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Abstract 
Objective: To use computational techniques for removing rain from images. This is motivated 
by the fact that for many computer vision systems, correctly capturing the scene is a key need, 
and if such systems receive images degraded by rain as input, their performance may be 
compromised.  Methodology: We built a dataset comprised by 11000 synthetic rain images. 
We resized and normalized all the images, then we employed 9000 of them for training the 
autoencoder architecture. The autoencoder outputs a de-rained version of the image which is 
then lighting corrected in order to produce the final, de-rained image. Results: We determined 
the best autoencoder architecture was a 6-layer autoencoder. We evaluated it on the 
remaining 2000 images, resulting in a Mean Squared Error of 0.61 and Structural Similarity 
Index of 0.8493, which means a fair amount of information from the rain-degraded images 
was recovered. Conclusions: The results we obtained were superior to proposals based in the 
spatial / frequency domain reported in the literature. However, we determined that it is 
possible to improve on the current results if we consider the frequency domain as part of the 
architecture. Thus, options for future work include combining machine learning-based 
approaches with frequency domain-based image processing. 

Keywords: Image processing, noise removal, rain removal, autoencoder. 

Resumen 
Objetivo: Usar técnicas computacionales para eliminar lluvia en imágenes. La motivación 
viene dada por el hecho de que, para muchos sistemas de visión por computadora, es clave 
capturar correctamente la escena, y si estos sistemas reciben imágenes degradadas por lluvia 
como entrada, su funcionamiento puede verse comprometido. Metodología: Se creó un 
conjunto de datos compuesto por 11000 imágenes sintéticas de lluvia. Estas fueron 
redimensionadas y normalizadas, para luego utilizar 9000 de ellas como conjunto de 
entrenamiento en la arquitectura autoencoder. El autoencoder genera una versión sin lluvia 
de la imagen, la cual es pasada a una etapa de corrección de iluminación para producir la 
imagen final sin lluvia. Resultados: Se encontró que el mejor desempeño lo cumple el 
autoencoder de 6 capas. Se evaluó con las 2000 imágenes restantes, lo que resultó en un error 
cuadrático medio de 0,61 y un índice de similitud estructural de 0,8493. Esto significa que el 
modelo fue capaz de recuperar una gran cantidad de información original de las imágenes 
degradadas por la lluvia.  Conclusiones: Los resultados obtenidos son superiores a aquellos de 
la literatura que se basan en el dominio espacial / frecuencial. Se determinó, sin embargo, que 
es posible obtener mejores resultados si se considera el dominio de la frecuencia como parte 
de la arquitectura, debido a las propiedades de esta. Por lo tanto, se propone a futuro 
combinar enfoques basados en el aprendizaje de máquina con el procesamiento de imágenes 
basado en el dominio de la frecuencia 

Palabras claves: Procesamiento de imágenes, eliminación de ruido, eliminación de lluvia, 
autoencoder. 
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Introduction 
 
Computer vision systems are prevalent in both industry and research, due 
to many technological applications having a strong visual component [1,2]. 
Several kinds of climate conditions exist, both dynamic and static [3, 4]. 
Among dynamic climate conditions, we can find rain. Rain has a negative 
impact on the performance of computer vision systems exposed to it [3,5], 
as a result of rain droplets having particular features and occluding the scene 
behind them. These elements and their streaks vary in size depending on 
wind and image acquisition conditions, and almost always cover several 
pixels [5]. Because of this, researchers treat single-image rain removal as a 
denoising problem [6,7]. 

Denoising techniques are employed to obtain an approximation of a ground-
truth image from a degraded one [7]. In the literature, authors present 
several approaches for restoring images degraded by rain. These can be 
classified into two main categories: methods based on spatial and frequency 
analysis [4], and methods based on learning [8]. Spatial/frequency-based 
approaches are based on removing rain from images by means of filters or 
decompositions, while learning-based methods remove rain by modeling 
the relationship between ground-truth images and degraded images 
through machine learning or other kinds of learning algorithms. 

Deep learning architectures trained on synthetic images have been 
employed in recent work for removing noise (including rain) from images [8]. 
In such work, network architectures are often based on the ResNet residual 
learning framework [9]. Another approach is the use of autoencoders, which 
learn to reconstruct data from compressed representations and have been 
used for image denoising [10]. However, autoencoders have not yet been 
employed for removing rain from single images. For this reason, we propose 
implementing an autoencoder architecture for rain removal.  

Regardless of the approach, some metric must be employed to measure how 
well algorithms restore degraded images [11]. When there exist pairs of 
degraded and ground-truth images, this process is straightforward: it is only 
necessary to measure error between both. Some quantitative metrics are 
the Mean Square Error (MSE), Peak Signal-to-Noise Ratio (PSNR), and 
Structural Similarity Index (SSIM) [11]. Qualitative metrics such as perceived 
visibility can also be employed, if there exists no set of ground-truth images, 
or if there is a need for complementing quantitative metrics [8,12]. 

We provide an overview of how rain degrades images in Section II. In Section 
III, we analyze several rain removal approaches, the autoencoder 
architecture, and the most frequent quality metrics currently employed. In 
Section IV we propose an algorithm for generating simulated rain images 
from a dataset of 2000 ground-truth images. Next, in Section V, we propose 
an autoencoder architecture for removing rain from single images. Finally, 
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in Sections VI and VII we show our results as well as our conclusions and 
insight for future research. 

Figure 1. Taxonomy of visibility-degrading climate conditions in images 

 

 

 

 

 

Source: Own production 

 

Context 
There exist several kinds of climate conditions that have an impact on image 
quality. The two main categories are static and dynamic conditions. Static 
conditions include haze and fog. Dynamic conditions are comprised of rain 
and snow [3,12]. Only rain is considered in the scope of this work. Rain can 
take different forms in images: either as a full element (rain droplet), or as a 
streak resulting from the camera not having enough exposure time. Figure 1 
depicts this taxonomy. Due to reflection, pixels degraded by rain have higher 
intensity levels than their neighbors [4]. Furthermore, the shape of such 
elements can vary depending on their size, as well as on wind speed and 
direction [6]. 

Rain is semitransparent and does not fully occlude the objects; instead, it 
blurs them. In consequence, if background intensity levels are low, rain 
intensity levels become higher [4]. Otherwise, the latter will be lower. 
Furthermore, streaks left by rain when exposure time is high, share the same 
general direction in the whole image. Figure 2 shows an example of an image 
degraded by rain. The radius of rain droplets, when approximated to 
spheres, ranges between 0.1mm and 3.5mm, although most of them have a 
radius of less than 1mm [5].  

The rain removal problem 
We treat the issue of restoring images degraded by rain as a noise removal 
problem. Under many models, authors consider noise to be additive, as 
shown in (1).  

𝐺(𝑥, 𝑦) = 𝐼𝑂(𝑥, 𝑦) + 𝐼𝑁(𝑥, 𝑦)                                                                                                      (1) 
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Figure 2. An example of an image degraded by rain  

 

Source: [6] 

 

Where G is the acquired image, 𝐼𝑂 is the ground-truth image and 𝐼𝑁 is the 
noisy layer. However, we cannot apply predetermined noise models in the 
case of rain-degraded images, resulting in the need for implementing more 
elaborate techniques. Regarding the camera, parameters such as exposure 
time, depth of field, and lighting conditions are relevant [6].  

Previous work 
In this section we describe the taxonomy of single-image rain removal 
techniques. This results in two main categories: spatial/frequency filtering-
based methods, and learning-based methods [4,8]. Other categories, such 
as methods based on temporal connectivity, are outside the scope of single-
image rain removal. For each category, we provide a brief description as well 
as details of some relevant work. We delve deeper into the strengths and 
limitations of each referenced paper in Table 1. 

 

Spatial/frequency-based-filtering 
One option for treating rain in single images is to employ spatial/frequency-
domain filters. Spatial-based filters involve using morphological techniques 
or convolution filters for removing rain while retaining the highest amount 
of detail from the scene. Authors in the literature employ these techniques 
when the attributes of rain are known, and they base their filters on the size 
and shape of these elements.  

Xu et al. [6] use a guided filter for removing rain. The guided filter is an edge-
preserving spatial filter for removing noise in images [13]. Its inputs are the 
image to be processed and a guidance image which can either be the same 
image or a version of it where border information is highlighted. In their 
work, the authors [6] employ a gray-scale version of the original image as 
the guidance image. Their implementation removes rain to an acceptable 
degree; however, it does not preserve details from elements such as 
characters, symbols, and signs. For this reason, it is not appropriate for 
certain applications that might require preserving such details, although it 
makes segmentation tasks easier.  

Frequency-based filters are instead employed to remove rain, based on the 
analysis of highly frequent patterns [1]. For instance, some authors remove 
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high frequency elements with low pass filters in the frequency domain. 
Although frequency-based approaches are effective by themselves, 
researchers may employ them together with spatial filters for better results. 
This can be done in several ways. One option is to decompose the image into 
its low frequency (LF) and high frequency (HF) components for reducing 
noise with a spatial filter. Another option is to employ frequency-based 
filters for removing rain components and spatial-based filters for smoothing 
the resulting image. 

Zheng et al., [14] improve upon the algorithm proposed in [6] by employing 
a multi-guided filter. They first separate the LF and HF components of the 
image with a guided filter. Then, they enhance the edges in the LF 
component. Afterward, they apply another guided filter on the HF 
component, which contains most of the rain, using the enhanced LF 
component as the guidance image. The next step consists in combining the 
processed LF and HF components to obtain the recovered image. The 
authors then generate a slightly deblurred version of the recovered image 
by creating a new image from the pixel-wise minimums between the 
ground-truth image and the recovered one. Finally, they use the deblurred 
image as a basis for one last run of the guided filter on the recovered image. 
They remove slightly more rain than [6] while retaining detail from 
characters, symbols and signs (see Figure 3). Processing time is however 
increased by cause of the guided filter executions. Furthermore, the authors 
do not employ any quantitative quality metric in their study. 

In general, spatial and frequency domain-based methods are efficient for 
removing rain from single images [6, 14, 15, 16, 17]. Whereas most 
proposals apply filters globally, some take into account local features 
resulting in greatly enhanced images [18]. Running times depend on the 
complexity of the de-raining pipeline, with some of the more elaborate 
proposals being slower to run [14]. These methods do not require a set of 
training images, making them easier to implement when little data is 
available [6, 15] However, in some cases this means the default 
configurations of these algorithms may need to be adjusted for cases where 
rain is heavier [18].  

Furthermore, in some proposals the resulting images are slightly blurred and 
small details which might be necessary for some applications are not 
preserved [6, 15, 17] . In some instances, however, further segmentation 
tasks are eased due to edge enhancement [6, 14, 19]. Another issue, which 
is common in this category, is the lack of quantitative methods for measuring 
de-raining quality, which makes it difficult to assess effectiveness [6, 14, 15, 
16, 18]. 

Learning-based methods 
Some authors propose learning-based techniques for removing rain in single 
images. These methods are comprised of architectures to learn to detect 
and remove rain droplets and streaks. Two main categories of learning-
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based methods exist in rain removal literature: dictionary learning and 
machine learning methods. 

Figure 3. Image restored by means of the multi-guided filter approach. To the left, the original 
image. To the right, the restored version 
 

 

Source: [14] 

In dictionary learning methods, the authors map visual features into sparse 
structures composed of elements called atoms. Atoms are linear 
combinations of the most representative elements from an image [7]. Once 
a collection of atoms (that is, a dictionary) is built, the authors can then 
reconstruct the image, removing certain visual elements from it. In the case 
of images degraded by rain, some authors partition the images into LF and 
HF components by means of spatial and frequency filters, such as the guided 
filter and the bilateral filter.  

Most rain streaks in an image are present in its HF component, therefore, 
the authors can train the dictionaries on these components while ignoring 
the low-frequency portion. As a result, they can obtain a dictionary 
comprised mostly by rain atoms. Due to the properties of rain, these atoms 
are similar among themselves. Hence, a denoised version of the HF 
component can be obtained by grouping together rain atoms and moving 
them into another dictionary [4]. 

Kang, Lin, and Fu [7] propose a method for removing rain elements from the 
image based on dictionary learning. They first decompose the image into HF 
and LF components by using a bilateral filter. Next, they employ 
morphological components analysis (MCA) for creating a sparse dictionary 
of both rain and non-rain components in the HF component, represented as 
15x15 patches. Afterward, they divide the dictionary into two by performing 
HOG (Histogram of Gradients) based atom clustering. The next step consists 
in carrying out sparse coding based on the two dictionaries for obtaining a 
rainless version of the HF component. Finally, they combine the restored HF 
component with the LF one for obtaining the denoised image. Their method 
efficiently removes rain from single images. Furthermore, it is self-
contained, meaning it does not require a training dataset. However, 
processing times are elevated. 

In general, dictionary learning-based methods are highly effective at 
removing rain from single images while preserving detail since they are 
mostly based on the processing of local features [4, 12, 20, 21, 22]. This 
sometimes results in some degree of detail loss when dealing with images 
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with elements similar to rain streaks, since some non-rain features might be 
treated as rain [22]. Furthermore, processing times are often elevated and 
the de-raining pipeline often includes spatial and frequency domain-based 
algorithms which add to the computational costs [4, 12]. However, unlike 
such methods, most dictionary learning-based proposals are evaluated with 
quantitative metrics such as SSIM and PSNR [4, 20, 21, 22]. In addition, they 
do not require sizable datasets, unlike the machine learning approach, 
although this results in a lower capability for generalizing to cases such as 
images taken under heavy rain conditions [4, 20, 22]. 
 
The machine learning approach involves training machine learning methods 
with datasets of noisy and clean image pairs. Ideally, these algorithms should 
learn the relationship between a clear, noise-free image and a counterpart 
degraded by rain. Although reasonable results can be obtained with 
traditional machine learning methods, treatment of high-resolution images 
is difficult to carry out without more modern deep learning techniques. Deep 
architectures can codify visual features in their layers and help remove 
complex noise conditions such as rain. However, they require sizable training 
datasets for learning the required relationships [8, 23]. 
 
Fu et al., [8] propose using a deep detail network for removing rain from 
single images. In their work, they employ a deep detail network based on a 
deep residual network (ResNet). In such architectures, the dimensionality of 
the input is reduced for obtaining better results. They improve the rain 
removal process by training the network on the HF component of the rainy 
images, removing background interference. Their loss metric is the residual 
between the ground-truth images and their noisy counterparts. They train 
their algorithm with a dataset of 14000 original image-synthetic image pairs. 
They measure the results on the dataset using SSIM, with an average 
precision of 0.86. To measure quality on actual rainy images, they instead 
use a subjective visual quality metric. The drawbacks of their architecture 
include elevated training times and the need for a sizable dataset. 
 
Mondal  et al., [23] proposed a deep de-raining neural network based on 
trainable mathematical morphological operators. Such operators are often 
useful for image de-raining only if their shape and size is adjusted to the 
conditions of individual images. Thus, by learning the shapes of dilation and 
erosion operators based on a dataset comprised of 1000 clean-rainy image 
pairs, they were able to effectively address the de-raining problem with a 
relatively small (and thus fast) neural network. They measured their results 
using the SSIM and PSNR metrics, reaching 0.92 SSIM and 28.03 PSNR.  They 
also evaluated their proposal qualitatively, based on real rain images. 

Deep learning architectures 
The most common deep learning approach is to employ Artificial Neural 
Networks (ANNs) [24]. ANNs are biologically inspired machine learning 
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algorithms comprised of several layers, each of which consists of several 
nodes or artificial neurons. Nodes in one layer are connected to those of the 
next by weights, thus allowing the network to model arbitrary functions. 
Except for the input nodes (that is, the raw input data), ANN nodes contain 
activation functions for processing the data passed by previous layers. Layers 
in an ANN can be classified into input layers, which represent input data and 
dimensionality, hidden layers, which consist of activation functions that 
manipulate data, and the output layer, which is comprised of one or more 
nodes representing the target function. 
 
The way supervised ANNs learn patterns is by processing labeled data. In 
each training iteration, the weights are adjusted by means of forward-
propagation and back-propagation. In forward-propagation, input data is 
passed through every layer l in the network. These layers are comprised of 
several nodes. Each node consists of a linearity (see Eq. 2) and an activation 
function g (see Eq. 3) through which the data (input X or the output of 
another layer) is processed prior to being passed to the next layer. This 
process usually implies changes in dimensionality as the input data is passed 
deeper into the network. 
 

𝑍[𝑙] =  𝑊[𝑙]𝐴[𝑙−1] + 𝑏[𝑙]                                                                                                                   (2) 

𝐴[𝑙] =  𝑔(𝑍[𝑙])                                                                                                                                    (3) 

 

Where 𝑊[𝑙] is the array containing the weights and  𝑏[𝑙] is the bias, both 

corresponding to layer l, 𝐴[𝑙−1] is the activation output by layer l-1, and g is 
a non-linear activation function.  
 
Once data reaches the last layer of a supervised ANN, the next step is to 
calculate prediction loss. The evaluation of how similar the results of the 
network are to the reference, labeled data is done by means of a loss 
function. For the purposes of denoising images, pixelwise comparison 
functions such as the Mean Squared Error are often employed (4). The total 
loss J (also deemed cost) is thus the average of the loss function L evaluated 
on the full dataset (5). 
 
𝐿(𝑖) =  

1

𝑤𝑖𝑑𝑡ℎ∗ℎ𝑒𝑖𝑔ℎ𝑡
∑ ∑  (𝑦(𝑖)[𝑘,𝑗] − �̂�(𝑖)[𝑘,𝑗])2ℎ𝑒𝑖𝑔ℎ𝑡

𝑗=1
𝑤𝑖𝑑𝑡ℎ
𝑘=1                                                               (4) 

 

𝐽 =  
1

𝑀
∑ 𝐿(𝑦(𝑖) − �̂�(𝑖))𝑀

𝑖=1                                                                                                                 (5) 

 

For a training set with M training instances, �̂�(𝑖) is the predicted value, and 

𝑦(𝑖) is the ground truth value, for training example i. In the case of image 

denoising,  �̂�(𝑖) is a denoised version of image i and loss L is the average of 
the loss function for the pixels in the predicted denoised image and the 
ground truth image with no noise. 
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On the other hand, back-propagation aims to minimize prediction loss based 
on the optimization of the weight and bias values. In the literature, one of 
the earliest optimization methods to be employed was batch gradient 
descent, where the optimizable parameters are updated once for every 
training iteration (epoch) based on the full dataset, as in (6). Once the 
training process finishes, the ANNs can be used to carry out predictions on 
unknown data. In the case of batch gradient descent, the weights and bias 
terms are updated as in (6) and (7). 
 
𝑊𝑛𝑒𝑥𝑡 =  𝑊 −  𝛿∆𝑊                                                                                                                      (6) 
𝑏𝑛𝑒𝑥𝑡 =  𝑏 −  𝛿∆𝑏                                                                                                                            (7) 

 
where 𝑊𝑛𝑒𝑥𝑡 is the updated weight array, W is the current set of weights, 
𝑏𝑛𝑒𝑥𝑡 is the updated bias term, b is the current bias term, 𝛿 is the learning 
rate (a hyperparameter which determines how fast the parameters should 
be optimized), and ∆𝑊 and ∆𝑏 are the gradients for W and b respectively.  
The increase in the availability of computational resources, as well as 
advanced research in backpropagation methods, have allowed researchers 
to employ deeper machine learning architectures [25].  Deep artificial neural 
networks consist of many hidden layers, thus allowing for the modeling of 
more complex computational problems. In the case of image denoising, 
Convolutional Neural Networks (CNNs) are often employed. This is done 
because their multi-layered structure learns visual features in the form of 
convolutional filters. 
Layers in CNNs are structured differently from standard ANNs. Hidden layers 
in CNNs are comprised of trainable convolutional filters, akin to traditional 
blurring and edge detection kernels, and non-trainable pooling filters which 
can be used for reducing the dimensionality of data as it is passed into the 
deeper layers of the network. Another difference with respect to ANNs is 
that convolutional filters are not fully connected, that is, connections 
between two layers are handled in a localized manner, greatly reducing the 
number of trainable parameters. In this way, the input data X is transformed 
and stacked into differently shaped volumes of data when passed through 
the convolutional layers, as described in Eq. (8): 
 
𝐴[𝑙] = 𝑔(𝑊[𝑙] ∗ 𝑋  +  𝑏[𝑙])                                                                                         (8) 
 
where ∗ is the convolution operator, g is an activation function, W is the 
weight array, b is the bias term, and A is the output of layer l. Of great 
importance for the convolution operation is its effect on the resulting shape 
of data, which is determined by the stride s and padding p parameters, as 
well as kernel size k. The relationship between an input volume of height and 
width i, and the height and width o of the output volume, is defined in Eq. 
(9). 
 

𝑜 =  ⌊
𝑖+2𝑝−𝑘

𝑠
⌋ + 1                                                                                                                           (9) 
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The max-pooling operation is based on stride s and padding p. In this 
operation, a sliding window is passed over each channel of the input volume 
such that the pixels in each channel of the output volume take the maximum 
local value in each window defined by s, p, and k, as in Eq. (10). 
 

𝑜 =  ⌊
𝑖−𝑘

𝑠
⌋ + 1                                                                                                                                  (10) 

 
Another relevant operation for our work is the transposed convolution 
operation, which maps lower dimensional into bigger higher dimensional 
content. This is done by reversing the order of the forward and backward 
passes in the standard convolution operation, thus enabling us to generate 
denoised images with the same resolution than that of the input images. 
When carrying out image denoising, deep CNNs with an autoencoder 
architecture are often employed [10]. Autoencoders learn to compress data 
and to reconstruct a modified version of it depending on the objective 
function.  In the case of image denoising, these networks learn to produce a 
denoised version of every pixel in the noisy image. 
 

Autoencoder architectures 
An autoencoder is a computational model comprised of a codifier and a 
decodifier. The main task of such a model is to learn to codify and decodify 
a given input. This is particularly useful when trying to represent data with a 
smaller set of features and when trying to reconstruct it while removing 
undesired features [24]. There exist several kinds of autoencoders and they 
can be employed to solve various problems. For instance, it is possible to 
train an autoencoder to return modified versions of the input data. One such 
example is the denoising autoencoder, which is capable of learning to 
remove noise from data. Autoencoders codify data (that is, they reduce it to 
its basic components) and then reconstruct it through the decodifier [10]. 

Likewise, there exist autoencoders capable of generating information. For 
example, an autoencoder can be trained to restore information lost in 
degraded sections of an image, such as human faces. This depends, mostly, 
on the output associated to each input, which allows the model to be 
adjusted in order to obtain the expected results. Figure 4 depicts a typical 
autoencoder architecture, whereas Figure 5 depicts our proposed 
methodology. 
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Metrics for image quality 

There exist several metrics in the literature to measure the accuracy of 
methods for removing rain in single images. These include: MSE [20], PSNR 
[3], SSIM [3], Visual Image Fidelity (VIF) [17], and Feature Similarity (FSIM) 
[17].  
 

Figure 4. A typical autoencoder architecture 

 

Source: Own production 
 

Figure 5. Proposed methodology for image deraining using autoencoders 

 

Source: Own production 

Image quality metrics measure image similarity in various ways, however, all 
of them require a degraded image and a ground-truth image for measuring 
restoration quality. 

These metrics are not only intended for verifying image restoration quality. 
For example, Sun, Fan, and Wang [12] use the SSIM metric for classifying 
dictionary atoms as rain and non-rain. On the other side, machine learning 
methods [8] may include one or more of these metrics as part of their loss 
functions, which guide the training process. In our work, we intend to 
employ three metrics to measure denoising quality: MSE, PSNR and SSIM. 
 

Mean Square Error 
In statistics, the mean square error (MSE) of a model measures the average 
of the square of the errors, that is, the difference between the model and 
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the ground truth. The mean of the pixelwise difference between values of 
two images can be computed through MSE, as shown in Equation 11. 

𝑀𝑆𝐸 =  
1

𝑀𝑁
∑ ∑ || 𝐼(𝑖, 𝑗) − 𝐾(𝑖, 𝑗) ||2𝑁−1

𝑗=0
𝑀−1
𝑖=0                                                                            (11) 

Where M, N are the dimensions of the ground-truth image I and the restored 
image K. 

Peak Signal-to-Noise Ratio 
The Peak Signal-to-Noise Ratio (PSNR) defines the relation between the 
maximum possible energy for a signal and the noise that degrades its 
representation. PSNR is usually expressed logarithmically, using the decibel 
as unit. It can be computed based on MSE as shown in Equation 12. 

𝑃𝑆𝑁𝑅 =  10 ∗ 𝑙𝑜𝑔10 (
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
)                                                                                                              (12) 

 

Where 𝑀𝐴𝑋𝐼 is the maximum value the signal can take, which is usually 255 
for 8-bit images. 

Structural Similarity Index 
Also known as SSIM, this metric is employed to measure similarity between 
two images. Unlike MSE and PSNR, it considers structural neighborhood 
information. It is calculated based on Equation 13. 

 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =  
(2𝜇𝑥𝜇𝑦 + 𝐶1 )(2𝜎𝑥𝑦 + 𝐶2 )

(𝜇𝑥
2 + 𝜇𝑦

2  + 𝐶1 )(𝜎𝑥
2+ 𝜎𝑦

2 + 𝐶2)
                                                                                       (13) 

 

Where x, y are N*N windows extracted from the ground-truth and the 
restored image, 𝜇𝑥 is the mean of x, 𝜇𝑦 is the mean of y, 𝜇𝑥

2 is the variance 

of x, 𝜇𝑦
2  is the variance of y, 𝜎𝑥𝑦 is the covariance of x, y, and 𝑐1, 𝑐2 are 

stabilization parameters. 

Authors of proposals for solving other image enhancement problems, 
employ border detection precision and histogram analysis [26] when no 
pairs of noisy and ground-truth images exist, albeit no such technique was 
employed in the reviewed literature. 

Methodology 
 

Synthetic dataset generation 
We built a synthetic dataset of rain-degraded images based on the following 
assumptions: 

 All rain streaks in an image have the same general direction. 
 The angle of rain streaks relative to the Y axis ranges from -45° to 45°. 
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 The position of each rain streak in a single image is random. 
 

The steps of our synthetic rain image generation algorithm are as follows: 
 Generate an empty mask M with the same size as the original image 

I. 
 Apply uniform noise on a portion p of the pixels in M. 
 Apply a vertical blur filter with size L on M. 
 Apply a rotation transformation on M, with random angle θ taking 

values from -45° to 45°. 
 Combine I and M based on the screen-blend mode, as in equation 14 

[27]. 
 
𝐺(𝑥, 𝑦) = 255 − (255 − 𝐼(𝑥, 𝑦)) ∗ (255 − 𝑀(𝑥, 𝑦))                                                             (14) 

  
Our ground-truth image database is comprised by 2200 images compiled 
from various datasets. These datasets are oriented toward tasks like noise 
removal and scene recognition, and thus provide us with a wide selection of 
natural scenes [28, 29,30, 31]. Figure 6 depicts an example of an image from 
the dataset and its synthetic counterpart. 
 
Based on our algorithm for synthetic rain image generation, we generated 
11000 synthetic images using different values of p. 
 
 

Figure 6. To the left, the original image. To the right, a version of the same image degraded 
with synthetic rain 

 

Source: Own production 

 
The methodology followed in this paper is comprised of several steps. First, 
preprocessing (resizing and normalization) is carried out on the dataset 
produced in section IV. Then, a convolutional denoising autoencoder is 
trained and used to denoise rain images. Finally, postprocessing in the form 
of lighting correction is carried out on the resulting images. This process is 
summarized in Figure 5, while the detailed neural network architecture is 
described in Figure 7. 
 

Preprocessing 
Images in the dataset were normalized by subtracting the mean of the 
dataset and dividing each image by the standard deviation of the dataset, as 
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shown in Eq. (15). In this way, we intend to improve performance by only 
passing centered data through the network, as per the literature [24]. 
 

𝑋𝑛𝑜𝑟𝑚𝑒𝑑 =  
�̅�

𝜎𝑋
2                                                                                                                                  (15) 

 
The other preprocessing steps was to resize every image to 256x256x3 pixels 
and to split the dataset as shown in Table 1. 
 
Table 1. Training, development, and test dataset splits  

Set Percentage (%) Images 

Training 81.8% 9000 

Development 9.09% 1000 

Test 9.09% 1000 

Source: Own production  

Autoencoder architecture 
A widely employed autoencoder architecture is the convolutional 
autoencoder. The reason for using convolutional layers in an autoencoder is 
their effectiveness when built into neural networks for image-related tasks. 
The weights of such layers are modelled differently from traditional ones, as 
they are based on convolutional image filters. That is, convolutional layer 
weights are image filters, and they can be described as follows: 
 

ℎ𝑖 = 𝑠(𝑥 ∗  𝑊𝑖  +  𝑏𝑖)                                                                                            

 

Where ∗ is a convolution, s is an activation function, W is the weight, b is the 
bias, and h is the output of the layer. 

 

Weight initialization 
The weights in the architecture were initialized using Glorot uniform 
initialization [32], where the initial values of weights in a layer are defined 
based on uniform sampling within [-r, r], as defined in (17). 
 

𝑟 =  √
6

𝑛𝑤
[𝑙−1]

+ 𝑛𝑤
[𝑙]                                                                                                                            (17) 

 

where 𝑛𝑤
[𝑙−1]

 is the number of weights for the previous layer l-1 and 𝑛𝑤
[𝑙]

 is 
the number of weights for the current layer l. 
 

Batch size and epochs 
A widely employed variant of gradient descent is mini-batch gradient 
descent. In this version of gradient descent, backpropagation is carried out 
independently on several subsets of the training set, also known as batches, 
each of them of size m < M. Weights are updated once for each batch for 
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every training epoch, which results in lower memory requirements. In 
addition, since weights are updated on each subset, there is a reduced 
chance of the backpropagation algorithm getting stuck in local minima [33]. 
The dataset should also be shuffled at the start of every epoch in order to 
further increase the effectiveness of the optimization algorithm. [34]. We 
set the batch-size hyperparameter m = 32 after testing several values, while 
the number of epochs was set to 20. 
 

ADAM optimizer 
Adaptive Moment Estimation (ADAM) is a gradient descent algorithm which 
computes adaptive learning rates [35]. This results in a smaller probability of 
the algorithm getting stuck on local minima. This is done by storing an 
exponentially decaying running average of previous gradients 𝑉∆𝑊 
(estimation of the first momentum) and the square of previous gradients 
𝑆∆𝑊 (estimation of the second momentum), as shown in Eqs. (18) and (19). 
 
𝑉∆𝑊 =  𝛽1𝑉∆𝑊 + (1 −  𝛽1)∆𝑊                                                                                                    (18) 
𝑆∆𝑊 =  𝛽2𝑆∆𝑊 + (1 − 𝛽2)∆𝑊2                                                                                                  (19) 

 
𝛽1 and 𝛽2 are hyperparameters which define the decay rate of the running 
averages. For our network, these are respectively set as 0.9 and 0.999 as per 
the literature. Both running averages are biased toward 0 during the first 
few epochs, so a bias-corrected version of both is calculated based on Eqs. 
(20) and (21). 
𝑉∆𝑊

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =  
𝑉∆𝑊

(1− 𝛽1
𝑡)

                                                                                                                       (20) 

 

𝑆∆𝑊
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =  

𝑆∆𝑊

(1− 𝛽2
𝑡)

                                                                                                                        (21) 

 
With t defined as equal to the current epoch. Finally, the weight array W is 
updated as per Eq. (22). 
 

𝑊𝑛𝑒𝑥𝑡 =  𝑊 −  𝛿
𝑉∆𝑊

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑

√𝑆∆𝑊
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑+𝜀

                                                                                                     (22) 

 
𝜀 is a constant set to 10−8 to prevent division by zero and 𝛿 is the learning 
rate, which was set to 0.0001. 
 

Trainable parameters 
The full network consists of 2.962.447 parameters (of which 2.959.881 are 
trainable) divided into an encoder and a decoder component, which are 
described in the next subsection. 
 

Layers 
The proposed autoencoder is comprised of several convolutional layers and 
can be divided into two parts: encoder and decoder. The input and output 
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of the network are 256x256 images which contain three channels: red, 
green, and blue, which are taken in by the input layer. 
The encoder has an input layer made of 256x256x3 neurons. Then, there are 
two pairs of convolutional, batch normalization and max-pooling layers, and 
a last convolutional layer and batch normalization. These layers encode the 
data into a compressed 64x64x512 representation. 
 
The decoder is comprised of two pairs of convolutional transpose and batch 
normalization layers, whose outputs are 256x256x128 representations of 
the reconstructed images. These are then converted into the final, restored 
image by a last pair of convolutional and batch normalization layers. Figure 
7 depicts the proposed rain removal autoencoder architecture.  
 

Implementation 
The autoencoder model was implemented using the Keras deep learning 
library. We employed Google’s Cloud Computing Service for training with 
100 training epochs, using the ADAM optimizer, measuring loss with MSE, 
and employing the full dataset. Prior to being fed to the network, all 11000 
images were resized to 256x256x3 pixels to reduce computational costs. The 
rain images dataset was partitioned as in Table 1. 
 

Figure 7. Proposed rain removal autoencoder architecture 
 

 

 

 

 

 

 

 

 

 

 
 

Source: Own production 
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Results 
 

We assessed the proposed architecture on the test dataset comprised by 
1000 pairs of ground-truth and artificially degraded images. 
 
We evaluated five algorithms: firstly, the traditional mean filter with a 5x5 
kernel; secondly, the multi-guided filter proposed by [14]; thirdly, the 
dictionary learning approach by [7]; fourthly, a basic autoencoder 
architecture; and finally, our improved autoencoder architecture. Figure 8 
depicts the results obtained with the latter. Figure 9 illustrates the increase 
in accuracy throughout the training process for several configurations of the 
autoencoder architecture, which are in turn described in Table 2. 
 

Table 3 depicts the performance of the baseline methods, a basic 
autoencoder architecture, and the proposed, improved autoencoder 
architecture. Our autoencoder-based approach improves significantly over 
traditional approaches based on filtering, which struggle with heavy rain 
conditions. Figure 10 shows the result of using our architecture on real rain-
degraded images. 

Table 2. Evaluated Autoencoder Configurations 

Autoencoder 

model 

Description 

Model 1 A single, 128 filters layer to join the encoder portion of the 

network with the decoder. 

Model 2 A single, 256 filters layer to join the encoder portion of the 

network with the decoder. 

Model 3 A single, 256 filters layer to join the encoder portion of the 

network with the decoder. Additional (up to 256) filters in 

the two layers next to the central layer. 

Final Model The model described in the previous section. Similar to model 

3, but the central layer has 512 filters instead of 256 (see 

Figure 7). 

Source: Own production 
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Figure 8. Results obtained with the rain removal autoencoder architecture on seven images 
from the test portion of our dataset. The leftmost column (a) depicts the original images, the 
central column (b) depicts the degraded images, the rightmost column (c) depicts our results 

a) 

 

b) 

 

c) 

 

Source: Own production 
 

Figure 9. Training and validation accuracy for the 20 training epochs, for several autoencoder 
architectures with varying configurations 
 

 

 

 

 

 
 
Source: Own production 
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Figure 10. Results obtained with our architecture on several real rain images. To the left, the 
original image; to the right, the de-rained image. Some of the images are somewhat darkened 
but this is proposed to be fixed by means of gamma correction 

 

 

Source: Own production 
 

Table 3. Evaluation of Method Performance 

Metric 

(test 

set) 

Mean 

Filter 

Multi-

Guided 

Filter [14] 

Dict. Learn 

[7] 

Basic 

autoencoder 

Proposed 

architect 

MSE 0.0107 0.0094 0.0086 0.0071 0.0061 

NRMSE 0.2319 0.1884 0.2083 0.2175 0.1751 

PSNR 20.0595 20.6408 21.1119 22.0431 22.5613 

SSIM 0.5579 0.5861 0.7199 0.7312 0.8493 

Source: Own production  

Conclusions 
After reviewing the literature, we observe there exist several approaches for 
removing rain from single images. Although deep learning methods have the 
best performance, they require sizable datasets and long training times. In 
contrast, dictionary learning methods can remove rain from a single image 
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without a training set, at the cost of additional processing time. 
Spatial/frequency filters result in the lowest processing costs and require no 
training sets, however, most such filters tend to fail when rain conditions are 
heavy. 
In our work, we implemented a deep autoencoder architecture for removing 
rain from single images. Our architecture removes most rain from images 
while preserving detail, unlike most filter-based methods. However, colors 
are degraded by the network, possibly as a result of it trying to adjust for the 
increased brightness in images degraded by rain. This results in relatively low 
MSE, PSNR and SSIM scores when compared to other deep learning 
approaches in the literature. Regardless, our results show there is potential 
for employing autoencoders in rain removal tasks. 
 
Another key point is the need to establish well-defined metrics to measure 
the performance of the proposed algorithms. When authors employ no 
metrics, there is no way to compare the results aside from subjective 
criteria. Although it may be hard to obtain pairs of ground-truth and 
degraded images our work shows it is possible to generate synthetic rain 
images with relative ease. We also show that results obtained by employing 
such images for training can be extrapolated to the removal of rain from real 
images. 
 
Wrapping up, the field of single-image rain removal has seen considerable 
advances since the start of the 2010 decade. Future work should center on 
implementing more precise autoencoder architectures and carrying out in-
depth analyses of the features they encode. Particularly, we are interested 
in combining frequency filters with autoencoder architectures in order to 
minimize detail loss and to improve our current results. 
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