are employed to obtain an approximation of a ground-
truth image from a degraded one [7]. In the literature, authors present
several approaches for restoring images degraded by rain. These can be
classified into two main categories: methods based on spatial and frequency
analysis [4], and methods based on learning [8]. Spatial/frequency-based
approaches are based on removing rain from images by means of filters or
decompositions, while learning-based methods remove rain by modeling
the relationship between ground-truth images and degraded images
through machine learning or other kinds of learning algorithms.

Deep learning architectures trained on synthetic images have been
employed in recent work for removing noise (including rain) from images [8].
In such work, network architectures are often based on the ResNet residual
learning framework [9]. Another approach is the use of autoencoders, which
learn to reconstruct data from compressed representations and have been
used for image denoising [10]. However, autoencoders have not yet been
employed for removing rain from single images. For this reason, we propose
implementing an autoencoder architecture for rain removal.

Regardless of the approach, some metric must be employed to measure how
well algorithms restore degraded images [11]. When there exist pairs of
degraded and ground-truth images, this process is straightforward: it is only
necessary to measure error between both. Some quantitative metrics are
the Mean Square Error (MSE), Peak Signal-to-Noise Ratio (PSNR), and
Structural Similarity Index (SSIM) [11]. Qualitative metrics such as perceived
visibility can also be employed, if there exists no set of ground-truth images,
or if there is a need for complementing quantitative metrics [8,12].

We provide an overview of how rain degrades images in Section II. In Section
III, we analyze several rain removal approaches, the autoencoder
architecture, and the most frequent quality metrics currently employed. In
Section IV we propose an algorithm for generating simulated rain images
from a dataset of 2000 ground-truth images. Next, in Section V, we propose
an autoencoder architecture for removing rain from single images. Finally,

https://doi.org/10.17081/invinno.8.1.3608

Alberto Ceballos-Arroyo, Sergio Robles-Serrano,German Sanchez-Torres

Revista Investigación e Innovación en Ingenierías, vol. 8, n°. 1, pp. 140-167, enero – junio 2020

DOI: https://doi.org/10.17081/invinno.8.1.3608

in Sections VI and VII we show our results as well as our conclusions and
insight for future research.

Figure 1. Taxonomy of visibility-degrading climate conditions in images

Source: Own production

Context
There exist several kinds of climate conditions that have an impact on image
quality. The two main categories are static and dynamic conditions. Static
conditions include haze and fog. Dynamic conditions are comprised of rain
and snow [3,12]. Only rain is considered in the scope of this work. Rain can
take different forms in images: either as a full element (rain droplet), or as a
streak resulting from the camera not having enough exposure time. Figure 1
depicts this taxonomy. Due to reflection, pixels degraded by rain have higher
intensity levels than their neighbors [4]. Furthermore, the shape of such
elements can vary depending on their size, as well as on wind speed and
direction [6].

Rain is semitransparent and does not fully occlude the objects; instead, it
blurs them. In consequence, if background intensity levels are low, rain
intensity levels become higher [4]. Otherwise, the latter will be lower.
Furthermore, streaks left by rain when exposure time is high, share the same
general direction in the whole image. Figure 2 shows an example of an image
degraded by rain. The radius of rain droplets, when approximated to
spheres, ranges between 0.1mm and 3.5mm, although most of them have a
radius of less than 1mm [5].

The rain removal problem
We treat the issue of restoring images degraded by rain as a noise removal
problem. Under many models, authors consider noise to be additive, as
shown in (1).

𝐺(𝑥, 𝑦) = 𝐼𝑂(𝑥, 𝑦) + 𝐼𝑁(𝑥, 𝑦) (1)

https://doi.org/10.17081/invinno.8.1.3608

Removing rain from images by means of an autoencoder architecture

Revista Investigación e Innovación en Ingenierías, vol. 8, n°. 1, pp. 140-167, enero – junio 2020

DOI: https://doi.org/10.17081/invinno.8.1.3608

Figure 2. An example of an image degraded by rain

Source: [6]

Where G is the acquired image, 𝐼𝑂 is the ground-truth image and 𝐼𝑁 is the
noisy layer. However, we cannot apply predetermined noise models in the
case of rain-degraded images, resulting in the need for implementing more
elaborate techniques. Regarding the camera, parameters such as exposure
time, depth of field, and lighting conditions are relevant [6].

Previous work
In this section we describe the taxonomy of single-image rain removal
techniques. This results in two main categories: spatial/frequency filtering-
based methods, and learning-based methods [4,8]. Other categories, such
as methods based on temporal connectivity, are outside the scope of single-
image rain removal. For each category, we provide a brief description as well
as details of some relevant work. We delve deeper into the strengths and
limitations of each referenced paper in Table 1.

Spatial/frequency-based-filtering
One option for treating rain in single images is to employ spatial/frequency-
domain filters. Spatial-based filters involve using morphological techniques
or convolution filters for removing rain while retaining the highest amount
of detail from the scene. Authors in the literature employ these techniques
when the attributes of rain are known, and they base their filters on the size
and shape of these elements.

Xu et al. [6] use a guided filter for removing rain. The guided filter is an edge-
preserving spatial filter for removing noise in images [13]. Its inputs are the
image to be processed and a guidance image which can either be the same
image or a version of it where border information is highlighted. In their
work, the authors [6] employ a gray-scale version of the original image as
the guidance image. Their implementation removes rain to an acceptable
degree; however, it does not preserve details from elements such as
characters, symbols, and signs. For this reason, it is not appropriate for
certain applications that might require preserving such details, although it
makes segmentation tasks easier.

Frequency-based filters are instead employed to remove rain, based on the
analysis of highly frequent patterns [1]. For instance, some authors remove

https://doi.org/10.17081/invinno.8.1.3608

Alberto Ceballos-Arroyo, Sergio Robles-Serrano,German Sanchez-Torres

Revista Investigación e Innovación en Ingenierías, vol. 8, n°. 1, pp. 140-167, enero – junio 2020

DOI: https://doi.org/10.17081/invinno.8.1.3608

high frequency elements with low pass filters in the frequency domain.
Although frequency-based approaches are effective by themselves,
researchers may employ them together with spatial filters for better results.
This can be done in several ways. One option is to decompose the image into
its low frequency (LF) and high frequency (HF) components for reducing
noise with a spatial filter. Another option is to employ frequency-based
filters for removing rain components and spatial-based filters for smoothing
the resulting image.

Zheng et al., [14] improve upon the algorithm proposed in [6] by employing
a multi-guided filter. They first separate the LF and HF components of the
image with a guided filter. Then, they enhance the edges in the LF
component. Afterward, they apply another guided filter on the HF
component, which contains most of the rain, using the enhanced LF
component as the guidance image. The next step consists in combining the
processed LF and HF components to obtain the recovered image. The
authors then generate a slightly deblurred version of the recovered image
by creating a new image from the pixel-wise minimums between the
ground-truth image and the recovered one. Finally, they use the deblurred
image as a basis for one last run of the guided filter on the recovered image.
They remove slightly more rain than [6] while retaining detail from
characters, symbols and signs (see Figure 3). Processing time is however
increased by cause of the guided filter executions. Furthermore, the authors
do not employ any quantitative quality metric in their study.

In general, spatial and frequency domain-based methods are efficient for
removing rain from single images [6, 14, 15, 16, 17]. Whereas most
proposals apply filters globally, some take into account local features
resulting in greatly enhanced images [18]. Running times depend on the
complexity of the de-raining pipeline, with some of the more elaborate
proposals being slower to run [14]. These methods do not require a set of
training images, making them easier to implement when little data is
available [6, 15] However, in some cases this means the default
configurations of these algorithms may need to be adjusted for cases where
rain is heavier [18].

Furthermore, in some proposals the resulting images are slightly blurred and
small details which might be necessary for some applications are not
preserved [6, 15, 17] . In some instances, however, further segmentation
tasks are eased due to edge enhancement [6, 14, 19]. Another issue, which
is common in this category, is the lack of quantitative methods for measuring
de-raining quality, which makes it difficult to assess effectiveness [6, 14, 15,
16, 18].

Learning-based methods
Some authors propose learning-based techniques for removing rain in single
images. These methods are comprised of architectures to learn to detect
and remove rain droplets and streaks. Two main categories of learning-

https://doi.org/10.17081/invinno.8.1.3608

Removing rain from images by means of an autoencoder architecture

Revista Investigación e Innovación en Ingenierías, vol. 8, n°. 1, pp. 140-167, enero – junio 2020

DOI: https://doi.org/10.17081/invinno.8.1.3608

based methods exist in rain removal literature: dictionary learning and
machine learning methods.

Figure 3. Image restored by means of the multi-guided filter approach. To the left, the original
image. To the right, the restored version

Source: [14]

In dictionary learning methods, the authors map visual features into sparse
structures composed of elements called atoms. Atoms are linear
combinations of the most representative elements from an image [7]. Once
a collection of atoms (that is, a dictionary) is built, the authors can then
reconstruct the image, removing certain visual elements from it. In the case
of images degraded by rain, some authors partition the images into LF and
HF components by means of spatial and frequency filters, such as the guided
filter and the bilateral filter.

Most rain streaks in an image are present in its HF component, therefore,
the authors can train the dictionaries on these components while ignoring
the low-frequency portion. As a result, they can obtain a dictionary
comprised mostly by rain atoms. Due to the properties of rain, these atoms
are similar among themselves. Hence, a denoised version of the HF
component can be obtained by grouping together rain atoms and moving
them into another dictionary [4].

Kang, Lin, and Fu [7] propose a method for removing rain elements from the
image based on dictionary learning. They first decompose the image into HF
and LF components by using a bilateral filter. Next, they employ
morphological components analysis (MCA) for creating a sparse dictionary
of both rain and non-rain components in the HF component, represented as
15x15 patches. Afterward, they divide the dictionary into two by performing
HOG (Histogram of Gradients) based atom clustering. The next step consists
in carrying out sparse coding based on the two dictionaries for obtaining a
rainless version of the HF component. Finally, they combine the restored HF
component with the LF one for obtaining the denoised image. Their method
efficiently removes rain from single images. Furthermore, it is self-
contained, meaning it does not require a training dataset. However,
processing times are elevated.

In general, dictionary learning-based methods are highly effective at
removing rain from single images while preserving detail since they are
mostly based on the processing of local features [4, 12, 20, 21, 22]. This
sometimes results in some degree of detail loss when dealing with images

https://doi.org/10.17081/invinno.8.1.3608

Alberto Ceballos-Arroyo, Sergio Robles-Serrano,German Sanchez-Torres

Revista Investigación e Innovación en Ingenierías, vol. 8, n°. 1, pp. 140-167, enero – junio 2020

DOI: https://doi.org/10.17081/invinno.8.1.3608

with elements similar to rain streaks, since some non-rain features might be
treated as rain [22]. Furthermore, processing times are often elevated and
the de-raining pipeline often includes spatial and frequency domain-based
algorithms which add to the computational costs [4, 12]. However, unlike
such methods, most dictionary learning-based proposals are evaluated with
quantitative metrics such as SSIM and PSNR [4, 20, 21, 22]. In addition, they
do not require sizable datasets, unlike the machine learning approach,
although this results in a lower capability for generalizing to cases such as
images taken under heavy rain conditions [4, 20, 22].

The machine learning approach involves training machine learning methods
with datasets of noisy and clean image pairs. Ideally, these algorithms should
learn the relationship between a clear, noise-free image and a counterpart
degraded by rain. Although reasonable results can be obtained with
traditional machine learning methods, treatment of high-resolution images
is difficult to carry out without more modern deep learning techniques. Deep
architectures can codify visual features in their layers and help remove
complex noise conditions such as rain. However, they require sizable training
datasets for learning the required relationships [8, 23].

Fu et al., [8] propose using a deep detail network for removing rain from
single images. In their work, they employ a deep detail network based on a
deep residual network (ResNet). In such architectures, the dimensionality of
the input is reduced for obtaining better results. They improve the rain
removal process by training the network on the HF component of the rainy
images, removing background interference. Their loss metric is the residual
between the ground-truth images and their noisy counterparts. They train
their algorithm with a dataset of 14000 original image-synthetic image pairs.
They measure the results on the dataset using SSIM, with an average
precision of 0.86. To measure quality on actual rainy images, they instead
use a subjective visual quality metric. The drawbacks of their architecture
include elevated training times and the need for a sizable dataset.

Mondal et al., [23] proposed a deep de-raining neural network based on
trainable mathematical morphological operators. Such operators are often
useful for image de-raining only if their shape and size is adjusted to the
conditions of individual images. Thus, by learning the shapes of dilation and
erosion operators based on a dataset comprised of 1000 clean-rainy image
pairs, they were able to effectively address the de-raining problem with a
relatively small (and thus fast) neural network. They measured their results
using the SSIM and PSNR metrics, reaching 0.92 SSIM and 28.03 PSNR. They
also evaluated their proposal qualitatively, based on real rain images.

Deep learning architectures
The most common deep learning approach is to employ Artificial Neural
Networks (ANNs) [24]. ANNs are biologically inspired machine learning

https://doi.org/10.17081/invinno.8.1.3608

Removing rain from images by means of an autoencoder architecture

Revista Investigación e Innovación en Ingenierías, vol. 8, n°. 1, pp. 140-167, enero – junio 2020

DOI: https://doi.org/10.17081/invinno.8.1.3608

algorithms comprised of several layers, each of which consists of several
nodes or artificial neurons. Nodes in one layer are connected to those of the
next by weights, thus allowing the network to model arbitrary functions.
Except for the input nodes (that is, the raw input data), ANN nodes contain
activation functions for processing the data passed by previous layers. Layers
in an ANN can be classified into input layers, which represent input data and
dimensionality, hidden layers, which consist of activation functions that
manipulate data, and the output layer, which is comprised of one or more
nodes representing the target function.

The way supervised ANNs learn patterns is by processing labeled data. In
each training iteration, the weights are adjusted by means of forward-
propagation and back-propagation. In forward-propagation, input data is
passed through every layer l in the network. These layers are comprised of
several nodes. Each node consists of a linearity (see Eq. 2) and an activation
function g (see Eq. 3) through which the data (input X or the output of
another layer) is processed prior to being passed to the next layer. This
process usually implies changes in dimensionality as the input data is passed
deeper into the network.

𝑍[𝑙] = 𝑊[𝑙]𝐴[𝑙−1] + 𝑏[𝑙] (2)

𝐴[𝑙] = 𝑔(𝑍[𝑙]) (3)

Where 𝑊[𝑙] is the array containing the weights and 𝑏[𝑙] is the bias, both

corresponding to layer l, 𝐴[𝑙−1] is the activation output by layer l-1, and g is
a non-linear activation function.

Once data reaches the last layer of a supervised ANN, the next step is to
calculate prediction loss. The evaluation of how similar the results of the
network are to the reference, labeled data is done by means of a loss
function. For the purposes of denoising images, pixelwise comparison
functions such as the Mean Squared Error are often employed (4). The total
loss J (also deemed cost) is thus the average of the loss function L evaluated
on the full dataset (5).

𝐿(𝑖) =

1

𝑤𝑖𝑑𝑡ℎ∗ℎ𝑒𝑖𝑔ℎ𝑡
∑ ∑ (𝑦(𝑖)[𝑘,𝑗] − �̂�(𝑖)[𝑘,𝑗])2ℎ𝑒𝑖𝑔ℎ𝑡

𝑗=1
𝑤𝑖𝑑𝑡ℎ
𝑘=1 (4)

𝐽 =
1

𝑀
∑ 𝐿(𝑦(𝑖) − �̂�(𝑖))𝑀

𝑖=1 (5)

For a training set with M training instances, �̂�(𝑖) is the predicted value, and

𝑦(𝑖) is the ground truth value, for training example i. In the case of image

denoising, �̂�(𝑖) is a denoised version of image i and loss L is the average of
the loss function for the pixels in the predicted denoised image and the
ground truth image with no noise.

https://doi.org/10.17081/invinno.8.1.3608

Alberto Ceballos-Arroyo, Sergio Robles-Serrano,German Sanchez-Torres

Revista Investigación e Innovación en Ingenierías, vol. 8, n°. 1, pp. 140-167, enero – junio 2020

DOI: https://doi.org/10.17081/invinno.8.1.3608

On the other hand, back-propagation aims to minimize prediction loss based
on the optimization of the weight and bias values. In the literature, one of
the earliest optimization methods to be employed was batch gradient
descent, where the optimizable parameters are updated once for every
training iteration (epoch) based on the full dataset, as in (6). Once the
training process finishes, the ANNs can be used to carry out predictions on
unknown data. In the case of batch gradient descent, the weights and bias
terms are updated as in (6) and (7).

𝑊𝑛𝑒𝑥𝑡 = 𝑊 − 𝛿∆𝑊 (6)
𝑏𝑛𝑒𝑥𝑡 = 𝑏 − 𝛿∆𝑏 (7)

where 𝑊𝑛𝑒𝑥𝑡 is the updated weight array, W is the current set of weights,
𝑏𝑛𝑒𝑥𝑡 is the updated bias term, b is the current bias term, 𝛿 is the learning
rate (a hyperparameter which determines how fast the parameters should
be optimized), and ∆𝑊 and ∆𝑏 are the gradients for W and b respectively.
The increase in the availability of computational resources, as well as
advanced research in backpropagation methods, have allowed researchers
to employ deeper machine learning architectures [25]. Deep artificial neural
networks consist of many hidden layers, thus allowing for the modeling of
more complex computational problems. In the case of image denoising,
Convolutional Neural Networks (CNNs) are often employed. This is done
because their multi-layered structure learns visual features in the form of
convolutional filters.
Layers in CNNs are structured differently from standard ANNs. Hidden layers
in CNNs are comprised of trainable convolutional filters, akin to traditional
blurring and edge detection kernels, and non-trainable pooling filters which
can be used for reducing the dimensionality of data as it is passed into the
deeper layers of the network. Another difference with respect to ANNs is
that convolutional filters are not fully connected, that is, connections
between two layers are handled in a localized manner, greatly reducing the
number of trainable parameters. In this way, the input data X is transformed
and stacked into differently shaped volumes of data when passed through
the convolutional layers, as described in Eq. (8):

𝐴[𝑙] = 𝑔(𝑊[𝑙] ∗ 𝑋 + 𝑏[𝑙]) (8)

where ∗ is the convolution operator, g is an activation function, W is the
weight array, b is the bias term, and A is the output of layer l. Of great
importance for the convolution operation is its effect on the resulting shape
of data, which is determined by the stride s and padding p parameters, as
well as kernel size k. The relationship between an input volume of height and
width i, and the height and width o of the output volume, is defined in Eq.
(9).

𝑜 = ⌊
𝑖+2𝑝−𝑘

𝑠
⌋ + 1 (9)

https://doi.org/10.17081/invinno.8.1.3608

Removing rain from images by means of an autoencoder architecture

Revista Investigación e Innovación en Ingenierías, vol. 8, n°. 1, pp. 140-167, enero – junio 2020

DOI: https://doi.org/10.17081/invinno.8.1.3608

The max-pooling operation is based on stride s and padding p. In this
operation, a sliding window is passed over each channel of the input volume
such that the pixels in each channel of the output volume take the maximum
local value in each window defined by s, p, and k, as in Eq. (10).

𝑜 = ⌊
𝑖−𝑘

𝑠
⌋ + 1 (10)

Another relevant operation for our work is the transposed convolution
operation, which maps lower dimensional into bigger higher dimensional
content. This is done by reversing the order of the forward and backward
passes in the standard convolution operation, thus enabling us to generate
denoised images with the same resolution than that of the input images.
When carrying out image denoising, deep CNNs with an autoencoder
architecture are often employed [10]. Autoencoders learn to compress data
and to reconstruct a modified version of it depending on the objective
function. In the case of image denoising, these networks learn to produce a
denoised version of every pixel in the noisy image.

Autoencoder architectures
An autoencoder is a computational model comprised of a codifier and a
decodifier. The main task of such a model is to learn to codify and decodify
a given input. This is particularly useful when trying to represent data with a
smaller set of features and when trying to reconstruct it while removing
undesired features [24]. There exist several kinds of autoencoders and they
can be employed to solve various problems. For instance, it is possible to
train an autoencoder to return modified versions of the input data. One such
example is the denoising autoencoder, which is capable of learning to
remove noise from data. Autoencoders codify data (that is, they reduce it to
its basic components) and then reconstruct it through the decodifier [10].

Likewise, there exist autoencoders capable of generating information. For
example, an autoencoder can be trained to restore information lost in
degraded sections of an image, such as human faces. This depends, mostly,
on the output associated to each input, which allows the model to be
adjusted in order to obtain the expected results. Figure 4 depicts a typical
autoencoder architecture, whereas Figure 5 depicts our proposed
methodology.

https://doi.org/10.17081/invinno.8.1.3608

Alberto Ceballos-Arroyo, Sergio Robles-Serrano,German Sanchez-Torres

Revista Investigación e Innovación en Ingenierías, vol. 8, n°. 1, pp. 140-167, enero – junio 2020

DOI: https://doi.org/10.17081/invinno.8.1.3608

Metrics for image quality

There exist several metrics in the literature to measure the accuracy of
methods for removing rain in single images. These include: MSE [20], PSNR
[3], SSIM [3], Visual Image Fidelity (VIF) [17], and Feature Similarity (FSIM)
[17].

Figure 4. A typical autoencoder architecture

Source: Own production

Figure 5. Proposed methodology for image deraining using autoencoders

Source: Own production

Image quality metrics measure image similarity in various ways, however, all
of them require a degraded image and a ground-truth image for measuring
restoration quality.

These metrics are not only intended for verifying image restoration quality.
For example, Sun, Fan, and Wang [12] use the SSIM metric for classifying
dictionary atoms as rain and non-rain. On the other side, machine learning
methods [8] may include one or more of these metrics as part of their loss
functions, which guide the training process. In our work, we intend to
employ three metrics to measure denoising quality: MSE, PSNR and SSIM.

Mean Square Error
In statistics, the mean square error (MSE) of a model measures the average
of the square of the errors, that is, the difference between the model and

https://doi.org/10.17081/invinno.8.1.3608

Removing rain from images by means of an autoencoder architecture

Revista Investigación e Innovación en Ingenierías, vol. 8, n°. 1, pp. 140-167, enero – junio 2020

DOI: https://doi.org/10.17081/invinno.8.1.3608

the ground truth. The mean of the pixelwise difference between values of
two images can be computed through MSE, as shown in Equation 11.

𝑀𝑆𝐸 =
1

𝑀𝑁
∑ ∑ || 𝐼(𝑖, 𝑗) − 𝐾(𝑖, 𝑗) ||2𝑁−1

𝑗=0
𝑀−1
𝑖=0 (11)

Where M, N are the dimensions of the ground-truth image I and the restored
image K.

Peak Signal-to-Noise Ratio
The Peak Signal-to-Noise Ratio (PSNR) defines the relation between the
maximum possible energy for a signal and the noise that degrades its
representation. PSNR is usually expressed logarithmically, using the decibel
as unit. It can be computed based on MSE as shown in Equation 12.

𝑃𝑆𝑁𝑅 = 10 ∗ 𝑙𝑜𝑔10 (
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
) (12)

Where 𝑀𝐴𝑋𝐼 is the maximum value the signal can take, which is usually 255
for 8-bit images.

Structural Similarity Index
Also known as SSIM, this metric is employed to measure similarity between
two images. Unlike MSE and PSNR, it considers structural neighborhood
information. It is calculated based on Equation 13.

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1)(𝜎𝑥
2+ 𝜎𝑦

2 + 𝐶2)
 (13)

Where x, y are N*N windows extracted from the ground-truth and the
restored image, 𝜇𝑥 is the mean of x, 𝜇𝑦 is the mean of y, 𝜇𝑥

2 is the variance

of x, 𝜇𝑦
2 is the variance of y, 𝜎𝑥𝑦 is the covariance of x, y, and 𝑐1, 𝑐2 are

stabilization parameters.

Authors of proposals for solving other image enhancement problems,
employ border detection precision and histogram analysis [26] when no
pairs of noisy and ground-truth images exist, albeit no such technique was
employed in the reviewed literature.

Methodology

Synthetic dataset generation
We built a synthetic dataset of rain-degraded images based on the following
assumptions:

 All rain streaks in an image have the same general direction.
 The angle of rain streaks relative to the Y axis ranges from -45° to 45°.

https://doi.org/10.17081/invinno.8.1.3608

Alberto Ceballos-Arroyo, Sergio Robles-Serrano,German Sanchez-Torres

Revista Investigación e Innovación en Ingenierías, vol. 8, n°. 1, pp. 140-167, enero – junio 2020

DOI: https://doi.org/10.17081/invinno.8.1.3608

 The position of each rain streak in a single image is random.

The steps of our synthetic rain image generation algorithm are as follows:
 Generate an empty mask M with the same size as the original image

I.
 Apply uniform noise on a portion p of the pixels in M.
 Apply a vertical blur filter with size L on M.
 Apply a rotation transformation on M, with random angle θ taking

values from -45° to 45°.
 Combine I and M based on the screen-blend mode, as in equation 14

[27].

𝐺(𝑥, 𝑦) = 255 − (255 − 𝐼(𝑥, 𝑦)) ∗ (255 − 𝑀(𝑥, 𝑦)) (14)

Our ground-truth image database is comprised by 2200 images compiled
from various datasets. These datasets are oriented toward tasks like noise
removal and scene recognition, and thus provide us with a wide selection of
natural scenes [28, 29,30, 31]. Figure 6 depicts an example of an image from
the dataset and its synthetic counterpart.

Based on our algorithm for synthetic rain image generation, we generated
11000 synthetic images using different values of p.

Figure 6. To the left, the original image. To the right, a version of the same image degraded
with synthetic rain

Source: Own production

The methodology followed in this paper is comprised of several steps. First,
preprocessing (resizing and normalization) is carried out on the dataset
produced in section IV. Then, a convolutional denoising autoencoder is
trained and used to denoise rain images. Finally, postprocessing in the form
of lighting correction is carried out on the resulting images. This process is
summarized in Figure 5, while the detailed neural network architecture is
described in Figure 7.

Preprocessing
Images in the dataset were normalized by subtracting the mean of the
dataset and dividing each image by the standard deviation of the dataset, as

https://doi.org/10.17081/invinno.8.1.3608

Removing rain from images by means of an autoencoder architecture

Revista Investigación e Innovación en Ingenierías, vol. 8, n°. 1, pp. 140-167, enero – junio 2020

DOI: https://doi.org/10.17081/invinno.8.1.3608

shown in Eq. (15). In this way, we intend to improve performance by only
passing centered data through the network, as per the literature [24].

𝑋𝑛𝑜𝑟𝑚𝑒𝑑 =
�̅�

𝜎𝑋
2 (15)

The other preprocessing steps was to resize every image to 256x256x3 pixels
and to split the dataset as shown in Table 1.

Table 1. Training, development, and test dataset splits

Set Percentage (%) Images

Training 81.8% 9000

Development 9.09% 1000

Test 9.09% 1000

Source: Own production

Autoencoder architecture
A widely employed autoencoder architecture is the convolutional
autoencoder. The reason for using convolutional layers in an autoencoder is
their effectiveness when built into neural networks for image-related tasks.
The weights of such layers are modelled differently from traditional ones, as
they are based on convolutional image filters. That is, convolutional layer
weights are image filters, and they can be described as follows:

ℎ𝑖 = 𝑠(𝑥 ∗ 𝑊𝑖 + 𝑏𝑖)

Where ∗ is a convolution, s is an activation function, W is the weight, b is the
bias, and h is the output of the layer.

Weight initialization
The weights in the architecture were initialized using Glorot uniform
initialization [32], where the initial values of weights in a layer are defined
based on uniform sampling within [-r, r], as defined in (17).

𝑟 = √
6

𝑛𝑤
[𝑙−1]

+ 𝑛𝑤
[𝑙] (17)

where 𝑛𝑤
[𝑙−1]

 is the number of weights for the previous layer l-1 and 𝑛𝑤
[𝑙]

 is
the number of weights for the current layer l.

Batch size and epochs
A widely employed variant of gradient descent is mini-batch gradient
descent. In this version of gradient descent, backpropagation is carried out
independently on several subsets of the training set, also known as batches,
each of them of size m < M. Weights are updated once for each batch for

https://doi.org/10.17081/invinno.8.1.3608

Alberto Ceballos-Arroyo, Sergio Robles-Serrano,German Sanchez-Torres

Revista Investigación e Innovación en Ingenierías, vol. 8, n°. 1, pp. 140-167, enero – junio 2020

DOI: https://doi.org/10.17081/invinno.8.1.3608

every training epoch, which results in lower memory requirements. In
addition, since weights are updated on each subset, there is a reduced
chance of the backpropagation algorithm getting stuck in local minima [33].
The dataset should also be shuffled at the start of every epoch in order to
further increase the effectiveness of the optimization algorithm. [34]. We
set the batch-size hyperparameter m = 32 after testing several values, while
the number of epochs was set to 20.

ADAM optimizer
Adaptive Moment Estimation (ADAM) is a gradient descent algorithm which
computes adaptive learning rates [35]. This results in a smaller probability of
the algorithm getting stuck on local minima. This is done by storing an
exponentially decaying running average of previous gradients 𝑉∆𝑊
(estimation of the first momentum) and the square of previous gradients
𝑆∆𝑊 (estimation of the second momentum), as shown in Eqs. (18) and (19).

𝑉∆𝑊 = 𝛽1𝑉∆𝑊 + (1 − 𝛽1)∆𝑊 (18)
𝑆∆𝑊 = 𝛽2𝑆∆𝑊 + (1 − 𝛽2)∆𝑊2 (19)

𝛽1 and 𝛽2 are hyperparameters which define the decay rate of the running
averages. For our network, these are respectively set as 0.9 and 0.999 as per
the literature. Both running averages are biased toward 0 during the first
few epochs, so a bias-corrected version of both is calculated based on Eqs.
(20) and (21).
𝑉∆𝑊

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =
𝑉∆𝑊

(1− 𝛽1
𝑡)

 (20)

𝑆∆𝑊
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =

𝑆∆𝑊

(1− 𝛽2
𝑡)

 (21)

With t defined as equal to the current epoch. Finally, the weight array W is
updated as per Eq. (22).

𝑊𝑛𝑒𝑥𝑡 = 𝑊 − 𝛿
𝑉∆𝑊

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑

√𝑆∆𝑊
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑+𝜀

 (22)

𝜀 is a constant set to 10−8 to prevent division by zero and 𝛿 is the learning
rate, which was set to 0.0001.

Trainable parameters
The full network consists of 2.962.447 parameters (of which 2.959.881 are
trainable) divided into an encoder and a decoder component, which are
described in the next subsection.

Layers
The proposed autoencoder is comprised of several convolutional layers and
can be divided into two parts: encoder and decoder. The input and output

https://doi.org/10.17081/invinno.8.1.3608

Removing rain from images by means of an autoencoder architecture

Revista Investigación e Innovación en Ingenierías, vol. 8, n°. 1, pp. 140-167, enero – junio 2020

DOI: https://doi.org/10.17081/invinno.8.1.3608

of the network are 256x256 images which contain three channels: red,
green, and blue, which are taken in by the input layer.
The encoder has an input layer made of 256x256x3 neurons. Then, there are
two pairs of convolutional, batch normalization and max-pooling layers, and
a last convolutional layer and batch normalization. These layers encode the
data into a compressed 64x64x512 representation.

The decoder is comprised of two pairs of convolutional transpose and batch
normalization layers, whose outputs are 256x256x128 representations of
the reconstructed images. These are then converted into the final, restored
image by a last pair of convolutional and batch normalization layers. Figure
7 depicts the proposed rain removal autoencoder architecture.

Implementation
The autoencoder model was implemented using the Keras deep learning
library. We employed Google’s Cloud Computing Service for training with
100 training epochs, using the ADAM optimizer, measuring loss with MSE,
and employing the full dataset. Prior to being fed to the network, all 11000
images were resized to 256x256x3 pixels to reduce computational costs. The
rain images dataset was partitioned as in Table 1.

Figure 7. Proposed rain removal autoencoder architecture

Source: Own production

https://doi.org/10.17081/invinno.8.1.3608

Alberto Ceballos-Arroyo, Sergio Robles-Serrano,German Sanchez-Torres

Revista Investigación e Innovación en Ingenierías, vol. 8, n°. 1, pp. 140-167, enero – junio 2020

DOI: https://doi.org/10.17081/invinno.8.1.3608

Results

We assessed the proposed architecture on the test dataset comprised by
1000 pairs of ground-truth and artificially degraded images.

We evaluated five algorithms: firstly, the traditional mean filter with a 5x5
kernel; secondly, the multi-guided filter proposed by [14]; thirdly, the
dictionary learning approach by [7]; fourthly, a basic autoencoder
architecture; and finally, our improved autoencoder architecture. Figure 8
depicts the results obtained with the latter. Figure 9 illustrates the increase
in accuracy throughout the training process for several configurations of the
autoencoder architecture, which are in turn described in Table 2.

Table 3 depicts the performance of the baseline methods, a basic
autoencoder architecture, and the proposed, improved autoencoder
architecture. Our autoencoder-based approach improves significantly over
traditional approaches based on filtering, which struggle with heavy rain
conditions. Figure 10 shows the result of using our architecture on real rain-
degraded images.

Table 2. Evaluated Autoencoder Configurations

Autoencoder

model

Description

Model 1 A single, 128 filters layer to join the encoder portion of the

network with the decoder.

Model 2 A single, 256 filters layer to join the encoder portion of the

network with the decoder.

Model 3 A single, 256 filters layer to join the encoder portion of the

network with the decoder. Additional (up to 256) filters in

the two layers next to the central layer.

Final Model The model described in the previous section. Similar to model

3, but the central layer has 512 filters instead of 256 (see

Figure 7).

Source: Own production

https://doi.org/10.17081/invinno.8.1.3608

Removing rain from images by means of an autoencoder architecture

Revista Investigación e Innovación en Ingenierías, vol. 8, n°. 1, pp. 140-167, enero – junio 2020

DOI: https://doi.org/10.17081/invinno.8.1.3608

Figure 8. Results obtained with the rain removal autoencoder architecture on seven images
from the test portion of our dataset. The leftmost column (a) depicts the original images, the
central column (b) depicts the degraded images, the rightmost column (c) depicts our results

a)

b)

c)

Source: Own production

Figure 9. Training and validation accuracy for the 20 training epochs, for several autoencoder
architectures with varying configurations

Source: Own production

https://doi.org/10.17081/invinno.8.1.3608

Alberto Ceballos-Arroyo, Sergio Robles-Serrano,German Sanchez-Torres

Revista Investigación e Innovación en Ingenierías, vol. 8, n°. 1, pp. 140-167, enero – junio 2020

DOI: https://doi.org/10.17081/invinno.8.1.3608

Figure 10. Results obtained with our architecture on several real rain images. To the left, the
original image; to the right, the de-rained image. Some of the images are somewhat darkened
but this is proposed to be fixed by means of gamma correction

Source: Own production

Table 3. Evaluation of Method Performance

Metric

(test

set)

Mean

Filter

Multi-

Guided

Filter [14]

Dict. Learn

[7]

Basic

autoencoder

Proposed

architect

MSE 0.0107 0.0094 0.0086 0.0071 0.0061

NRMSE 0.2319 0.1884 0.2083 0.2175 0.1751

PSNR 20.0595 20.6408 21.1119 22.0431 22.5613

SSIM 0.5579 0.5861 0.7199 0.7312 0.8493

Source: Own production

Conclusions
After reviewing the literature, we observe there exist several approaches for
removing rain from single images. Although deep learning methods have the
best performance, they require sizable datasets and long training times. In
contrast, dictionary learning methods can remove rain from a single image

https://doi.org/10.17081/invinno.8.1.3608

Removing rain from images by means of an autoencoder architecture

Revista Investigación e Innovación en Ingenierías, vol. 8, n°. 1, pp. 140-167, enero – junio 2020

DOI: https://doi.org/10.17081/invinno.8.1.3608

without a training set, at the cost of additional processing time.
Spatial/frequency filters result in the lowest processing costs and require no
training sets, however, most such filters tend to fail when rain conditions are
heavy.
In our work, we implemented a deep autoencoder architecture for removing
rain from single images. Our architecture removes most rain from images
while preserving detail, unlike most filter-based methods. However, colors
are degraded by the network, possibly as a result of it trying to adjust for the
increased brightness in images degraded by rain. This results in relatively low
MSE, PSNR and SSIM scores when compared to other deep learning
approaches in the literature. Regardless, our results show there is potential
for employing autoencoders in rain removal tasks.

Another key point is the need to establish well-defined metrics to measure
the performance of the proposed algorithms. When authors employ no
metrics, there is no way to compare the results aside from subjective
criteria. Although it may be hard to obtain pairs of ground-truth and
degraded images our work shows it is possible to generate synthetic rain
images with relative ease. We also show that results obtained by employing
such images for training can be extrapolated to the removal of rain from real
images.

Wrapping up, the field of single-image rain removal has seen considerable
advances since the start of the 2010 decade. Future work should center on
implementing more precise autoencoder architectures and carrying out in-
depth analyses of the features they encode. Particularly, we are interested
in combining frequency filters with autoencoder architectures in order to
minimize detail loss and to improve our current results.

Bibliographic references

1. K. Park, S. Yu, and J. Jeong, “A contrast restoration method for
effective single image rain removal algorithm,” 2018 Int. Work.
Adv. Image Technol. IWAIT 2018, pp. 1–4, 2018.
https://doi.org/10.1109/IWAIT.2018.8369644.

2. P. X. Minmin Shen, “A fast algorithm for rain detection and
removal from videos,” Current, pp. 1–6, 2011.
https://doi.org/10.1109/ICME.2011.6011963.

3. Y. Sun, X. Duan, H. Zhang, and Y. Zhijing, “A Removal Algorithm of
Rain and Snow from Images Based on Fuzzy Connectedness,” in
International Conference on Computer Application and System
Modeling, , vol. 5, pp. 478–48 2010.

https://doi.org/10.17081/invinno.8.1.3608

Alberto Ceballos-Arroyo, Sergio Robles-Serrano,German Sanchez-Torres

Revista Investigación e Innovación en Ingenierías, vol. 8, n°. 1, pp. 140-167, enero – junio 2020

DOI: https://doi.org/10.17081/invinno.8.1.3608

4. Y. Wang, S. Liu, C. Chen, and B. Zeng, “A Hierarchical Approach
for Rain or Snow Removing in a Single Color Image,” IEEE Trans.
Image Process., vol. 26, no. 8, pp. 3936–3950, 2017.
https://doi.org/10.1109/TIP.2017.2708502.

5. H. Dong and X. Zhao, “Detection and removal of rain and snow
from videos based on frame difference method,” Proc. 2015 27th
Chinese Control Decis. Conf., pp. 5139–5143, 2015.
https://doi.org/10.1109/CCDC.2015.7162843.

6. J. Xu, W. Zhao, P. Liu, and X. Tang, “Removing rain and snow in a
single image using guided filter,” in 2012 IEEE International
Conference on Computer Science and Automation Engineering,
2012, vol. 2, no. 2, pp. 304–307.
https://doi.org/10.1109/CSAE.2012.6272780.

7. L. W. Kang, C. W. Lin, and Y. H. Fu, “Automatic single-image-based
rain streaks removal via image decomposition,” IEEE Trans.
Image Process., vol. 21, no. 4, pp. 1742–1755, 2012.
https://doi.org/10.1109/TIP.2011.2179057.

8. X. Fu, J. Huang, D. Zeng, Y. Huang, X. Ding, and J. Paisley,
“Removing rain from single images via a deep detail network,” in
Proceedings - 30th IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2017, 2017, vol. 2017-Janua, pp.
1715–1723. https://doi.org/10.1109/CVPR.2017.186.

9. K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” in 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016, pp. 770–778.
https://doi.org/10.1109/CVPR.2016.90.

10. L. Gondara, “Medical Image Denoising Using Convolutional
Denoising Autoencoders,” in IEEE International Conference on
Data Mining Workshops, ICDMW, 2016.
https://doi.org/10.1109/ICDMW.2016.0041.

11. H. Zhang, V. Sindagi, and V. M. Patel, “Image De-raining Using a
Conditional Generative Adversarial Network,” IEEE Trans. Circuits
Syst. Video Technol., vol. PP, no. c, pp. 1–1, 2019.
https://doi.org/10.1109/TCSVT.2019.2920407.

12. S. H. Sun, S. P. Fan, and Y. C. F. Wang, “Exploiting image structural
similarity for single image rain removal,” in IEEE International
Conference on Image Processing, pp. 4482–4486, 2014.
https://doi.org/10.1109/ICIP.2014.7025909.

13. K. He, J. Sun, and X. Tang, “Guided Image Filtering,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 35, 2012.
https://doi.org/10.1109/TPAMI.2012.213.

https://doi.org/10.17081/invinno.8.1.3608

Removing rain from images by means of an autoencoder architecture

Revista Investigación e Innovación en Ingenierías, vol. 8, n°. 1, pp. 140-167, enero – junio 2020

DOI: https://doi.org/10.17081/invinno.8.1.3608

14. X. Zheng, Y. Liao, W. Guo, X. Fu, and X. Ding, “Single-image-based
rain and snow removal using multi-guided filter,” in ICONIP:
International Conference on Neural Information Processing, vol.
8228 LNCS, no. PART 3, pp. 258–265, 2013.
https://doi.org/10.1007/978-3-642-42051-1_33.

15. J. Xu, W. Zhao, P. Liu, and X. Tang, “An Improved Guidance Image
Based Method to Remove Rain and Snow in a Single Image,”
Comput. Inf. Sci., vol. 5, no. 3, pp. 49–55, 2012.
https://doi.org/10.5539/cis.v5n3p49.

16. S. C. Pei, Y. T. Tsai, and C. Y. Lee, “Removing rain and snow in a
single image using saturation and visibility features,” in 2014 IEEE
International Conference on Multimedia and Expo Workshops,
ICMEW 2014, pp. 2–7, 2014.
https://doi.org/10.1109/ICMEW.2014.6890551.

17. Z. Zeng, Y. Li, and I. King, “Content-Adaptive Rain and Snow
Removal Algorithms for Single Image,” Lect. Notes Comput. Sci.
(including Subser. Lect. Notes Artif. Intell. Lect. Notes
Bioinformatics), pp. 439–448, 2014.
https://doi.org/10.1007/978-3-319-12436-0_49.

18. C. Liu, Y. Pang, J. Wang, A. Yang, and J. Pan, “Frequency Domain
Directional Filtering Based Rain Streaks Removal from a Single
Color Image,” in International Conference on Intelligent
Computing, pp. 415–424, 2014. https://doi.org/10.1007/978-3-
319-09333-8_45.

19. Y. Li, R. T. Tan, X. Guo, J. Lu, S. Member, and M. S. Brown, “Rain
Streak Removal Using Layer Priors,” vol. 26, no. 8, pp. 3874–3885,
2017. https://doi.org/10.1109/CVPR.2016.299.

20. L. J. Deng, T. Z. Huang, X. Le Zhao, and T. X. Jiang, “A directional
global sparse model for single image rain removal,” Appl. Math.
Model., vol. 59, pp. 662–679, 2018.
https://doi.org/10.1016/j.apm.2018.03.001.

21. S. Du, Y. Liu, M. Ye, Z. Xu, J. Li, and J. Liu, “Single image deraining
via decorrelating the rain streaks and background scene in
gradient domain,” Pattern Recognit., vol. 79, pp. 303–317, 2018.
https://doi.org/10.1016/j.patcog.2018.02.016.

22. Y. Luo, Y. Xu, and H. Ji, “Removing rain from a single image via
discriminative sparse coding,” in Proceedings of the IEEE
International Conference on Computer Vision, 2015.
https://doi.org/10.1109/ICCV.2015.388.

23. R. Mondal, P. Purkait, S. Santra, and B. Chanda, “Morphological
Networks for Image De-raining,” in International Conference on

https://doi.org/10.17081/invinno.8.1.3608

Alberto Ceballos-Arroyo, Sergio Robles-Serrano,German Sanchez-Torres

Revista Investigación e Innovación en Ingenierías, vol. 8, n°. 1, pp. 140-167, enero – junio 2020

DOI: https://doi.org/10.17081/invinno.8.1.3608

Discrete Geometry for Computer Imagery, pp. 262–275, 2019.
https://doi.org/10.1007/978-3-030-14085-4_21.

24. I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. The MIT
Press, 2016. https://doi.org/10.1007/s10710-017-9314-z.

25. Q. Zhang, L. T. Yang, Z. Chen, and P. Li, “A survey on deep learning
for big data,” Inf. Fusion, vol. 42, no. October 2017, pp. 146–157,
2018. https://doi.org/10.1016/j.inffus.2017.10.006.

26. K. Iqbal, M. Odetayo, and A. James, “Enhancing the low quality
images using Unsupervised Colour Correction Method,” 2010,
pp. 1703–1709. https://doi.org/10.1109/ICSMC.2010.5642311.

27. Adobe, “PDF Blend Modes : Addendum,” 2006.

28. A. E. Dirik and N. Nemon, “Image tamper detection based on
demosaicing artifacts,” Comput. Eng., pp. 1497–1500, 2009.
https://doi.org/10.1109/ICIP.2009.5414611.

29. P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik, “Contour
detection and hierarchical image segmentation,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 33, no. 5, pp. 898–916, 2011.
https://doi.org/10.1109/TPAMI.2010.161.

30. G. Schaefer and M. Stich, “UCID: an uncompressed color image
database,” in Proceedings of SPIE 5307, 2003.
https://doi.org/10.1117/12.525375.

31. X. Fu, J. Huang, X. Ding, Y. Liao, and J. Paisley, “Clearing the skies:
A deep network architecture for single-image rain removal,” IEEE
Trans. Image Process., vol. 26, no. 6, pp. 2944–2956, 2017.
https://doi.org/10.1109/TIP.2017.2691802.

32. X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” Proc. Thirteen. Int. Conf.
Artif. Intell. Stat., vol. 9, pp. 249–256, 2010. https://doi.org/
10.1.1.207.2059

33. S. Khirirat, H. R. Feyzmahdavian, and M. Johansson, “Mini-batch
gradient descent: Faster convergence under data sparsity,” 2017
IEEE 56th Annu. Conf. Decis. Control. CDC 2017, vol. 2018-
January, no. Cdc, pp. 2880–2887, 2018.
https://doi.org/10.1109/CDC.2017.8264077.

34. K. Yuan, B. Ying, J. Liu, and A. H. Sayed, “Variance-Reduced
Stochastic Learning by Networked Agents under Random
Reshuffling,” IEEE Trans. Signal Process., vol. 67, no. 2, pp. 351–
366, 2019. https://doi.org/10.1109/TSP.2018.2872003.

https://doi.org/10.17081/invinno.8.1.3608

Removing rain from images by means of an autoencoder architecture

Revista Investigación e Innovación en Ingenierías, vol. 8, n°. 1, pp. 140-167, enero – junio 2020

DOI: https://doi.org/10.17081/invinno.8.1.3608

35. D. P. Kingma and J. Ba, “Adam: A Method for Stochastic
Optimization,” in International Conference on Learning
Representations, 2015.

https://doi.org/10.17081/invinno.8.1.3608

